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Dynamic two-phase flows in natural systems∗

K.E. Sorokin, Sh.Kh. Imomnazarov, Yu.V. Perepechko

Abstract. The paper considers applications of a two-velocity model of hydrody-
namics for a two-phase medium for describing natural geological systems, such as
movement of magma melts in magma channels, the flow of a river and the erosion
of an unfixed sandy river bottom. The study deals with a test problem of spreading
a square area with a high content of a dispersed phase.

Non-stationary problems are solved numerically on the basis of a thermody-
namically consistent model for two-phase medium which takes into account a wide
class of dissipative phenomena. The numerical analysis is based on the application
of a completely implicit control volume method for a rectangular uniform grid with
a shift in the calculation nodes for velocities.
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Introduction

Modeling the non-stationary dynamics in natural geological systems makes
it relevant to develop mathematical models of heterophase media suitable for
taking into account various dissipative processes and phenomena in a wide
range of thermodynamic parameters. The paper considers applications of
a two-velocity hydrodynamic model for a two-phase medium for describing
various types of natural geological systems, such as the intrusion of magmas
into magma channels, the river flow and erosion of a sandy bottom of the
river, the dynamics of granular media and suspensions. Numerical model-
ing of magmatic melts intrusion in permeable zones of the lithosphere and
evolution of emerging magmatic and ore-magmatic systems is one of the ur-
gent tasks in this field. The dynamics of forming the ore-bearing intrusions
in the trap formation is characterized by the following processes: intrusion
of basic melts into a layered platform cover; the structural inhomogeneities
development in a heterophase nonisothermal magmatic flow in an emerging
intrusive body; differentiation of the melt while moving along the channel
and halting the pressure magma flow in the intrusion-produced channel.
The solution of this class of problems is based on a non-stationary model of
heat and mass transfer for heterophase media obtained by a method that en-
sures its physical correctness. As test problems, the problems of the square
area spreading and the erosion of an unfixed sandy river bottom has been
considered.

∗Supported by the Russian Science Foundation under Grant 20-19-00058.



60 K.E. Sorokin, Sh.Kh. Imomnazarov, Yu.V. Perepechko

1. Mathematical model

The model equations are derived on the basis of the conservation laws
method [1, 2] which makes it possible to create the thermodynamically con-
sistent systems of continuum dynamics equations. A two-phase suspension
model is built on the assumption that the phases are in temperature equi-
librium and there is no equilibrium by pressure in the phases. The pressure
difference in the phases is associated both with the presence of surface ten-
sion forces and with the possible direct interaction of dispersed particles.
The elementary volume of a suspension is characterized by partial densities
ρ1, ρ2 and velocities u, v of the dispersed and continuous phases, impurity
density ρa, the number of particles in the dispersed phase n, and entropy
S. In the gravitational field, the equations taking into account the energy
dissipation take the form [3]:
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Here ρ = ρ1 + ρ2, j = ρ1u1 + ρ2u2 are the density and momentum of a two-
phase medium; p is the pressure; q is the interfacial interaction parameter
determined by pressure in the dispersed phase; σ is the surface tension
tensor; ς is the specific surface of the dispersed phase; µa is the chemical
potential of the impurity; c = ρa/ρ is the impurity mass concentration; S
is the entropy density of a two-phase medium, T is the temperature; g is
the gravity acceleration. The kinetic coefficients of interfacial friction b,
phase shear viscosity η1, η2, thermal conductivity of a two-phase medium κ,
diffusion D are functions of appropriate thermodynamic parameters. Here
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R is a dissipative function. The strain rate tensors u1ik, u2ik are determined
by the relations

u1ik = ∂iu1k + ∂ku1i −
1

3
∂lu1lδik, u2ik = ∂iu2k + ∂ku2i −

1

3
∂lu2lδik.

The equation of a two-phase medium state is assumed to be linear:
δρ = ρα δp − ρβ δT , δs = cpδT/T − βδp/ρ, where s = S/ρ. Coefficients
of volumetric compression α, thermal expansion β, specific heat capacity of
cp a two-phase medium are additive in phases.

The impurity is taken into account in the ideal solution approximation:
µa = d1p + d2T + R̄T ln c, where R̄ is the universal gas constant. The
dissipative impurity flow in equation (2) in this case takes the form

Dd1∇p+Dd2∇T +DR̄Tc−1∇c. (7)

The coefficients before the gradients of pressure, temperature, and impu-
rity concentration determine the effects of barodiffusion, thermal diffusion,
and diffusion. Due to the dependence of the chemical potential on the grav-
itational potential in the impurity flow, a term is also added to the gravity
field (which determines the effect of gravidiffusion Dd1ρagk).

The surface tension is determined by the Shishkovsky relation:

σ = σr
Tc − T
Tc − Tref

− σ1 ln(1 + ac). (8)

The parameter σr generally depends on the chemical composition of the
phases. This dependence in the model was given by the expression σr =
σ0(ρ1 − ρ2)m. Here Tc, Tref , a, m are environment parameters.

The mathematical model of two-velocity media for a suspension with
an admixture takes into account the phase compressibility, temperature and
surface effects, as well as different dissipative phenomena (interfacial friction,
thermal conductivity, viscosity, diffusion, thermal diffusion, barodiffusion,
and gravity diffusion). The difference approximation for two-velocity hy-
drodynamics equations is carried out for a complete nonlinear non-isotropic
system of equations for a mixture of compressible liquid media and it is based
on the control volume method. The discretization of equations was carried
out on a rectangular uniform grid with a shift of the computational nodes
for the velocity vectors components. A completely implicit scheme is used
here. When approximating the convective terms (for calculating the flows
through the faces of the control volumes), the second-order HLPA scheme is
implemented. To calculate the pressure fields consistent with the flow field,
an iterative IPSA procedure was implemented. For the numerical solution
of the SLAE for discrete analogues of main equations and the correction
equation for pressure, the alternating direction method and the PARDISO
solver from the Intel MKL library are used.
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2. Model problems of two-velocity dynamics

2.1. Spreading of a square “drop” with a high solids content in
pure liquid. To verify this model, we consider a problem of evolution for
a high solids suspension zone placed into a low-solids suspension. Initially,
the “drop” is in the center of the computational domain. The parameters
of the two-phase medium were set corresponding to the parameters of water
(dispersed phase) and sand (dispersed phase). The initial thermodynamic
parameters corresponded to normal conditions. The simulations were car-
ried out for the non-dissipative case and different values of the dissipative
coefficients. In the absence of dissipation, there is no spreading and no
change in the “drop” contour. The addition of dissipative processes and
surface stress leads to deformation of this square region into a round one
with an increase in the “drop” radius. The observed pattern is shown in
Figure 1 and qualitatively agrees with the calculations in [4]. The difference
is related to a different choice of the composition for two-phase medium: in
the cited work, a mixture of methane and decane was considered at normal
temperature and pressure of 1.6 · 107 Pa.

Figure 1. Distribution of the solids content in the mixture for different time
points: (a) data from [4], (b) data from this paper

2.2. Layered suspension flows in an open channel. To verify the
model, a problem of inhomogeneous suspension flow was also considered
using the example of deformation of the channel bottom occurring due
to impact from the low-solids suspension flow. The problem geometry is
shown in Figure 2. The process of erosion of the loose bottom is shown in
Figure 3.
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Figure 2. Geometry of the problem of erosion of non-cohesive channel bottom

Figure 3. Dynamics of erosion of the interface between the low-solids and high-
solids areas for a geometry with the channel inclination angle of 1.5◦

In papers devoted to this problem based on 1D stationary models, the
calculated data fail to agree with experimental data without additional as-
sumptions (Figure 4a). The reason is usually associated with the unsteadi-
ness of the flow. To match the calculated and experimental data, the so-
called calibration of the channel bottom erosion depth is introduced:

ζ(t, x) = ζ0(t, x)

(
1− exp

(
− x

1 + at

))
.

In this paper, we use a non-stationary model without additional assump-
tions about the boundary erosion process. The calculation results demon-
strate a behavior corresponding to stationary models without extra calibra-
tion (Figure 4b). Thus, the unsteady flow is not a physical reason requiring
an extra calibration as a tool for simulation correction. This aspect requires
further research.
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a b

Figure 4. Blurring of the interface between regions with high solids concentration
and low solids concentration: (a) squares –– experimental data [5], dotted lines ––
data [6] without calibration, solid lines –– data [6] with calibration; (b) data from
this paper

3. High viscosity flow in an inclined channel

The use of a suspension model for studying the geological systems requires
setting thermodynamic and kinematic parameters in a wide range of values.
In this paper, a non-stationary non-isothermal model was used to analyze
the magma flow in vertical and inclined magma channels and dikes. The
physical parameters of the phases of such a medium were taken as follows:
solid phase –– density 2600 kg/m3, bulk modulus 3.2 · 10−13 Pa−1, thermal
expansion coefficient 7.0·10−5 K−1, dynamic viscosity took values from 10−1

up to 105 kg/(m·s). The input data for liquid phase: density 550 kg/m3,
bulk modulus 9.5 · 10−10 Pa−1, thermal expansion coefficient 1.8 · 10−4 K−1,
dynamic viscosity 4.5 · 10−5 kg/(m·s); the thermal diffusivity of a two-phase
melt was assumed to be 7.7·10−7 m2/s. The pressure drop was set to 100 Pa.

A study was made for a flow pattern as a function of continuous phase
viscosity. The calculation results are shown in Figure 5 for a dike with a
25◦ inclination. The flow regime while varying the viscosity of the dispersed
phase changes significantly due to contribution to the effective viscosity of
the two-phase suspension. At low values, active mixing is observed (Fig-
ure 5b), but which weakens with increasing the viscosity (Figures 5c, 5d) up
to its complete disappearance at viscosities above 105 kg/(m·s) (Figure 5e).

Changing the channel inclination up to 70◦ leads to a change in the
melt flow regime. The melt flow pattern with a viscosity below 10 kg/(m·s)
changes from non-stationary mixing (for horizontal channel orientation) to
the mixing flow with approaching a steady laminated flow (vertical channel
orientation) (Figure 6). For the viscosity above 105 kg/(m·s), the two-phase
medium flow pattern changes from zero mixing in the horizontal channel to
the displacement of liquid phase with solid phase (the process of settling
is observed): this generates and almost uniform steady flow in the vertical
channel (Figure 7).
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Figure 5. Distribution of the solids content for different values of the viscosity
of the dispersed phase: (b) 10−1, (c) 101, (d) 103, (e) 105 kg/(m·s); graph (a)
corresponds to the initial distribution of particles (m−3)

Figure 6. Distribution of the content of dispersed particles for different channel
inclination angles: (b) 0◦, (c) 25◦, (d) 45◦, (e) 70◦; graph (a) –– initial distribution
(m3); viscosity–– 10 kg/(m·s)



66 K.E. Sorokin, Sh.Kh. Imomnazarov, Yu.V. Perepechko

Figure 7. Distribution of the content of dispersed particles for different channel
inclination angles: (b) 0◦, (c) 25◦, (d) 45◦, (e) 70◦; graph (a) –– initial distribution
(m3); viscosity–– 105 kg/(m·s)

Figure 8. Temperature distribution of a two-phase mixture for different times,
the viscosity of the dispersed phase is 10 kg/(m·s)

The change in temperature distribution during intrusion of a high-tem-
perature melt into a horizontal channel filled with a low-temperature mix-
ture of the same mineral composition (for the case of a low-viscosity dis-
persed phase) is shown in Figure 8.
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