8. Tensor and Blending Splines

Variational formulations of interpolation and smoothing problems in tensor
products of functional spaces were studied in (4.Imamov 1977; Yu.S. Zav’ yalov,
A.Imamov 1978) for the particular case of polynomial splines. This Chapter
suggests variational formulations corresponding to the tensor product of spline
interpolating and smoothing operators in the abstract real Hilbert spaces, gives
convergence estimates for interpolating tensor splines and an algorithm for
constructing tensor splines. :

The variational formulations for tensor splines given in Section 8.3 for the
tensor product of two spline operators are generalized in the last subsection
to the case of n > 2 spline operators. The generalization of the algorithm
for constructing tensor splines to the multi- dlmensmnal case was given in
(A.Yu.Bezhaev, A.J.Rozhenko 1989).

All the material is illustrated by using Dm-interpolation problems and their
tensor products. Section 8.5 deals with the problem of processing the results of
well measurements and gives the estimates of computer costs of the algorithm.

The first two sections being introductory are written using the monograph

(W.A Light, E.-W.Cheney 1985) and Chapter 1 of this book.

8.1. Tensor Product of Spaces

8.1.1. Main Definitions

Let X and Y be the Banach spaces, X* and Y* be the spaces of linear con-
tinuous functionals over them, and £(X,Y") be the totality of linear bounded
operators acting from X into Y.

Definition 8.1.  The algebraic tensor product X @Y is said to be a linear space
of formal finite sums of the form 3"  2; @y, € X, y; €Y, ne€ N,
for which the operations of addition and multiplication by scalars are defined
in a natural way, which is factorized in the subspace

{Z-’”i @y Z@(ﬂ?i)?f}(yz‘) =0 Voe X, +e Y*} :
=1 =1

Definition 8.2. Let X,Y,U and V' be the Banach spaces, A € L(X,U) and
B € L(Y,V). Define the linear opcrator A B : X QY = UV by the
formula
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A®B(Zx,®yi)=zAxi®Byi- .

=1 - i=1

This definition is correct, i.e. a class of equivalence from X ® ¥ is mapped
into a class of equivalence from U ® V.

Example 8.1. Let S and T be compact Housdorff spaces, C(5) and C(T') be
Banach spaces of continuous functions over them. The space C(S) ® C(T) is
isomorphic to a linear subspace in C(S x T). The isomorphism is of the form

Y fi®gi— Y fils)gi(t).
i=1

i=1

Under this mapping a class of equivalence from C(S)Y® C(T) is in correspon-
dence with a function from C(S x T'), and elements of this class (various equiv-
alent formal sums) are in correspondence with different forms of this function.
We associate C(S) ® C(T') with the subspace in C(S x T'), to which it is iso-
morphic. . ‘ , :

Let A € £(C(S),R") be an operator of projection of the functions from
C(S) onto the mesh {s; € S, i+ = 1,...,N}, and B € E(C(T),IRM) be a
projector onto the mesh {t; € T, j =1,...,M}. Then AQ B: C(S)®C(T) —
RY & RM can be identified with the operator of the projection of functions
from C(S)® C(T) onto the mesh {(si,t;), 1 =1,....N, =1, oy M}

8.1.2. ay- and ﬂ—norins

There are different techniques for introducing a norm on X ® Y. Consider
ap-norms; 1 < p < oot C

‘ n 1/p
ap(z) = inf (Z “;1?,-”3’) Vp( Y1y s Yn ),
=1

where the lower bound is taken by using all representations of z € X ® ¥ in
the form of the formal sums }.\_, @; ® y;, and

n n l/p
S =(Zlaei”) <1
=1 =1

For p = oo, the corresponding expressions are replaced with max ||2;|| and max
|ai. | '

Up(Y1seees Yn ) = sUP

Theorem 8.1. The following statements are valid:
(1) Qp-NOTIIS are Cross-norus, 1.e.
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(z®y) = el -y VzeX, yev;

(2)if 1< p; <py <oo, then Qp, 2> ap,;
(3) The operator A® B is continuous if the same ap-norm is introduced on

X®YandUQ®V.

The completion of the space X ® Y in a certain norm a will be denoted by
XY . lfa= ap, we give a simpler form X ®pY.

Theorem 8.2. The operator AR B is continuousl'y prolonged up to the operator
A®pBeLX®,Y,U®,V)
and [|A®, B| = [|4] - ||B|.

Theorem 8.3. Let X and Y be Hilbert spaces. The e;cpression

n m )
B zi®w, Y uu| = > (@i uy)(wi, v;)
i=1 j=1 ij
defines the scalar product on X ® Y, and the norm B(z) = 1/B(z,z) induced
by it coincides with as-cross-norm. The introduced scalar product is extended
to X R Y.

Henceforth, we will write X ® Y instead of X ® gY and X ®; Y keeping in
mind that it is a Hilbert space with the scalar product 4 if X and ¥ are Hilbert
spaces. The same concerns the tensor product of operators: we shall omit the
subscript, which indicates the prolongation as- or B-norms. Let X,Y,U and
V' be the Hilbert spaces, A € L(X,U),B € L(X, U),N(A) and N(B) be the
kernels of the operators A and B, while R(A) and R(B) be their images.

Theorem 8.4. N(A ® B) coincides with the closure in X ® ¥ of the linear
space N(A)®Y + X @ N(B), and R(A ® B) is closed in U ® V,if R(A) and
R(B) are closed in U and V.

Let S and T be spaces of the finite measure, L,(S), Ly(T) be spaces of
measurable p, ¢ - summable, respectively, functions, 1 < p,¢q < co. Consider a
space Ly (S x T) of measurable p, ¢-summable functions with the norm

rlq 1/p

Ifll = / /lf(s,t)!th ds
T

S

Theorem 8.5. The space L,(S)®, Ly(T) can be isomorphically imbedded to
Lyp,q(S x T). The norm of the imbedding operator is equal to unity.
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8.2. Some Extracts from General Spline Theory
[

Let X,Y and Z be the Hilbert spaces, A € £(X,Z) and T € £(X, Y). Assume
that R(A) and R(T) are closed in Z and Y, respectively. Remember that the
operator (T, A) : X — Y x Z is said to be a spline pair, if N(A) + N(T) is
closed and N(A4) N N(T) = {0}.

8.2.1. Interpolation

Theorem 8.6. The following statements are equivalent:

(1) (T, A) is a spline pair;

(2) p(u,v) = (Tu,Tv) + (Au, Av) is a scalar product in X, which induces
the norm p(u) = /p(u, u) equivalent to the original one;

(3) for any 2z € R(A) there exists a unique solution to the constrained
optimization problem

o= arguerfirll(z) 17w (8.1)

which is said to be an interpolating spline.

‘Theorem 8.7. For 0 € A~!(z) to be an interpolating spline, it is necessary
and sufficient that we have

(To,Tu) =0 VYue N(A). (8.2)

The operator A € L(X .z ), where ~Z~ is a Hilbert space, is said to be T-
compatible with A if R(A) is closed in Z, N(A) C N(A) and (T, A) is a spline
pair. Introduce in X the scalar product p(u,v) = (Tu, Tv) + (Au, Av).

Theorem 8.8. For ¢ € A™1(z) to be an interpolating spline, it is necessary
and sufficient that we have

plo,u) =0 Vue N(A). ' (8.3)

It is not difficult to verify the equivalence of conditions (8.2) and (8.3), which
implies the statement of the theorem.

Example 8.2. (D™-splines). Let 2 be a bounded simply connected domain
in IR" with the Lipschitz boundary and X = W3™(12) be the Sobolev space.
For a finite set of points w C {2, define the operator 4 : W (£2) — RI“! by
the formula Af = f|,. The operator 4 will be continuous if m > n /2. Let us
introduce the operator T : Wj*(£2) — [Lo(2)]%

|
Tf=D"f= {\/%D“ﬂ la| = m}
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where I is the number of different multi-indices o = (@1,...,an) such that
la| = a1 + ...+ ap = m,a; > 0.

Let us introduce an operator _fi”, Af=f |z, where & C w. It is obvious that
N(A) C N(A). The operator (T, A) generates a spline pair if & contains a set
of (n+m —1)!/n!/(m —1)! points, on which the problem of construction of the .
(m—1)-th degree Lagrange polynomial has a unique solution. It is obvious that
if (T, A) is a spline pair, then (T, A) is a spline pair, and A is‘T—compa.tible
with A.

The norm p can be defined as follows:

ALY = (ID™ fII* + || Af|1*)1/2

- ] > %‘!—!(D“f)zdmzfz(m

n |al=m Pew

1/2 (8.4)

8.2.2. Smoothing

Theorem 8.9. The following statements are equivalent:
(1) (T, A) is a spline pair;
-(2) for any z € R(A),a > 0, there exists a unique solution to problem

0o = arg min a||Tul|® + || Au — z|)?, (8.5)
u€X
which is said to be a smoothing spline.
If (T,A) is a spline pair, then (VaT,A) is a spliﬁe pair for any a > 0.
Therefore, according to Theorem 8.1 the scalar product
palu,v) = a(Tu,Tv) + (Au, Av)

induces the norm in X, which is equivalent to the original one.

Theorem 8.10. For 0, € X to be a smoothing spline, it is necessary and
sufficient that we have

Pa(Oa,u) = (2, Au) Vue€ X. (8.6)

The spline interpolating operator associating the interpolating spline o € X
with the element f € X will be denoted by $,. The spline smoothing operator
associating the smoothing operator o, € X for & > 0 with the element feXx
will be denoted by S§. -

Theorem 8.11. If (T, A) is a spline pair, then we have
(1) S4,5% € £(X, X);

’
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(2) N(54) = N(5%) = N(A);
(3) S4 is a projector, i.e. Sq4-54 = Sa.

8.3. Variational Principle for Tensor Splines

8.3.1. Spline Pairs and Scalar Products

Let X;,Y; and Z; be the Hilbert spaces, A; € £L(X Z) and T; € C(X“Y)
be operators generating the spline pairs (1}, 4;), ¢ = 1,2. Introduce spline
operators S4, and S%' and consider their tensor products Sa, ®S54, and S ®
S4: acting in the Hilbert space X; ® X2. By Theorem 8.2, these operators are
bounded. In this section we give variational formulations of the problems of
spline interpolation and smoothing in X; ® X, whose solutions are obta.med
by using the operators Sy ® S4 and SG® S§.

Let ¥:! and Y? be the Hilbert spaces, C! € £(X;,Y!) and C’f € L(X;, Y}
be operators generating the spline pairs (C},C?), i = 1,2. By Theorem 8.1,
the scalar products : '

2

ai(u,v) =Y (Clu,Civ)

Jj=1

induce norms in the spaces X;, which are equivalent to the original ones. By
Theorem 8.2, we have CF @ C} € L(X; ® X2, Y} @ Y)), k,1 € {1,2}, hence, we
car: define the bilinear form

2
a(u,v) = Y (Cf ® C4u,Cf ® Cyv)
k=1

for any u,r € X7 ® X2. We can readily verify the following statement.

Lemma 8.1. For any u;,1; € X; and us, v € X, we have

a(uy ® ug,1n @ va) = ay(uy,vq) - az(uz,va).

The spaces X; with the scalar products ai(u,v) will be denoted by X, ,
1,2. Lemma 8.1 and Theorem 8.4 imply that the norm a(u) = /a(u, u) is az-
cross-norm on algebraic tensor product X{ ® X3, and scalar product a(u,v)
may be extended to X{ @ X making it a Hilbert space.

Theorem 8.12. The norm a(u) is equivalent to the standard norm in X; @ X.

Proof. Let J; : X' — X, be canonical imbedding operators, which are contin-
uous as a;(u) are equivalent normalizations of the original ones. By Theorem
1.2, the operator J; © J, belongs to £(X @ XJ,X; @ X3). It is obvious that

-
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this operator is a canonical imbedding. This completes the proof of the Theo-
rem. O

8.3.2. Variational Formulation of the Interpolation Problem

Let (T, Ai), i = 1,2, be spline pairs and A; be operators T;-compatible with
A; (see Section 8.2.1). Similarly to Section 8.3.1, construct the scalar products

pi(u,v) = (Tiu, Tiv) + (A;u, A;v)
in the spaces X; and the scalar product
Alu,v)=(Th @ Tu, Ty @ Tov) + (Ty ® Ay, Ty ® Ayv)
+ (4‘11 ® Thu, 4; @ Tov) + (111 ® Asu, 4; ® figu)
generated by them in X; ® X,.

Theorem 8.13. Let f € X; ® X, and 2 = A1 ® A2 f. Then,

Sa, ® Sa,f = i Ty ® Toul?
M ®Saf=arg  min  ITi® Tl

+ 141 ® Tou|® + || Ty ® Apull®.

Proof. Let us introduce operators A = 4, @Ay and T = (Ty®Ts, A, R, TT®
Jig). By Theorem 8.4, they have closed images. Prove that:

(a) A is an operator T-compatible with A; ® A,;

(b) ﬁ(SAI ® SA,f,u) =0 Vue N4 ® Az);

(c) Sa, ® Sa,f € (A1 ® A2)71(z). Then making use of Theorem 8.8 we
obtain the statement of this theorem.

By Theorem 8.12, the norm j(u) = (j(u, u))'/? is equivalent to the norm of
the space X; ® X»; hence, by Theorem 8.6, the operators T' and A generate a
spline pair. Then the conditions N(A4;) C N(A4;) and Theorem 8.4 imply that
N(A1 ® A2) C N(A, ® 4;). This completes the proof of Statement (a).

The expression 5(S4, ® Sa, f,u) is continuous and linear in the components
f and u. Hence, it is sufficient to show Condition (b) on the elements f = f1Q f,
and u = u; ® uz. By Theorem 8.4, either u, belongs to N(A;), or uy belongs
to N(Az). We have

ﬁ((SAl ® SAz)(fl ® f2)vu1 ® UQ) = ﬁ(SAlfl ® SAzfg,ul ® ’!tg)
= p1(Sa, f1,u1)p2(Sa, f2,uz).
By Theorem 8.8, one of the last co-factors vanishes. This completes the proof

of Statement (b).
Let us rewrite Condition (c) in the form

Al @ A2(S4, ® Sa,f) = A1 ® Aaf.

It is again sufficient to show this equality on elements of the form f1 @ fa, for
which it is obvious by virtue of the conditions 43 S af=Afand 4,54, f =
Az f. This completes the proof of the Theorem. O
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8.3.3. Bicubic splines

The solutions to problems of construction of natural splines

oi(zi)=r}, i=1,.,N1
b
flo{(2))*dz = min

and
oa(x;) =713, j=1,..,N2
d
flot(@)2dy = min

c

are defined by the operators S4, € L(Wf[a,b],Wi[a,b]) and Sa, €
L(W}(c,d],W}[c,d]) of spline interpolation by the operators

Aru = (u(z1), .. u(zn)),  Azu = (u(yr), ... u(yn2))-
The operators T} and T, are the second differentiation operators in this case.
Let zy = a, zny1 = b, y1 = ¢ and yn2 = d. Then the operators

“ilu = (u(a)vu(b))a ‘42”' = (U(C)ﬁ“(d))
will be Tj- and T,-compatible with A; and Aj, respéctively. Indeed, the ex-
pressions

b
/u"u"d:f: + u(a)v(a) + u(b)v(b)

and
d

/u"vf'dy + u(e)v(e) + u(d)v(d)

<

define the scalar products in W[a,b] and WZ[e,d], which are equivalent to
the original ones. The scalar productin Wg’;(ﬂ) = Wila,b @ W2e,d], 2 =
[a,b] X [c,d] generated by them is defined as follows:
0?u §?v
]tzI,yvaxyde + Wﬁdr + u(a, c)v(a,c)
2 a0
+ u(a,d)v(a,d) + u(b, c)v(b, c) + u(b, d)v(b,d),

where 7 is a vector tangible to 2.

By Theorem 8.13, the operator Sa, ® Sa, gives the solution to the problem

‘ ' ) u\?
o = arg uEl.»lllPll(:) u“yyd!? + B2 dr,
(P

an

where A = A; ®.A4; is the projection operator of the function from W;);(.Q)
onto the rectangular mesh {(z;,y,), i=1,...,N1, j =1,...,N2}.
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8.3.4. Variational Formulation of the Smoothing Problem

Let po,(u,v) = ai(Tiu, T;v) + (A;u, A;v) be scalar products in X; constracted
according to Section 8.2.2. Let us introduce the bilinear form

pa(u,v) = araz(Th ® Tou, Ty @ Tyv) + az(As ® Tou, Ay @ Tov)
+ai(Th @ A2u, Ty @ Agv) + (A1 ® Asu, 4; ® Ayv)

which is the scalar product on X; @ X,.

Theorem 8.14. Let f € X; ® X,, 2 = A; @ A2f. Then,
Sa, @ S4f=arg min  areo||Ty © Toul® + a2l A1 ® Toul”

+ alﬂTl ®A2ui|2 + ||A1 ®A2u — 2’”2.

Proof. Let T = (\/auTi ® \JarTs, Ay @ JarTs, Jar1Ti @ As). Similarly to
Theorem 8.13, we can readily prove that the operator (T, 4; @ Ay) is a spline
pair. If we prove that

pﬂ(S';"li ® Sflz yu) = (2,41 ® Asu) Yue X; @ Xo,

then by Theorem 8.10 we obtain the statement of this Theorem.
It is sufficient, as usual, to show the equality on elements of the form f =

f1® fo and u = u; ® uy. We have

Pa(S5 @ SH(f1® f2),u1 @ uz) = pa(SG' f1 ® S f2,u1 ® uz)
= par (SG1 f1ow1) - pay(S32 o ua) = (A1 fr, Avwn) - (A2 fa, Agus)
= (A1 fi ® Az fa, Ajus @ Asus) = (2, A1 ® Apu).

Here, we have made use of the orthogonality conditions for smoothing splines

(8.6):
Pai(SGifiu) = (Aif, Aiu) VfueX; i=12

This completes the proof of the Theorem. O

8.3.5. Variational Principle for n-Component Tensor Spline

Let X;,Y:, Z; be Hilbert spaces, A; € L(X,;,Z;), T; € L(X;,Y;) be operators
generating a spline pair (T;, A;), ¢ = 1,...,n. Introduce the tensor products of
spline operators

®F 1S4, =54, ®..®Sa,, ®L,5%, =55 ®..055. (8.7)

We can define n-component tensor products in the consequent manner making
use of the transitivity law U@V @ W = (U@ V)W =U ®(V @ W), where

U,V,W are spaces or operators.



Convergence Estimates for Tensor Splines 171

In this Section, we give variational formulations of spline interpolation and
smoothing in @7, X;, solution whose are obtained by using operatons (8.7).

Let us recall the definition of the direct sum of spaces Y @ Z. It consists
of the pairs (y,z), y € Y, z € Z and possesses the following norm and scalar
product ' '

I, 23 ez = IWlY + 112117,

((y1,21), (y2,22))vez = (y1,42)y + (21,22) 2.

Now we can realize a spline pair (T, A) as an operator (T,A4) : X = Y & Z,
which maps an element u € X to the element (Tu,Au) €Y & Z.

Proposition 8.1. Let f € ®%,X;, z = ®%,Aif. Then,

@154, f =ar min
=1 A f gue(®?=1A;)—1(z)

“ ®:f1=1 (ﬁ: Ai)”“@:‘:“ﬁﬁﬁzi ’

where A; are operators T;-compatible with A;.
Proposition 8.2. Let f € @, X;, z =®%,A:f. Then '

LS5 f =arg _min {]| ©f (VAT Aullyy, ez,

=17t

@y Al 7+ Oy A —2like 2}

The propositions are proved in the same manner as Theorems 8.13 and 8.14
and we keep them to the reader. '

8.4. Convergence Estimates for Tensor Splines

8.4.1. Limits of Tensor Products of Operators

Let X and Y be Banach spaces. The sequence of the operators P; € L(X,Y),
i € N, strongly converges to P € L(X,Y), if for any z € X the sequence
P,z converges to Pz in the norm of the space Y. By the Banach-Steinhouse
theorem, the sequence of the operators P; in this case will be totally bounded,
i.e. sup ||P;|| < oo.

Lemma 8.2. Let X,Y,U and V be Banach spaces, P; € L(X,U), Q; €
L(Y,V), i € N be sequences of operators. If one of these sequences is to-
tally bounded and the other strongly converges to zero operator, the sequence
P,®,Qi € L(X®,Y, U®,V) strongly converges to zero operator, 1 < p < oco.

Proof. Without loss of generality assume that P; strongly converges to zero
and Q; is bounded. For elements of the form & @ y we have

-
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1P: @, Qi(z @ y)l| = | Pizl| - | Quy]| < || Pialf - [| Q4] - [yl

The convergence of the above-given expression to zero is obvious, implying that
Pi®,Qi(z®y) converges to zero. By virtue of linearity of the operators P,®,Qi,
.we can readily prove that |P; ®, Q;z|| — 0 for any z from the algebraic space
X®Y.

Now let 2 € X ®,Y. Then there exists a sequence {z;} € X ®Y converging
to z. It 1s evident that we have

1P: ® Qizll < [P ®p Qilz — 2))|| + | P; @, Qiz| .
< sup [Bifl - 1Qill - flz = zll + | P @, Qizj

This expression directly implies that P ®p Qiz converges to zero and completes
the proof. O

Corollary. If P; € L(X,U) strongly converges to P and Q; € L(Y, V) strongly
converges to Q, then P; @, Q; strongly converges to P ®, @, 1 < p < 0.

The proof is implied by the theorem and the equality

P; ®, Qi*-P®pQ'=(Pi—P)®p(Qi—Q)+P®p(Q.'—Q)

8.4.2. Main Convergence Theorem

Let (T3, A;) be spline pairs and S 4; be interpolating spline projectors, i = 1, 2.
On the subspaces N (Ai) C X; we can introduce the norms

2l = | Tz

equivalent to the original ones. Indeed, these norms are induced by the norms
(I Tiu]]® + || Aiw||?)*/? which are equivalent to the original ones by definition of
the operators T} and A;. '

Let B; be Banach spaces and D, € L(Xi,B;), t = 1,2. Then the following
inequalities are valid:

”D;(CK - SA':L')” < g!”‘I’I(I" - SA|$)|, VI' E‘Xia 1= 132a

where

R I1Diz]
9i = || Dilnay| ceneay Nzl

The problem of construction of error estimates for spline interpolation con-
sists in approximate calculation of the constants ¢i. The following theorem
presents error estimates for the tensor spline interpolation via the correspond-
ing estimates for the components.

’
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Theorem 8.15. For any z € X; ® X, the following estimate is valid:
[

“Dl @ Dz(ﬂ: - SAl @ SAzx)“ < 9192”T1(Il - SAl) ®T2(I2 - Sflz)m“
+ g1l|Ta(L1 = Sa,) @ Daz|| + g2|| D1 @ To(I2 — Sa, )zl

where I) and I; are identity operators in X, and X, respectively.

Proof. Making use of the identity

I—54,®84,=5L®(I2—Sa,)+ (I —Sa,)® I
= (L1 —8S4,)® (I3 — Sa,),

where I = I, ® I, is the identity operator in X; ® X,, we obtain

|D1 ® Da(z — Sa, ® Sa,z)|| < ||Dy @ Da(ly — Sa,) ® (I — Sa,)z||
+[|D1 ® Dao(L) — Sa,) @ Lz|| + ||D1 @ D21y @ (Iz — Sa, )z

Let us estimate, for example, the second component of the sum.

Rewrite it in the form [|Dy @ I - (I; — Sa,) ® Dyz||, where I, is an identity
operator in B;. Note that the operator ([;.— S4,) ® Dy acts from X; ® X,
into N(A;) ® By. Since on N(A;) the norm ||z||; = | Tiz| is equivalent to the
original one, as-cross-norm induced by the norm || - ||; and the norm of the
space B; is equivalent to the standard one on N(A;)® B;. Hence, the operator
D, @ I is bounded in this cross-norm. Therefore,

| Dy @ I (It = Sa,) ® Daz|| < || Dilncapll - |Ta @ L (I = S4,) ® Daz||
= g1||Ta(I1 — Sa,) ® Dyz||.
The remaining components of the sum can be estimated in a similar way.

This completes the proof of the Theorem. a

8.4.3. Some Applications of Main Theorem

Let {Sgl)} and {SE{;} be sequences of interpolating spline projectors strongly
converging to the identity operators in X; and X;, and constructed by the
sequences {Agj)} and {Ag])}. Let g,w = iiDi'N(A(.j))lli’ ¢ = 1,2. Then,

IDi(z — $§)2)|l < | Ti(z - SP )| = o(g?).
The corollary to Lemma 8.2 implies that the sequence {.S'E,,j? ® S;i)} strongly
converges to the identity operator in X; ® X,. The estimate of the convergence

rate for these operators is given by

Theorem 8.16. Asymptotic estimates for the error of the tensor spline inter-
polation are of the form

1D @ Dy(z ~ S @ $Pa)| = o(g" ¢l + g7 + )
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forj - o0,z € X7 @ Xs.

The proof of the Theorem is directly 11nphed by the Corollary of Lemmmn
8.2 and Theorem 8.15.
Example 8.3. Let condensable h-nets of the sets w,(j ) 2 be given on the
domains §2; C R™, i.e. dist (£2;,w, J)) = h; ; — 0 for j — oo, where dist is the

Housdorff spacing. Let the operators S("T ) be used to obtain solutions to the
problems of D™i-spline interpolation

| o) = fl )
||Dm='a”%2(n” = min
ie. o= Sffl,)f. Then the following estimates are valid (see Chapter 5):

D% (f = S f)llz,. (a0 = o(gl),

where 2 < p; < 00, ki —ni/p; < m; —n;/2 (excluding k; = m; — n;/2 and
pi = 00) and, also,

(J) O(hml_k —n;/2+ﬂ|/p,)

Theorem 8.17. The following equality is valid:

ki,k ) ) (3
”D 1, 2(f (J) & S(J f)”L,,l pa (213 25) = 0( ii)géj) +9‘§J) +g£J))'

Proof. By Theorem 4.3, we have
ID* @ D*(f = 53) @ 55) Dlls,, o061, 00 = o095 + 617 + o).
Making use of Theorems 8.1 and 8.5, we obtain the inequalities

12y 22 S ML (200, Ly, (22 S M- Ly (20001, (22)

which directly imply the statement of the Theorem. O

8.5. An Algorithm for Constructing Tensor Splines

8.5.1. LA(U, B)-Method

Most schemes for implementing the spline approximation methods are de-
scribed by £ 4(U, B)-method.
Let Z=R", A: X — Z be an operator with the finite-dimensional image.
Let us prescrlbe B C X, wh1ch is a finite-dimensional space with the basis
swa,and U:RY 5 RM is a lll}eaz operator.
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Definition 8.3. The linear operator L4 : X — X is said to be realized by
L A(U, B)-method if we have v

M
o=Laf =) Aiw;

i=1
where the vector A = (A1,..., \y)7 is determined by the scheme
5\ = Uf‘-, CF = Af.

Denote by @ = (wy,...,wn)T the vector of basis functions. Then the oper-
ator £4 can be written in the convenient form
Lg=<UA & >,

where <, > is an extension of the scalar product

M
Laf =<UAf,@ >=<X\&>=Y Awi.

i=1

Example 8.4. The problem of interpolation of the function f : IR™ — IR given
on the scattered mesh Py, ..., Py with the values f(P;),..., f(Pn) can be solved
by the reproducing function method (see Chapters 2,5). One must seek the
interpolating spline

N
a(z) = Za’va(iﬂ —P)+ Y ppva(a).

|Bl<m—1
Here m > n/2 is an integer, 0 < v < m,

t|*71nlt|, 7 is an integer
G,(t) = | ’ .
+(t) { %7, otherwise

In this case, 3(t) = t? = ¢/ x ... x t¥» are monomials of the degree not
exceeding m — 1.

The vector A = (a1, ...,an, pg: |3| < m —1)T of coefficients of the spline
o is sought from the linear system

K B r
[ 0)2= i
where 7 = Af = (f(P1),..., f(Pn))T, K is the matrix with the coefficients
kij = G(P; — P;j), B is the matrix with the coefficients
bi,ﬂ = I/ﬂ(P,‘), t = 1, ...,N, !ﬂl <.m — 1.

The number of arithmetic operations required to calculate the coefficients
of the spline can be estimated by the quantity O(N?), and the next calculation
of the spline at a point requires O(N) operations. This method is preferable
for small N (approximately up to 100 points).
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8.5.2. Implementation of the Tensor £ 4(U, B)-Method
Let us prescribe two £ 4(U, B)-methods in the spaces X; and X:

£A1 =< Ui A+, >, EA.‘, =< Us Ay, 09 > .

Theorem 8.18. The following equality is valid:
La, ® £A2 =< (U] ® UQ)(A] ® A2), @ g > .

Proof.  Let us elucidate the sense of the Theorem. It is stated that the tensor
product of £4(U, B)-methods is again £ (U, B)-method.

It is sufficient, generally, to verify the statement of the Theorem on elements
of the form f = f; ® f,. We have

<U1 @UsA1 @ Az fi ® fa,i01 @ @y >
=< U]A.lfl & UzAzfg,(:)l R we >=< /_\1 ® :\2,(;)1 ® we >

M]_ M2 . M1 M2
S RN S ST
=1 j=1 =1 J=1
=< AL, @1 > ® < Ag, g >=< Ui Ay fi,01 > @ < Uz Az faiop >

=Lafi@Lafo=La, @LA,(LR f2)=La, ®La,f.

This completes the proof of the Theorem. O

The scheme for implementing the standard £ A(U, B)-method consists of
two stages:

(1) calculation of the vector A = UF; it usually consists in solving a linear
algebraic system;

(2) calculation of the characteristics required by using the explicit repre-
sentation Efil Aiwi.

When implementing the tensor £ 4(U, B)-method we make use of the iden-
tity

U1 @ Uy = (Ur @ Ing, ) (In, @ Us)

where Ipy, and Iy, are identity operators in IR™? and R™ and obtain the
following scheme:

(1) calculation of the vector i = Iy, ® Uy7; the calculation process falls into
Ny independent problems of the form # = U,y with different right-hand sides;

(2) calculation of the vector A\ = U; @ Ipg, fi; the calculation process falls
into M3 independent problems of the form # = U, 7;

(3) calculation of the characteristics required by using the explicit repre-

sentation ), . /\,-,jwfl) ® w;_z).

Example 8.5. A simple problem of processing the well measurements is as
follows. Let Py, ..., Py, be well coordinates on the plane, which form a scattered
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mesh. Assume that measurements of a function f are carried out at the depths
21,...,ZN2 in each well. In other words, the values of the functlon R - R
are taken at N1 x N2 points:

Tij = f(P,‘,Zj), 1= 1, ...,Nl, j = 1,...,N2.

It is necessary to reconstruct the function in the entire domain.

The direct calculation of the spline by using the reproducing kernels from
Example 8.4 requires O(N1* N2*) arithmetic operations for finding the coeffi-
cients and O(N1 - N2) operations for calculating the spline at any point.

We suggest that the tensor spline be constructed, i.e. the solution be found
in the form L4, ® L4, f, where L4, is the operator of spline approximation
of data at a scattered mesh on the plane and L4, is the operator of one-
dimensional spline approximation. When constructing the tensor spline we can
additionally economize on the solution of a series of one-type problems. With
this taken into account, the number of operations reduces up to O(N1* + N12.
N2 + N1- N2) for finding the coefficients and to O(N1) for calculating the

spline at any point.

A typical case of using the tensor methods is that of regular meshes on
rectangles or n-dimensional parallelepipeds. It shows that the tensor methods
can be more widely used by combining approximation methods of different
types.

8.6. Blending Splines in Tensor Product of Spaces

Consider the linear continuous mappings of the Hilbert spaces A, € £(X1, Zy),
Ay € L(Xq,2Z,), Ty € L(X1,Y7), T2 € L(X3,Y2), which generate two spline
pairs (T}, A;) and (T3, A;). Let Sa4,,S4, be interpolating spline projectors.
In Sect. 8.3, we presented the variational principle for the spline projector
Sa, ®Sa4,, acting in the tensor product of the spaces X; ® X,. Here we propose
the variational problem for the interpolating spline projector S4, 4 S4,, where

the sign @ stands for the Boolean sum!.

Theorem 8.19. Let 4;, A; be Tj—, T,-compatible operators with A;, A,, re-
spectively, f be an element from X; ® X,. The interpolating spline problem
with the following interpolating conditions

Ai@hu=4,® sz, (8 8)
L @ Aszu=1® Aaf, '

and with the following minimizing functional
1" The Boolean sum of operators S and 7T is defined as S@&T = S ® L+ T -5@T.
We shall its completion S@s T'= S@3 Ih + 1 ® T — S®,y T, as previously, S® T for the

sake of minimal notations.

-



178 Tensor and Blending Splines

1Ty ® Toullf, v, + 141 @ Toull}, gy, + 11 ® Azul? 5 (8.9) h
has the unique solution ¢ € X; ® X,, which is called a blending spline. It may

be defined with the help of the Boolean sum
=54, ® SALf. , (810)

Proof. Replace interpolating conditions (8.8) by one operator equation Au =
Af. First demonstrate that

N(A) = N(4;) @ N(4,).
We have N(A) = N(A] ®I2) n N(Il ®A2) = N(Al) ®X2 ﬂX] ®N(A2) =
N(A1) ® N(Az). Secondly, verify the interpolating conditions

A1 ® Ip(Sa, ® Sa,)f = 41 ® L,

I @ Aa(Sa, ® Sa,)f =1 ® Ay f.
We check only the first condition, since the second is proved analogously. So,
A1 @I2(Sa, ®S4,) = (A1 ®L)(S4, ®L+11 ®S4, — 5S4, ®54,) = A1 @I —
A1 ® Sa, — A1 @ S4, = A1 ® I. Here we use the interpolating properties of
the spline projectors 4;54, = Ay, A354, = A;.

Define the scalar products in the spaces X;, X, -

p1(u,v) = (Ayu, Ajv) + (Tyu, Tyv),

p2(u,v) = (Agu, Agv) + (Tau, Tyv).

-

The necessary and sufficient conditions for the operators S4, and Sy, to be
interpolating ((71,41) and (T3, A;) to be a spline pair) are of the following
form ' :

P1(Sa, fr,u1) =0,  pa(Sa,fa,uz) =0,

8.11

V f1 € Xy, fo € X2, us € N(A4y), uz € N(42). (8.11)
Introduce the cross scalar product in X; @ X,

plur ® ug,v1 ® va2) = p1(u1,uz) - f2(v1,v2) (8.12)

extending it with the help of the linearity and completion. Now we can verify
the orthogonality property

p(Sa, ® Sa,fru)=0, Vue N(A). (8.13)

Since N(A) = N(A1) ® N(Az), then it is sufficient to prove (8.13) for the
elements f = f1 @ fa, fi € X1, fo € X, and u = uy ® uz, uy € N(Ay), uz €
N(Az). From (8.12) we have

15(5441 & SAzfl ® f2:u'1 @’U.g) = ﬁ(SA1f1 ®f2 + fl ®5A2f2
—Sa,F1® Sa, fa,u1 @ ua) = p1(Sa, fr ur) - p2(fz,uz)
+ p1(fr,u1)p2(Sa, f2,uz) — ,51§5A1‘f1,u1) - p2(Sa, fa,uz).
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And from (8.11) it follows that all three last items are equal to zero. O

v
Remark. Let .us explain the sense of interpolating conditions (8.8). Assume
A; to be the trace operator on the mesh {z; < ... < zn} and A, be the trace
operator on the mesh {y; < ... < yny}. Then one can see (Fig. 8.1, 8.2), which
meshes are obtained then using tensor splines and blending splines.

y? T o] o o] (o] (o] 9; T
1 Il I Il 1 L i 1 Il 1
T T T T T 1 T T T ‘zl;
z, Ly % ¥
Fig. 8.1. Tensor interpolating mesh Fig. 8.2. Blending interpolating mesh

In the first case we obtain a discrete set of points organizing a grid and in
the second case - the totality of crossing lines.

Theorem 8.20. If the following estimates for interpolation processes with the
operators S4, and S4, - '

ID:1(I = Sa)fill S g1, [[D2(I = Sa,)fell < g2
are valid, then for every f € X; @ X, the following estimate for the blending
spline operator S4, @ Sa,

D1 ® Da(I = Sa, & Sa,)fl € 192 (8.14)

is valid, too.

Proof. This follows from the equalities

I- SA1 57 SAz = (I - SA1) ®(I - SA2)1

Dy @Dy(I1 — Sa, ®Sa,) =D1@Dy(I—54,)® (I —Sa,)
and on the basis of arguments like those used in the proofs of Theorems 8.15,
8.16. O

One can see that estimate (8.14) is better than one from Theorem 8.16, i.e.
the blending method is better than the tensor one. But, unfortunately, the first
method demands more information.



