10. Classification of Spline Objects

This chapter is special in the sense that it represents a collection of the facts
from the previous chapters, which underline the internal unity of these chapters.
This is a selective observation which helps as to classify general methods and
objects of variational spline theory. The Chapter was prepared on the basis of
the paper (Bezhaev 1990).

General objects of investigation are the Hilbert spaces and linear continuous
operators in the Hilbert spaces. Since other spaces except the Hilbert ones
and other operators except the aforementioned are not used, then the words
”Hilbert”, ”linear” and ”continuous” are omitted almost everywhere.

Remember the abstract variational spline-interpolation problem, which we
write down in the following form:

{Aa:z, o€ X, (10.1)

|To|ly = min.

Notation (10.1) contains the spaces X,Y, Z and the operators A: X — Z, T':
X — Y. As earlier, the interpolating spline ¢ € X is an element satisfying
the operator equation Au = 2z, z € Z (line 1), and minimizing the energy
functional |T'o|ly (line 2). The previous chapters contain various examples of
concrete spline functions reduced to (10.1).

With the help of the suggested classification we will try to teach the reader
how to get new problems of spline interpolation from the known classical one.
The suggested scheme of classification concerns the spline-interpolation, but it
may be easily spread out on the smoothing splines.

On the whole, the classification of spline objects is connected with the fun-
dumental operations over the Hilbert spaces and operators (Kirillov, Gvishiani
1979), which allow one to organize new spaces and operators. In Section 10.1,
we describe five general operations which in combinations help us to construct
new spaces, operator and spline-interpolating methods.

In Section 10.2 we describe five composed spline objects, which are obtained
by merging of the usual variational spline functions. More general composed
spline objects can be by merging these principal five obtained spline objects.
The respective examples are given.
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10.1. Fundamental Operations Over Hilbert Spaces

10.1.1. Closed Subspaces and Restriction of Operators on Subspaces

Consider an operator A : X — Z and a closed subspace E in X. It is known that
E is a Hilbert space with the Hilbert norm and scalar product induced from
X. The restriction of the operator A in the space E, denoted by Alg: E — Z,
is obviously a linear continuous operator.

10.1.2. Space of Traces on Manifolds and Trace of Operator

Let X/E be a set of the factor-classes up = u + E, u € X. Then one can
introduce in the space X/E the following norm

lugl = min lu + €] x,

which generates the scalar product, changing X/E in the Hilbert space.

Assume that the operator A : X — Z is annihilated on the space E, i.e.
Ae =0, Ve € E. Let us put into correspondance to this operator the operator
A: X/E — Z of the same name defined by the formula:

Aug = Au, Vuge X/E.

Readily, the operator is correctly defined, linear and continuous.

Let us present a particular realization of the factor-space as the space of
traces. The general operator 4 in the factor-space will be changed on the trace
of the operator. Let X = X(#2) be a functional space on the domain 2, I be
a manifold in 2. Introduce the space of traces

X(I)={u:T'-R: 3JweX(N), w|r=u}
with the norm

lullxry = w?iliu l|lw|| x (0.

Remark. If one defines the closed subspace
Xo,r(12) = {u € X(2) : u|r =0},
then it is clear that the factor space X(£2)/ Xo,r(2) is isomorphic to X (I").

Let the operator A be annihilated in the space Xo,r(2). The trace of the
operator A on the manifold I" denoted by A|r : X(I') — Z is defined as follows:

(Alr)(u) = Aw, where w|p =u.

It is easy to verify that the trace of the operator A|p is uniquely defined and
continuous.
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10.1.3. Direct Sum of Spaces and Operators

The direct sum of the spaces X; and X,, denoted by X; @ X3, is defined as a
Hilbert space of pairs (uy,u3), u; € X;, uz € X3, whose scalar product and
norm are determined as follows:

[(u1,u2), (v1,v2)]x = (u1,v1)x, + (u2,v2)x,,

ICuz,uz)lix = y/lluallk, + lluall,

Define the direct sum of the operators A; : X1 — Z, Ay : X — Z in the
following form:

(A1 © Az)(u) = Aju; + Ayus.

The linearity and the boundedness of the operator 4; @ Az : X; & X; — Z are
obvious.

10.1.4. Tensor Product of Spaces and Operators

Consider a bilinear mapping B : X x Y — Z, where X x Y is the Decart
product of spaces. Clearly, the finite sums

k
ZB(u.-,v;), ui€ X, vi€Y, ke,
i=1

form in Z a linear subset. In the conventional manner, we change the notation
B(u,v) to u ® v, and denote the aforesaid linear subset in Z by X @ Y. In
X ®Y, introduce the inner product in the following form:

k1 k2

k]_ k2
1 1 2 2 1,2 1 .2
Zui ®U|',ZUJ' ®'U'J = Z Z(u",u-")x(vi,vj)y.
=1

i=1 i=1 j=1
XQY
It is known (Light, Cheney 1985), that the completion of the set X ®Y according
to the norm, induced by the latter inner product, is a Hilbert space. It is called

a tensor product of the spaces X and Y. Further, it will be denoted in the same
way, X @Y.

Remark. One can see that this space depends on the bilinear mapping B and
on the linear space Z. In reality, the space .. defines the concrete realization
of the Hilbert space X ® Y, and the mapping B defines one of the equivalent
parametrizations.

IfA; : X; — X; and 4; : X; — 2, are operatérs, then their tensor product
Al A X100 X, - 2, ® Z; is defined as follows

k k
(:‘11 ® Az) (Z u; ® 'U,-) = Z(Au,') ® (Av,-).

The extension of this operator to the whole X ® ¥ is the linear continuous
operator of Hilbert spaces.
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10.1.5. Conjugate Space and Operator

The space of linear continuous functionals ¥ : X — IR is called a conjugate
space to X and is denoted by X*. To introduce into it the Hilbert structure,
remember the following definition.

Definition. A mapping 7 : X* — X is called a reproducing mapping of the
space X, if
(u)=(r(l),u)x, VieX* VYuelX.

By the Riesz theorem this mapping exists and is unique. Now it is easy to
verify that the scalar product

(11 ) lz)x- = (71’(11 ), ’T(lz))x

introduces the Hilbert structure into the space X*.
We associate with the operator A : X — Z the conjugate operator A* :
Z* — X* which is defined by the formula

*(A(u) = MAu), YueX, VieZz*

The conjugate operator is linear and continuous as well as A.

10.2. Classification of Spline Objects and Methods of
Their Merging

The subsections of this section are logical continuations of the respective sub-
sections of Sect. 10.1. For example, we refer the reader to Sect. 10.1.1 to hear
of the notations to Sect. 10.2.1.

10.2.1. Splines on Subspaces

Consider the operator equation A|go = z as an approximation of the operator
equation Ao = z. Then, interpolating problem (10.1) can be approximated
with the help spline on subspace:

Algo =z
10.2
{||Tor||y = min (102)

Since E is a Hilbert space, and operator A is continuous, then thlS problem is
a particular case of more general problem (10.1).

The general approach to this problem was stated in Chapters 4,5,9. Now we
formulate only one result concerning the representation of spline on the finite-
dimensional subspace E. Assume A is an operator with the finite-dimensional
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range R”. If wy,...,w, stands for the basis of E, then the spline ¢ being the
solution of (10.2) is of the following form

n
ag = E giWw;.
i=1

The vector of coefficients 5 = (01, ...,0,)7 is determinéd from the SLAE

T AT][a] _ o
A 0 Al
where the matrix T has the common element t;j = (Tw;, Twj), the matrix A

has the common element a;; = (Aw,);, the matrix AT is transposed to the
matrix A.

Spline method of subspaces was proposed in (Vasilenko 1973). Realization
of this method is described in the instructions to the package FINEL of the
library (LIDA-3 1987).

10.2.2. Splines on Manifolds

In order to simplify the description of splines on manifolds, consider a particular
case of the spherical manifold

I'= {(‘Pia'ﬁ:’) i € [01277)1 ni € [0,7[’]}.

Take the points {¢1,71),...,(¢n,7n) on the unit sphere I in IR?, and the real
numbers ry,...,7,. Assume that we need to solve interpolating problem

o(pi,mi) =ri, i=1,..,n (10.3)

One approach to the solution consists in the definition of classes of the Sobolev
functions on the sphere I' having the Hilbert and semi-Hilbert structures, in
finding the energy functionals and reproducing kernels, and in further solution
of the problem as we have done in Chapter 2 for the general case. This approach
was implemented by (W.Freeden 1981) and (G.Wahba 1981) independently.
The authors based on the operators Laplas-Beltrami on sphere.

Another approach, suggested by (Bezhaev 1984) and called the method of
traces of spline on manifolds, consists in utilization of the available method of
interpolation in R™ (Duchon 1977). The set of points on the sphere is considered
as a chaotic set of points Py, ..., P, in IR?, more exactly

R=($i1y512i); 3=11"-1n7
where
i = sinp; sinn;,

Yi = COS(p; sinm;,

Zj = Cos1);.
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Consider D™-spline o which is the solution to the following problem
o(P)=riy, t=1,..,n

!
Z E"(D"‘ar)de = min.
a!

R |ef=m

Its trace o|r is declared as the solution of interpolating problem (10.3) and is
called a spline on a manifold. In detail this is described in Chapter 6.

Now we are interested in formal notation of interpolating problem on man-
ifold:

{Am =z o€X,

10.4
[[Te]ly = min. (104)

Here X = X(£2) is the Hilbert space of the functions, defined in the domain 2
including the manifold I

Remark. Our classification contains two types of spline-interpolating problems
(10.2) and (10.4), therefore one can consider their mergings. Denote this in the
following schematic form:

Algc=2,0€E, Ao|lr =z, ¢ € X,
||Te||y = min [|Te|ly = min

'This combination may be considered as 1) utilization of the method of splines on
subspace, when solving the interpolation problem on manifold, or 2) utilization
of the method of traces when interpolating on a subspace.

The first can be interpreted as an introduction of the finite-element space
E in the space of functions, defined on the manifold I" and subsequent min-
imization of some energy functional on E under the interpolating conditions.
The latter functional may be the Laplace-Beltrame form like in the aforesaid
papers by Freeden and Wahba. :

The second kind of merged splines is connected with consideration of a
finite-element subspace in the domain 2, included the manifold I', with the
subsequent solution of the interpolating problem on a subspace and with the
final consideration of the trace of the obtained solution on manifold. This kind
of splines is attentively investigated in Sect. 6.2.

10.2.3. Vector Splines

Consider a pair of abstract spline-interpolating problems with z, € Z, 2, € Z:

{A101 =z, o1 € X, {Azd‘g =22, 02 € Xy, (105)

”Tlcrl “y1 = min, “Tgo‘zuy2 = min.
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Definition. Take z € Z. An element o = (01,02) 1s called a vector spline, iff
it is the solution of the following problem

{Alffl + Agor =z, 0y € Xy, 09 € Xy, (10.6)

IT1o1 13, + I T202]|3, = min.

In conformity with Sect. 10.1.3 construct the direct sums of the spaces
X=X90X,,Y =Y, &Y and the direct sum of the operators T =Ty & Ts.
Then one can readily see that problem (10.5) is equivalent to general problem
(10.1). Write down the problem for the vector spline of several components
g =(01,...,0k):

(10.7)

Ajoy + Agog + ...+ Agor =2
"T] @Tz @ ... @TkJ"Y = min,

which we will use further only for k& = 2. Chapter 7 contains the solution to
this problem making use of the reproducing mappings or reproducing kernels
of the spaces Xj,..., Xi. One can say that if there is a method of the solution
to problems (10.5), then one can easily construct. the method of the solution
* to problem (10.6).

Example. The solution to the problem about the location of a thin elastic plate
attached at some points of IR? is modelled (Smolyak 1971; Harder, Desmarais
1972) with the help of the following spline-interpolating problem

o(P) =z,i=1,..,n, 0 € WZ(R),
/(‘72: + 202, + 02, )dzdy = min. (10.8)
7

The latter problem may be solved with the aid of analytical or finite element
methods. Here, the interpolating conditions simulate the stiff fixation of the
plate, described by the two-dimensional function o(z,y), and the energy func-
tional approximates the potential energy of elasticity.

Consider the following problem of the vector spline interpolation

(01(P) =z, i=1,..,m, a1 € W}(R),

02(Qi) = t;, i = 1,.-.,712, o2 € W22(‘Q)’
Qoi(zi)—o2(zi) = hyy, 1=1,..,n3,

| [(0hee 208y + o2y, + 208, + 208, + 03y, )dady = min.
\ 2

We assert that this problem simulates a physical problem of mutual location
of two thin elastic plates attached at some points and additionally connected
by stiff rod. This is a new problem, which illustrates fruitfullness of the vector
approach in spline functions. Other examples are described in Chapter 7.
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Remark 1. Remember again about the opportunity of the merging of various
types of spline interpolation. We have considered the three ones: splines on
subspaces, on manifolds, vector splines. Consider the following combination:

Algo =z, 0 € E, A101 4+ Az0s = 2, 0y € X1, 0y € X,,
Tolly = min ITio IR, + (T3], = min

This corresponds to the merging of splines on subspaces with the vector
functions, which bring about three new problems:

Aroy + Az00 =2, 0y €E, 0y € Xo, (10.9)
ITvo:11l3; + | T202(1%, = min. '
A0y + Az03 =2, 01 € X1, 03 € Ey, »
101 222 22 1 -1 2 2 (10.10)
1Tio1ly, + 1T202||y, = min.
Aoy + Azoqy = 2, € Fy, € E,,
101 ) 2072 z 20-] .l g2 2 (1011)
ITyo1]ly, + [ T202]|3, = min.

Chapter 7 contains the algorithms for the solution to these problems. Prob-
lems (10.9) and (10.10) are very unusual. There, the analytical and finite ele-
ment approaches are combined.

Remark 2. The following chart illustrates the merging of the method of splines
on manifolds and vector-splines:

Aolr =2z, 0€ E, A1oy + Azoy =z, 01 € X1, 03 € X,

ITolly = min ITio4]13; + | Too2 ], = min

with the help of this combination one can solve the interpolating problem for
spherical functions, having the pole singularities. To prove this, consider the
following interpolating conditions:

o1 (‘pl‘ani) - T;‘Ug((ﬂi’ﬂi) =
o2(9i i) =0, o1(pi,m) = £1, if 7 = +oo.

Evidently, these conditions are sufficient for the function o = ¢, /o2 to sat-
isfy the interpolating conditions o(@:ni) = r; including the pole singularities
ri = £oo. Additionally, considering energy functional :

/(afu +207,, + 0%y, + 00, + 203,y + 03y, )dady (10.12)
§2
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for D™-splines, one can reduce the initial problem with pole singularities to
the traces on vector D™-splines on the manifold.

Combining further the latter object with the method of spline on subspaces,
one can arrive at the finite-element method for the interpolation of the spherical
function with the pole singularities.

Besides the papers of the author and Chapter 7, vector splines have been
studied in (Rozhenko 1983; Wahba 1984).

10.2.4. Tensor Splines

Again, consider a pair of abstract spline-interpolating problems, but now with
z1 € Zl, 29 € Za:

(10.13)

[ITlo'l ”y1 = min,

Ayoy = z1, 0y € X, Apoy = 23, 02 € Xo,
||T20'2||y2 =min.

On can put into correspondence to these problems two linear operators of
the spline interpolation S, : Z; — X, S; : Z; — X, which in turn puts
into correspondence to any elements z; € Z;, z; € Z; the splines-solutions
of problems (10.13). Clearly, the tensor product S; ® S; gives a solution to
problem

Al ®@ Ayu =2 (1014)

for any element. z € Z = Z; ® Z;. In practice, such problems arise when one
utilizes the data on the regular meshes or, more generally, the Decart product
of arbitrary meshes.

In Chapter 8, we have shown which variational functional satisfies the in-
terpolating method S; ® S;. It appears that the respective variational spline
interpolating problem looks like as follows:

{A1®Aga:z,a€X1®X2, (10.15)

Ty ® Tzo|lv,@y, = min.

The spline interpolating method S; ® Sz is the unique solution to problem
(10.15) if N(Ty) = {0} and N(T») = {0}. Else, problem (10.15) is not uniquely
defined, but among its solutions one can find the aforementioned S; ® S,.
Chapter 8 contains the modification in the energy functional of (10.15), which
leads to the uniquely defined solution.

A very interesting trend in the tensor spline theory is blended methods.
There we give their variational formulations.

For any space X, denote by I'x the identity operator in this space. Introduce
the following operators

Ai1®Ix, Xi1®X, = 2,0Xy, Ix,04::X:10X: - X102,

and some elements z; € Z; ® X3, z; € X1 ® Z,.
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Theorem. The system of operator equations

otz oemex oo
is compatible, if

(Iz, ® A2)71 = (4A; @ Iz,)5 %z, - (10.17)
The solution is determined by the following formula

o= (51 ®Ix,)5 + (Ix, ® $2)72 — (51 ® $3)z, (10.18)

where the element Z is determined from conditions (10.17).

Proof.  Conditions of the compatibility (10.17) are necessary. This follows from
the following equalities

(Izl ® AZ)EI = (IZ:| ® A2)(A1 ® le)a - (Al ® AZ)O- =
(A1 ® I, )(Ix, ® Az)o = (41 ® Iz,)%.

Prove now that formula (10.18) really gives a solution to system of the operator
equations (10.16). To verify this, produce the following true transformations:

(Al ® IX:)" = (Al ® IX:)(SI ® IX:)EI + (Al ® Ix,)(le ® 32)22—
(A1 ® Ix,)(51 ® S2)2 = (I7, ® Ix,)51 + (41 ® 52)_52—
(A1 @ Ix,)(51 ® $2)(A1 ® Iz,)7 = 7.

The latter proves the correctness of the first equation of (10.16), the second
equation is similarly verified. O

Thus, we found the operator which gives a solution to problem (10.16).
It turns out that this operator posseses one interesting property, it gives the
solution with the minimal semi-norm |7} ® Teu|ly, @y, -

With the help of operator equations (10.16) one usually simulates the practi-
cal task about surface construction, put on the frame, consisting of two orthog-
onal families of curves in the Euclidean space R®. The first operator equation
of (10.16) simulates the frame, consisting of curves from one family, and the
second operator equation simulates the frame, consisting of curves from an-
other family, the conditions of the compatibility signify that the surface must
lye at the points of intersections of two orthogonal families of curves.

The next problem of the blending tensor spline interpolation helps when
one finds the surface, which lies on the frame of two families of discrete curves.

In addition to the introduced operators, consider the operators A; : X; —
Z, such, that 4,5;4; = Ay, A25,A; = A,. Then the problems

{ﬁlal =z, 01 EXla {A_202 =2z, 02 € Xg, (10 19)

"Tlal "Yx = min) "T‘ZU‘Z "Yz = min
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are uniquely solved for any elements z; € Z,, z, € Z,. Let 51,5, (like operators
51,52 for (10.13)) be the linear operators of spline interpolation for problems
(10.19). Consider the system of two operator equations

A ® Ay)o = 7, X ® X, .
{( 1QA)o=%, ceX,0X, (10.20)

(Ar ® A2)o = 2,

for the elements z; € Z; ® Z,, 73 € Z, ® Z,. Like problem (10.16), one can
write out the condition of compatibility

7 (A1 ® 42)71 = (A1 ® Ay)7,,
which gives the solution to (10.20). We gave here two simple blended tensor
methods, further one can generalize the problems, using the more complicated
Boolean sums of operators instead of those used here. Tensor splines were in-
vestigated in (Bezhaev, Rozhenko 1989, 1990; LIDA-3 1987; Zavialov, Imamov
1978; Cui Ming-gen et al. 1986; Gordon 1971).

We specially do not discuss new opportunities connected with merging the
spline objects and methods, where one of the terms is a tensor object. First,
this could occupate much place, secondly, we think we had convinced the reader
that the merging is a very fruitful way to organize new objects.

10.2.5. Optimal Approximation of Linear Functionals

Let A : X — Z be a surjective operator with nonzero kernel, ¥ € X* be a
linear continuous functional. Assume, that we have to estime the value k(u)
for u, satisfying the operator equation Au = z. The spline method of such .
an estimation consists in choosing the spline o which is the solution of (10.1),
and in considering k(o) as an estimate of sought for value. If one denotes by
S : Z — X the operator of spline-restoration, then k o S defines the linear
method of solution to the introduced estimation problem.

A very interesting question arises again if the operator k 0 S € Z* satisfies
any variational prineiple. In Chapter 9, we have shown that the latter operator
gives the solution to the following minimization problem

S0 = max |k(u) — A(Au)],

ITully=1 : _
which is considered for all elements A € Z*, satisfying the condition A(p) =
0, Vp € kerT. With the help of definition of a conjugate operator, the mini-
mization functional is rewritten in the following form:

#() = max (4%~ K)(w)|.

Clearly, A € Z* is being found from the condition of minimal distance of the
element A*) to the functional & on the class of elements satisfying ||T ully = 1.
In spite of unlikeness of this variational problem on the spline formulation
we include it in the general scheme. So, we underline its variational essence
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and remember about the opportunity of the merging with the earlier discussed

methods.

Finishing the Chapter, we give Figure 10.1, which illustrates the classifica-

Classification of Spline Objects

tion of spline methods and objects.
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Fig. 10.1. Scheme of classification for variational spline methods and objects



