11. Y II-Approximations and Data
Compression

The problem of X II-approximation in a simple form is the following: let f (z,y)
be a real function of two real variables z and y; we want to replace this function
by the finite sum of products of one-variable functions

> k(@) (y)
k=1 :

and to provide some given accuracy of approximation. This problem is impor-
tant in various applications, like data compression in digital image processing,
in decomposition of two-dimensional digital filters into the one-dimensional fil-
ters and so on. In the beginning of our century E. Schmidt (1907) considered
this problem in the analytical form and found the connection between optimal
X'II-approximation and singular values of the integral operator with the kernel
f(z,y). After that many mathematicians become interested in this problem,
but usually in the analytical form without using numerical algorithms. In this
chapter, we consider the so-called finite dimensional X IT-approximations in the
general form and in the examples, and give the numerical algorithm for them.

11.1. General Consideration

Let ny, > 1, ny > 1 be integers and 2, C R"=, 2y € R™ be some domains.
In these domains, we define the Hilbert spaces X(£2;) and Y(£2,) of the real-
value functions of the vector arguments z € §2; or y € £, correspondingly. Let
2= 10, x 2, and

Z(2) = X(£2:) @Y (12,) (11.1)
be a tensor product and, also, the Hilbert space which is complete with respect
to any cross-norm || - || (o) (see Chapter 8),

Vio(z) € X(12:) Vy(y) € Y(92y)

“qp(:r) ) T‘L’(y)llz(n) = ”@”X(n,) ' ”!F”Y(ﬂ,,)- (112)

Let X, be n-dimensional subspace in X(2;) with the basis ¢;(z), ...., wn(z),
and Y, be m-dimensional subspace in ¥(§2,) with the basis ¥ (y), ..., ¥m(¥).
The finite-dimensional X IT-approximation is expression of the form
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s
Zﬁﬂ,k(z)!pm,k(y)a Qﬂ,k € X, wm,k € Yn. (113)
k=1

We say that this expression is reduced if the functions @n,1,Pn,2y ..., Pn , are lin-
ear independent and ¥y, 3, ¥y, 2, ..., ¥m,, are also linear independent. Moreover,
if these systems of functions are orthogonal (1-st system in X-scalar product
and 2-nd in Y-scalar product), then we say that X IT-approximation is orthog-
onal,

Lemma. Every reduced ¥ IT-approximation can be transformed to the orthog-
onal one.

Proof. Let us introduce functions

Poi(c) = aubni(z), k=1,2,..,s,
=1

s (11.4)
Tk (y) = Y betma(y), k=1,2,..,s,
1=
with any coefficients axi, by, and reguire
3‘ ) ] _ _
D En k(D) k(¥) = Y Bk (2)Frm i (y) (11.5)
k=1 k=1

and, in addition, _
(Pt Pr)x(02.) = Tk, Imt)y(a,) =0, k#L (11.6)

Denote by A and B two s x s-matrices of the elements ax, and by ) respectively,
and by F and G - two Gram matrices of the elements fi; = (@r,ks Pr,t) x(02.)
and g = (Zm, ks ¥m,1)y(0,). Since the initial XIT-approximation is reduced,
we have F' = F* > 0, G = G* > 0. Equations (11.5), (11.6) are equivalent t
matrix equations '

A*B=E, AFA*=D,, BGB*=D,, (11.7)

where Dy, D, are any diagonal matrices. Taking into account B = (A*)71, we
obtain

AFGA™ = DD, = (A*)"'GF A" (11.8)

Is it possible to find the matrix A with this pmperty? Let us consider the
generalized eigenvalue problem

FGu=Xu, Gu=J\Flu. (11.9)

Since F™! = (F~1)* > 0, there are s eigenvector u;,uz, ..., us, which are or-
thogonal in the scalar product (F~'u,v) and the corresponding eigenvalues

”
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A1, Az, ..., Aq are positive, because G = G* > 0. Let the matrix U be assembled
with the vectors uq,...,u, as columns and A = diag (A1, Az,..., As). Let us nor-
malize the eigenvectors by U*F~1U = A~1/2, We have GU = F~1UA, and let
A=U"1 B=(A*)"! =U* Then

AFA* =UT'F(U*)™! = A2,

BGB* =U*F ' UAU™'U = U*FUA=A"Y2. A= A2,

Finally, D; = Dy = A'/? and Lemma is proved; we can search for XII-
approximation only in the orthogonal form.

11.2. Optimal ¥ IT-Approximations

Let us represent the functions @, x(z) and ¥, x(y) with the basic functions

B k(z) = iaﬁ'%.-(m),
=l (11.10)

m

Uri(y) = Bi(y), k=12,

i=1

Let f(z,y) belong to the tensor space Z({2). We need to find the optimal
X IT-approximation from the minimization of norm

2
ES) = | f(zy) - Z( aEk)cp.-(:z)) : (Zﬁ}")d»,-(y)) (11.11)

k=1 \i= j=1 2(2)

with respect to the coefficients afk), ﬁ}k). Using lemma, we are able to require
without loss of generality that:

||¢n,k”X(!?z) = ||q7m,k||y(gy), k= 1;2,...,8 (11.12)
(Breky P, )x(22) = (T ks Tn )y (o) =0, k#L (11.13)
Denote by a® = (a{¥,...,al)T, g0 = (B . 69T, If A and B are the

- Gram matrices for ‘basic elements,
A= {(Hai,ﬁoj)X(ﬂz)}:j:p
B = {(¥i,¥i)v(a,) =1,

then we have instead of (11.12), (11.13) the following conditions:

(Aa(k),&(k)) = (Bﬁ_(k),ﬁ(k)), k=1,2,..,8,

~(k) =Dy — (gAK FY = I (11.14)
(ACI.’ & ) (Bﬁ sﬂ_ ) . 05 k:,é ’
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where ( , ) means the usual scalar product in n-or-m-dimensional Euclidean
space.
Let us introduce the rectangular n X m-matrix F of elements

fs'j = (f(.’li, y)v (Pi(l')'l)j(y))Z(n)-

Then the function E,(,",e,.(&, B) can be expressed by the formula
EL(8,8) = | fll5a -2 ) (FA®,a™)
k=1

+ Z (4a®,a®). (BF®, g0,

k,l=1

Differentiation of the Lagrangian function

L(@,B,3,7,7) = En(@B) + Z M [(4a®,a®) - (BB®, B0
k=1

+ 3 [ 4a®,a0) + p(BED, 5OY]
k#l

leads us to the following conditions at the point of minimum for every k =
1,2,...,s

. . ,
—FA® + 3 (BA®, B 4a™ + Acaa®
=1
+ 3 (469, 50450 =,
I#k
_Fa® 4 Z(A&(k}’ aMBa*® — X, B3™
=1

+ ka(Bﬁ(k), ﬁ(”)BEU) =0.
I#k

Thus, the following non-linear system appears
FE® = (BA®, 30N 4a® 4+ M Aa®),
F*a® = (4a® a®)BF® _ \BA®,
(Aa® a®) = (BF®, gW), k=1,2,..,s,
(Aa®,aMy = (BAW, g0y =0, k#I, kl1=1,2,..s.

(11.15)

It is clear from this system that

(FB®,aM) = ((BB®,5D) + M) - (4aM,a),
(F*C_!(k),ﬁ_(k)) — ((A&(k),fi(k)) _ )\k) . (Bﬂ_(k),a(k))-
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Taking the difference of these expressions we obtain Ax = 0 when (Aal®) k) £
0, i.e. @ s 0. Trivial solutions @* = B*) = 0 are not interesting for ZII-
approximation and finally we have non-linear system

FA® = (BF®, 3045,

) 11.16
F*a® = (4a®W, a®)Ba®, k=1,2,..,s, o

with the natural normalization condition (4a®,a®) = (Bp*) W) k =
1,2, ...,s and orthogonal property (4a®),aV) = (BB¥), 30y = 0 for k,l =
1,2,...,8, k # L. It is clear from our consideration that the vector (@, gtenT
is always some eigenvector for the generalized eigenvalue problem

(2 90~ 0

Let us discuss in details this eigenvalue problem. Since the block matrix in
the right-hand side is symmetric and positive, there exist (n + m) eigenvectors
[ui,ui]T corresponding to the real eigenvalues Ay > Az > ... > Apym. These
vectors can be made orthonormal in the sense of special scalar product

(Au;, uj) + (B, v;) = &;;. (11.18)
If A\; # 0, we have (Au;,u;) = (Bvi,v;). Actually,

(F*u;, vi) = M Bvi,v;),

(Fui,u;) = MAui, uq),
and A[(Aus, u;) — (Bvi, ;)] = 0. Moreover, if eigenvectors [ui, ;] and [u;, ;)T

correspond to the various eigenvalues A; > 0 and \; > 0, then we have the
block orthogonal property

(Au,-,uj;) = (BV,', Uj) =0.
Really we have
Fv; = MjAu;, Fvj = \jAu;,
F*u; = \;Bv;, F*u;=\;Bvj,
(Aui,u;) + (Bri,vy) = 0.
Hence,
(Fui,u;) = Xi(Aui,uj) = (F*uj,vi) = A\j(Bvi, v;)
A,‘(Au",u]‘) = —.\_,-(Au,-,u]-), —A.‘(BV,‘,VJ') = )\j(B!/,‘,Vj)
(A,‘ + )\,-)(Au,-,uj) = (/\| + )\J‘)(BVI‘,VJ') = 0.
If \; > 0 is a multiple eigenvalue, then the corresponding eigenvectors can be
made with the block orthogonal property. And the last evident property: if

X > 0 is the eigenvalue corresponding to the vector [u,v], then (—X) is also an
eigenvalue, because the suitable eigenvector is [u, —v].
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Thus, eigenvectors of generalized eigenvalue problem (11.17) satisfy the nat-
ural conditions of normalization and orthogonality for system (11.16). We find
now the solution of this system with the help of the normalized eigen vectors
[uk, k)T, k = 1,2, ..., s. Let us find the solutions &), %) in the form

a® = Cruy, B* = Crvr, C) = const. (11.19)
After substitution to system (11.16) we obtain

FA® = CyFuy = \CrAug = C3(Bug, v)Aug,

F*ak) — CrF*uy = M CrAvy = Cg(Buk, ug)Avg.
Since (Aug, ug)+(Bvg,vi) = 1 and (Aug,ur) = (Bug, vi), we have (Aug,ug) =
(Bvg,vk) = 1/2. Thus,

Me=CE/2, Cr=+2\, k=12,..,s. (11.20)

If we take s positive eigenvalues A\; > 0,3 > 0,...,A, > 0, we obtain for this
choice

ESh = 15 —2)_(FB®,a®)+ ) (4a®,a®) . (BF®, 30)
k=1

k=1
1 L] . s
=130 = 7 2 (V2 = Ifli3a) - A%
k=1 k=1
So, the following theorem is already proved:

Theorem 11.1. Let generalized eigenvalue problem (11.17) have Q positive
eigenvalues A\; > Ay > ... > Ag > 0. Then for every s < Q < (n +m)/2 the
optimal coefficients @*), 8(*) for the best XII-approximation are connected
with the normalized eigenvectors [ux,vk]T by the formula

[@®, BT = /22 [ur, vi)T (11.21)

and for the optimal X IT-approximation we have the following error estimate

3 -
Eﬁ’ln = “f“zz(n) - Z Ye (11.22)
k=1

It is important in practice that the eigenvalues and eigenvectors can be
determined consequently in the order of decay for Ax, and we obtain at every
step the optimal X'IT -approximation with one term, with two terms, and so
on. Formula (11.22) provides the effective accuracy control.

The generalized eigenvalue problem (11.17) with (n 4+ m) x (n 4+ m)-matrix
can be reduced to the usual eigenvalue problem with n x n or m.x m-matrix.
At first we ought to Cholessky decomposition of the Gram matrix A and B to
the triangular factors, '
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A=LL*, B=MM"*.
Then the initial relations
Fu=XAu, F'u=\Bv
can be rewritten in the form
L7'F(M*) 'z = v, M'FY(L*) 'w= Az,

where w = L*u, 2 = M"v. After a simple transformation we have a usual
eigenvalue problem

[LTPF(M*) L F(M*) )z = A2z (11.23)

with m X m-symmetric, non-negative matrix. If A > 0 and z is the corresponding
eigenvector, then

1
v= (M) 'z, u= %(L')"L"F(M*)"z = 347 Fy
give us the eigenvector of initial problem (11.17) after suitable normalization.

Theorem 11.2. X  f(z,y) € Xn ® Yin, in the other words, f(z,y) =
E E ai;j@i(z)¥;(y), then its optimal X IT-approximation is equal to f(z,y)

1=1 j=1
for some s < (n +m)/2.

Proof. Denote by a the rectangular n x m-matrix of the elements a;;, =
1,2,.,n, j=1,2,...,m. Theelement f;; of the matrix F can be written by
the formula

n m
fii = (F@ ) i@ zeey = 3 Y anilr, 0i)x - (%1, %5)y-
k=1 i=1
It means that F = AaB, where A and B are the Gram matrices of the elements
{ex}i=, and {#1}1Z,. Eigenvalue problem (11.17) is reduced to
AaBv = Mu, 11.94
Ba*Au = \Bv. (11.24)

By substituation of the Cholessky decompositions A = LL*, B = MM* we
obtain

L*aMz = Aw, * w = L*u,
M*a*Lw =Xz, z=M"v.

- For this eigenvalue problem with a block symmetric matrix, the sum of squared

L eagenva.lues is equal to the square of the spherical norm for the matrix (the

spheérical norm is invariant with respect to orthogonal transformation!). But A
- and (—A) are eigenvalues simultaneously. Therefore,
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=3 5515 St (1125

Ar>0 i=1 j=1 Lk=1 I=1

where Ix;, m;; are elements of the matrices L and M. On the other hand

1£1%ay = (Z 3" ampr(@)i(y), Y Zammrw,(y))
Z()

k=1 I=1 r=1 s=1

n m
= _S_ E akl'araakrbls-

k,r=1 ls=1

(11.26)

But
n m
Ay = Zlkdﬁ, by = Zmrjmsj.
i=1 i=1

After substitution we have for the right-hands sides in (11.25), (11.26)

n m i m
. Z | Z lk*aklm’jl"iarsmsj = Z Z ak!amlkilrimzjm,j.
LEr=1 gle=1 kri=1 Ls,j=1

Finally, |fl%0) — 2 A2 = 0 and the number of positive eigenvalues is not
A >0

more than (n +m)/2. Theorem is proved. a

11.3. Examples of X IT-Approximations

11.3.1. Two-Dimensional Polynomial Splines and XII-
Approximation ' :

4

Let 2, = [a,b], 2, = [¢,d], 2 = 2, x 2, and X(2;) = W;™*(a,b), Y(£2,) =
W,"" (¢, d). The Hilbert tensor product of these spaces is the space W;? 5" (12)
with the cross norm

' ﬂ””wz'";’"‘f(n) = (H””i,(n) + ||Dm”0"||iz(n) + ||D0’m"“”%,,(n)
: ' (11.27)

Mg ,m 2 1/2
HID™ il )

because the norms in the spaces X and Y can be introduced by formulae
b 1/2
fullwpeqan = | [la?+ @ )
| e . (11.28)
Nullwrs e,y = j‘[”2 + (u(m"))z]dy)

c
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Let us introduce two meshes

Ay ={a=21 <22 <..<zN, =b},
Ay={c=y1 <y2 <..<yn, =b},

and connect with them two spaces S¥=(A;), S¥v(A,) of polynomial splines of
the degrees K, and K, and of defect 1,i.e. S¥=(A,) C CK==1[qa,b], SEv(4,) C
CHKv=1[q,b]. It means that S%=(A,) is a subspace in W;"=(a,b) if K, > m,,
and S™v(A,) € W) (c,d) for Ky > my. It is a well-known fact that these
subspaces have the basises of local B-splines (see Chapter 5), and the Gram
matrices A and B become band ones.

By Theorem 11.2 every bivariate spline obtained, for example, by the inter-
polation of the function on the rectangular mesh, can be represented exactly
as Y II-approximation. If we have some available level of accuracy of approxi-
mation, then we are able to compress the data (coefficients of the interpolating
spline on the huge mesh) by X' IT-approximation.

Remark. It is possible to repeat this construction (especially, for compressri‘don'
of a digital image) for the case of discrete splines. The mesh analogues of norms
(11.28) are natural

Nz—mg
lulfyme = Zu2(>+ Z
N, N,—m,.

Il = D20+ Y (Am»)0),
j=1 j=1

where Ap,, and A,,, mean the divided difference of the orders m;,m,. The
corresponding cross-norm is also natural

Ne, Ny Nz=ms ,Ny
ey = 30 PG+ Y (AmfH00)
i,j=1 i,j=1
Nz ,Ny—m, ’ Naimle:}-ml
+ > (A, PG+ Y, (AmAm HRG9)
. =, |

The discrete analogues of B- splines can be constructed with the help of a few
convolutions of simple discrete ”step-functions” of the type

. 1, ~w<i<w
B(z)={0 .

otherwise,

where w > 0 is integer parameter.
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11.3.2. Fourier Expansions and X II-Approximations

Example 1. Let 2 = [0,1] x [0,1] be the unit square and W73 ™" (2) =
W;"=(0,1)®@W,"*(0, 1) be the tensor Hilbert space with cross-norm (11.27). Let
us introduce in WJ"=(0,1) and in W, *(0,1) the finite-dimensional subspaces
TN (0,1) and T (0, 1) of trigonometric polynomials. The first of them is linear
span of the functions '

{sinkwrz, cosknz}, k=1,2,..,N (11.29)
and the second is the span of the functions
{sinlmy, coslmy}, 1=1,2,..,. M. (11.30)

After a suitable normalization of system (11.29) by multiplying the constants
Ci = (2/(1 + (kx)?™=))1/2 they form the orthonormal system in W;"*-scalar
product. Correspondingly functions (11.30) are also orthonormal in W,"*-
scalar product after multiplying the constants Dx = (2/(1 + (Im)?™))1/2,
Certainly, in this case calculation of the optimal X'II-apprtoximation is sim-
pler because the Gram matrices A and B in (11.17) are units and generalized
eigen value problem becomes usual. The optimal approximation of the function
f(z,y) can be expressed in the form

> Twi(e) - Tuk(y),
k=1

where T x(z) and T k(y) are trigonometrical polynomials of the orders N
and M.

Example 2. Let 2, = {1,2,..,N} and §2; = {1,2,..., M} be the sets of in-
tegers. Let us introduce the spaces H(f2;) and H(f2;) of the real valued mesh
functions u(z) and v(j), which are defined on £, and {2; with the following
norms

N M
lulldsay = YW@ WWlliay = > A3). (11.31)

The tensor product H(2; x §2;) of these spaces is the space of two-variable
mesh functions f(z,j) with the simple cross-norm

N M

1132, x20) = Z 235, 5). - (11.32)
1 .

i=1 j=

There is a well-known fact that the vectors (or mesh functions) of the type

Lni
W (i) = 2/(N + 1) sinN:‘I, i=1,2,.,N

/
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form for k = 1,2, ..., N the orthonormal basis in N-dimensional Euclidean space
En. Let us fix the integers ki, ks, ..., k, from 2 and I},1,, ..., 1, from 25 and
define the subspaces

Hp() = span{W Wi, . W]}, (11.33)

Hun($22) = span{WM, W, ..., WM} (11.34)

in the space H(f21), H(f2;) respectively. In practical computations the fast
Fourier transform can be used for the fast calculation of the coefficients

Jor = (f(z,f)s Wg(t) ) Wf}:‘(j))'H(ﬂlxn'*‘)

and the matrix F in eigenvalue problem (11.17) is easily calculated. The optimal
2 IT-approximation

r=1

N UOVG), Unli) = oPWNG), Vi) =Y BOWMG)
g=1 g=1

can be used here not only for compression of the image f(¢, ), but also for fil-
tration because only separate frequencies are presented in X IT-approximation.

It is clear that other kinds of orthogonal or non-orthogonal mesh functions
can be used in this algorithm (see discrete Haar, Walsh, Hadamard and other
transforms).

11.3.3. Numerical Tests

Exé.mple 1. Let us consider two-dimensional discrete function
1—1 ] - 1)
129 129

of two integer arguments i and j, every-of them varies from 1 to 130. It means
that we have instead of continuous function

f(i,7) = sin(4r - (11.35)

f(z,y) = sin(4rzy) o (11.36)

its discrete 130 x 130-image (see Fig. 11.1). Let us fix w = 3 and consider the
space 533 = 53 ® §3 which consists of discrete analigs of bicubic splines over
rectangular mesh wﬂ;h the discrete mesh step w. Space S}, 3 of one-dimensional
cubic discrete splines has the usual basis of local dnscrete B-splines obtained
by three convolutions and by corresponding shifts (see'Remark in Section 3.1).

In two—varlable discrete space of mesh functions the usual discrete analog of
W2 ' - CTOSS-NOTM is 1ntroduced (mz =my =2, N; = N, = 130) and optimal
£0n- -approximations are calculated for the various accuracy levels. For example
if ¢ = 0.1% then we have only 7 non- trwnal components in X IT-approximation
‘a.nd correspondmg eigen va.lues are
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Fig.11.1.
A1 = 0.350834 As = 0.094213
Az = 0.350832 e = 0.010491
Az = 0.349698 A7 = 0.000721
Ay = 0.297875

The rest eigen values are less then 10~°. Thus the compression coefficient in
this case is 2786.

The universal program for data compression using discrete analogs of poly-
nomial splines of various degrees and various kinds of cross-norms were cre-
ated by Olga Baklanova in Computing Center of Russian Academy of Science,
Novosibirsk (see also Appendix 2, subpackage SIGPI).

Example 2. Let us consider the frequency response of two-dimensional filter

flz,y) = w r=[(z — 0.5)% 4+ (y — 0.5)*]*/2 (11.37)
on the unit square [0, 1] x [0, 1] and replace this function by piecewise constant
function fx(z,y) on 31 x 31 - iniform grid. The value at the elementary mesh
square is equal to the value of f(z,y) at the middle point of square. With the
help of X IT-decomposition of this function we reduce two-dimensional filtration
process to one-dimensional row-colomn filtrations. In Ly - cross-norm only 5
non-trivial eigen values aries, and two of them are small,

Ay = 2.937978, Az = 0.951244, Az = 0.079201,
Mg = 0.000189, s =0.115592 x 10~¢,

4
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and relative errors for corresponding ¥ IT-approximations are

er = 0.309000, e; = 0.025639, €3 = 0.000139,
eqg <1078 es < 10711

Thus, the action of complicated two-dimensional filter with 900 coefficients
can be efficiently replaced by 2 (or 3) one-dimensional filters with 30 coeffi-
cients with respect to rows and the same number of one-dimensional filters
with respect to columnes.



