12. Algorithms for Optimal ‘Smoothing
Parameter

12.1. Introduction

As before, let the linear continuous operators 4 : X — 2, T:X — Y be
defined in the Hilbert spaces, z be an element of the space Z. Present as in
Chapter 1, the variational principle for the interpolating spline ¢ € X in the
following way

o = arg nE?}iﬁt:z”Tu”Y (12.1)

and for the smoothing spline 0, € X with & > 0 -

0o = argminaf|Tully + [|Au - z|%. (12.2)

A more practical problem is the problem of spline approximation in the convex
set

o° = arg

i T 2.3
wexin, o 1Tully (12:3)

where as opposed to the interpolating spline o, the element o° is sought for,
whose image Ao® does not coincide with the element z € Z, but lies only in its
e-neighbourhood. Problem (12.3) is useful in practice due to various reasons,
among which we distinguish:

1) The element z may be known with an error, which must be taken into
account;

2) The element z may not lie in the range of the operator A, and the
interpolating spline probably does not exist unlike the spline in the convex set.

Very interesting relations take place beetween the splines ¢,0, and o°.
They turn out to be elements of the same space Sp(T, A). Moreover, the space
of interpolating splines for different 2z € Z, the space of smoothing splines for
different 2 € Z, a > 0 and the space of splines in convex sets for different
z € Z, € > 0 coincide. In Chapter 1, it was noted that "any smoothing spline
is some interpolating”. This may be continued in different variations, like ”any
spline on a convex set is some smoothing spline”, and so on. Remember two
theorems about splines: the first is from Chapter 1 and the second is from
(Laurent 1970, et al.).
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Theorem 12.1. If the kernels of the operators T and A - N(T) and N(A)
cross only on zero element, and the linear set N(T') + N(A) is closed, then the
solution to problem (12.2) is uniquely solvable. If, in addition, the sets Au = z
and ||Au — z||z < ¢ are non empty, then the solutions to problems (12.1) and
(12.3) are uniquely solvable, respectively.

Theorem 12.2. Define the residual function
¢(a) = [[Aoa — 2|z (12.4)
and the parameters

Emin = Eg% lAv — z||, €max = n}\}?T | Au — z||.

If the conditions of uniqueness in the previous theorem are fulfilled, then
ot = To-1(e)s Vemin < € < Emax (125)

|Ao® — 2|z =e. (12.6)

Equality (12.5) signifies that any spline on the convex set is some smoothing
spline for some element z € Z and for an unknown parameter a > 0 and the
function ¢(a) of the correspondence beetween the parameters o and ¢ is one-to-
one mapping of the positive axis (0, 00) onto the interval (emin, €max ). Equality
(12.6) follows from (12.5) and affirms that the solution to problem (12.3) lies
on the bound of the admissible set ||Au — z||z < e. Thus, problem (12.3) is
reduced to 81mp1er problem (12.2), if the suitable smoothing parameter a is
given.

The suitable parameter can be obtained from the equation ¢(a) = €. The
latter one is nonlinear and to this solve one applies the Newton method. To
accelarate the rate of convergence one transforms the equation to the equivalent

form:

zb(p)‘=sf‘{ . o | (12.7)

where (p) = ¢7'(1/p), a=1/p.

‘In Sect. 12.2 we write out the implicit expressions for smoothing spline-
~operators, for smoothing- splines and for the residual function with the help of
spectral functions. ‘We generalize the proof of convexity of the function d)(p),
which formerly was know in particular cases. The property of convexity is a
-necessary grounds for the convergence of the Newton method.

The .main sense of the next sections is to present new algorithms of the
search for the smoothing parameter by the known residual €, more exactly, to
‘expand the area of the known algorithms in application to a smoothing problem.
First, together with the Newton method we propose the Chebyshev method
. of the third degree. It is reasonable due to the higher rates of convergence,
simplicity of realization formulas, and some other reasons.
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Secondly, we propose to begin iterations for these method with the value
p = 0, that, incidentally, was suggested earlier in (Gordonova, Morozov 1973),
but in practice (LIDA-3 1987) it was not used, because nobody could calculate
derivatives of the function ¢)(p) with p = 0. In this Chapter we show how to do it
in the abstract form and for two most practic methods of spline-smoothing. The
latter ones based on reproducing mappings and on finite-dimensional approach.

Thirdly, on the basis of the proved facts about the opportunity of extrapola-
tion of a spline on smoothing parameter with the help of the Taylor expansions
we propose a reccurrent algorithm of approximate calculation of the smoothing
spline and its derivatives. This allows us to modify methods in such a way that
the construction of the interpolating spline or the spline on a convex set will
be equivalent to solving a few smoothing problems with the same smoothing
parameter a, but with different elements z,, z,, ... from Z.

The advantage of the latter way in practice consists in the fact that one
needs to solve the same linear system of algebraic equations with different
right-hands sides. This allows one to decompose the matrix of the system only
one time, and then to resolve the system for various right-hand sides with low
costs. In the conventional way, the matrix of the system is altered on iterations.

12.2. Spectral Decomposition of Operators for
Smoothing Spline Problem

Setting p = 1/a and X, = 04, we turn to the following variational problem

Zp = arg min | Tul} + pll4u - 2|3,

which is equivalent to (12.2). According to Chapter 1, the solution to the prob-
lem X, is determined from operator equation

(T*T + pA*A)X, = pA*z, (12.8)

which is uniquely defined in the conditions of Theorem 12.1 for each p > 0.
Besides, the symmetric and bounded operator T*T + A*A becomes posi-
tively defined, consequently, one can take its square root S = /T*T + A*A,
which is also symmetric, bounded and positively defined. Clearly, the operator
S—1A*AS~! is symmetric and its spectrum belongs to the interval [0,1]. The
Hilbert theorem (Riesz, SZ.-Nagy 1972) asserts that such an operator admits
decomposition

1
ST1A*AS™! = f/\dE,\, (12.9)
‘ 0

where {E,} is a family of projection operators.
Since ST1A*AS™! + S7'T*TS~) = E_ then
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1

STiT*TsT! = /(1 — A)dE,. (12.10)
. 0

On the basis of equalities (12.9-12.10) and properties of the spectral represen-
tation of operators, write out the following decompositions of the operators,
related to the smoothing spline problem,

1 1
A*A = S./)\dE,\S, T*T = s/(1 — \)E,S,
. 0 . ' 0

1
T*T +pA™A = S/(Ap + (1= A\))dE>S,
0

1
(T*T_I_pA*A)—l — S—l/ 1
: 0

- - 5—1,
Ap+(1— A)d’g"

1
- Ap
T*T + pA*A)~! A*A:S_I/——————dE S,
(T°T +pA°A)p YRR CIDY ke
0

» ‘
Y dE\S.

L
A?

A*A(T*T + pA*4)~! A*A:Sf
( +pA*A)T'p W

. 0

The equation A*Ar = A*z may be always solved. So let us solve equation (12.8)
in the following way

E, = (T"T + pA*A) 'pA* Ar.

Introduce the residual function ¢(p) = ||A(Z, — r)||%, which slightly differs
from the conventional form ¢(p) = ||AL, — z||% and coincides with it in the
case Ar = z. The latter is valid, if the interpolating problem is uniquely defined.
For the sake of the future objectives, we write out the residual function in the
equivalent form

¢(p) = (5, — r, A"A(Z, —1)).

Owing to the above-presented spectral decompositions of operators for the
smoothing spline problem, the factors of the latter scalar product may be writen
out in the following form:

1
Zp—r=[(T"T+pA*A) 'pA*A-Ijr = 57! /
0

A-1

-0
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ATA(Z, —r) = A"A[(T*T + pA* A)~'pA* A - I}r

1
_ A(A=-1)
=S5 J ---—-—--—/\p_‘_ 1= )‘)dE),Sr.

Multiplying the factors we have:

r — 132
0

and, finally, taking into account the fact that E) is a projection operator,

1

132

@(P)=/api§_é(1—igwd||EA5T||z-
o

On the basis of this equality it is easy to prove the subsequent theorem, which
substantiates the applicability of the Newton method for the algorithms of
the sought for optimal smoothing parameter. Earlier, this theorem was proved

independenly for a finite-dimensional case by Reinsch and Morozov.

Theorem 12.3. The function ¢(p) = ¢~1/2(p) is an increased concave function

for p > 0.

Proof. 'To investigate isogeometrical properties of the function, we present it

in the following form:

1
AT A1) 2
= | —————=—d||E\Sr||*.
‘P(p) B/(P'-f- £1;A2)2 “ AST|

Then, its first and second derivatives are written down as follows:

1
ATI(A = 1)
¢'(p) = -2 wz-dllm'rll’,
;,/ (p+ 520
1
oo =e [ oL ams
0 A

Owing to the Schwartz inequality

1 1 1
( / FONNIESTIE? < [ PONIESH? [daimse?
h] 0 0

and equalities (12.10-12.12) we have

(12.16)

(12.11)

(12.12)
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(@) o(p ){"”H(p) (12.13)

By definition of the function #(p) it follows that ¥'(p) = —1/2¢~*/2¢'(p),
and with the help of (12.10-12.11) we conclude that t(p) increases.. Then the
differentiating we obtain ¥"(p) = 1/49=5/2(3(¢'(p))?* — 2¢(p)¥"(p)) and on
the basis of (12.10), (12.13) we deduce that the second derivative is negative,
i.e. the function is concave. ]

12.3. Methods for Choosing Optimal Parameter

Let us describe two practical methods for choosing the optimal smoothing
parameter: the Newton method and 3-d degree Chebyshev method.

12.3.1. Newton Method

Formulas of the Newton method for solving the equation ¥(p) = ™! are of the
following form:

=1
Pk+1 = Pk — %, (12.14)

where pg is an initial approximation value. The best way is to begin iterations
with pg =0, the convergence will be provided.

12.3.2. Chebyshev Method of the 3-d Degree

Formulas of the Chebyshev method for solving the equation ¥(p) = ™! are of
the following form:

Pk+1 = Pk — Ylpe) — e _ ¥" (pk) (¥ (k) —5—1)2.
V) e

We propose to begin iterations with p = 0, although we do not know any
substantiation of the convergence of this method for our problem.

(12.15)

12.3.3. Calculating Formulas for Derivatives of ¥ (p)

Derivatives of the function 1(p), including those in formulas (12.14-12.15) for
the Newton and Chebyshev methods, have to be calculated with the help of
the following formulas:

¥(p) = |AZ; - 22", ' (12.16)
P'(p) = —||AZ, — 2[|7°(AZ,, AT, — 2)2z, (12.17)
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@’)H(P) = 3||A2p - ~”ES(AEL’AEP - 2)22_

| (A AT gy e (12.18)
142, — 2|7 (AZ), AZ, = =)z + (AS), AS)) ),

where X)) = ¢;,. We do not adduce the full proof of these facts, but only give
some hints: formula (12.16) clearly follows from (12.4) and (12.7), formulas
(12.17-12.18) are obtained by substitution the scalar product instead of the
norm in (12.16) and by further differentiation the complicated function.

The formulas used need computation of the derivatives of the spline in the
parameter p. In the next three sections we give formulas for the general abstract
case and for two particular numerical methods: splines in finite-dimensional
subspaces, splines based on reproducing kernels. The main result we come to
is in the construction of the: formulas for the case p = 0. In this case, the
smoothing problem reduces to its extremal variant, for which the proposed
methods for finding of the spline and its derivatives were unknown before.

12.4. Derivatives of Abstract Smoothing Spline

It is easy to demonstrate that the smoothing spline X, and its derivatives Z'J(,k)
with p > 0 are determined as solutions to the following operator equations:

(T*T + pA*A)E, = pA*z, (12.19)
(T*T + pA*A)S, = A*(z — A5,), - (12.20)
T*T +pA*A)EM) = —kA*a5(-D p> o 12.21

P P

To realize the algorithm described in Sect. 12.3, we need to determine the spline
Xy and its derivatives.

Theorem 12.4. The smoothing splines 2p converge with p — 0 to the element
2y € N(T), which is the solution to the following problem

Xy = arg uél}\;?T) |Au — 2|z (12.22)

The element Ty may be also determined with the hélp of the orthogonal con-
ditions

(AZy — 2z, Au)z =0, VYue N(T), (12.23)
which (as one may see) are equivalent to problem (12.22).

This Theorem is well known. Note that, according to equation (12.19),
the limit spline with p — 0 satisfies the equation T*TX, = 0, i.e. naturally
Lo € N(T) (it is known that N (T) = N(T*T)). For further objectives here we
formulate and prove a more general Theorem, than the previous one.
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Theorem 12.5. Let a sequence of the elements z, € Z converge to the element
z € Z with p — 0, i.e. ||z, — z|| = 0. Then the solutions of problems

up = argmin |Tul}, +plldu - 2|3 (12.24)
u
or, which is the same, the solutions of operator equations:
(T*T + pA*A)up = pA*z,, (12.25)

converge with p — 0 to the element vy € N(T'), which minimizes the functional
IlAu — z|| Z.

Proof. By definition of smoothing splines (12.24) it follows:
“Tup”%’ + pllAu, — zp“22 < pllAuo - Zp”zza Vp 20,
because ||Tugly = 0. This implies two inequalities
ITupll} < pllAue — zl|%, (12.26)
[Aup = zpllz < [[Auo — zpll2z. (12.27)
The sequence ||up||x is bounded. Naturally, the expression.
1 Tupll¥ + [l AullZ

is the square of a special norm in X being equivalent to the initial one. This
expession is bounded with 0 < p < py owing to (12.26),(12.27) and boundness
of the sequence z,.

In Appendix 1, it is noted that from any bounded sequence one can choose a
weakly converging subsequence. Take such a subsequence ii, from u,. If @i, ~iig,
then T'ii,—T g, but from (12.26) it follows ||T'd,|.— 0, hence, Tig = 0. From
(12.27) we have:

|4ty — zp]} < [l Auo — 2]} + ||z — 2. (12.28)

The subsequence Aii, — z, weakly converges to Aiig — z, thus from (12.28) we
obtain

| Ado — 2| < [|Aug - z|.

Making use of the latter inequality and the equality T4, = 0, we conclude
that 9 = ug. Consequently, the limit element uy does not depend on the
subsequence in u,, hence, the sequence u, weakly converges to ug. Since Au, —
zp weakly converges to Aug — z and from (12.28) it follows:

limo lAup — zpll < || Aug — 2|
ps

then Awup, — z, strongly converges to Aug — z according to one of the Theorems
from Appendix 1. The latter convergence implies the strong convergence of the
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sequence A(u, — ug) to zero. Another sequence |Tup|| also converges to zero,
because of (12.26). Finally, from the equivalence of norm it follows

cllup ~ wolf} < || Tw,|? + Il A(up — uo)|I> — 0,
ie. |lup — uol|x — 0, when o — 0. D

Theorem 12.6. The smoothing spline X, is a continuously differentiable in
the parameter p > 0. The first derivative Xy satisfies equation

T'TE, = A*(z — AXy), (12.29)
more exactly, it is the solution to the following problem:

Xy = arg fAul{ . - (12.30)

min
4EX, T*Tu=A*(:—AL,)
If ug-is a particular solution to problem
T*Tu = A%(z — AXy), (12.31)

then the first derivative is of the form X} = ug — , where 1 € N(T) is
determined from equations

(A‘R‘,Au)z = (Auo,Au)z, Yu € N(T) (12.32)

Proof.  First, let us explain the sense of (12.30). Any solution to system (12.31)
differs from a particular solution ug in an element from the kernel of the oper-
ator T. The element Xy is such a solution of (12.31), which has the minimum
norm after the influence of the operator A. Equations (12.32) are the orthogonal
property for variational problem (12.30).

Now let us convince ourselves that equation (12.31) is solvable. It is
known that the problem T*Tu = f is solvable, if (fiu)x = 0 for all
u € N(T*T). Since N(T*T) = N(T), then the solvability condition has the
form (A*(z — AZ)),u)x =0 for all u € N(T). It is fulfilled, because it coin-
cides with orthogonal property (12.23). Clearly, this demonstration shows that
the element X, defined in (12.31-12.32) exists and is unique. o

Further, we establish that the spline 2 is continuously differentiable when
p = 0 (for p > 0 this is similarly done). To do this consider, the differences for
the derivative u, = E‘%ﬂﬂ and prove that they converge to X} with p — 0.
From equation (12.19) it follows

T, — 5

(T*T + pA*A) = A*(z — AD,), (12.33)

and from (12.33) and (12.29) -

(T*T + pA*A)(up — X¢) = —pA*AZ).
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According to Theorem 12.4, the sequence u, — Xj converges to the element
from N(T), which minimizes the deviation

| A + AZG]2.

From (12.30) it follows that this element must be zero. Thus, the divided differ-
ences of u, converge to Xj. Additionally, we have to convince ourselves that the
derivative I is continuous for p = 0. For this purpose consider the equation

(I°T + pA )5y - ) = —pa°a (5% + 2222,

which follows from (12.20) and (12.29). The elements z, = —A (E{,-+ E‘gﬂ)

converge to —2A Xy, hence, owing to Theorem 12.5 the difference up = Iy — X
converges to the element v € N(T'), which minimizes the deviation ||Au +
2A5}||2. From (12.30) it follows, that such an element is zero. The Theorem is
proved. _ .

Theorem 12.7. The smoothing spline X, is infinitely differentiable on the

parameter p > 0. The derivatives of the spline ng) for k > 2 sa,tisfy the
equality ' '

T*TE = —ka* A5, (12.34)
more exactly, they are the solutions to the following problems: '

P = arg min [Aulz. (12.35)
w€X, T‘Tu="kA'AEg -1) .

If up is a particular solution to the problem
T*Tu = —kA* A, (12.36)

then the respective derivative is of the form Egk) = ug — 7, where 7 € N(T) is
determined from the equations

(Am, Au)z = (Aug, Au)z, Yue N(T). (12.37)

Proof. We will follow the same way as in the previous theorem, but omit the
most of the explanations. Firstly, let us convince ourselves that equation (12.36)
is solvable. The solvability condition is of the form: (A*AZS* ™) u)x = 0 for
all u € N(T). For k = 2 it is fulfilled in consequence of orthogonal properties
(12.32), and for k¥ > 2 - in consequence of (12.37), respectively.

Now we establish continuous differentiability only for p = 0. Consider the
differences for the k-th derivative: '

. 2;1:-1)_2(()1:—1)
P P
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and prove that they converge to Z‘ék} with p — 0. From equations (12.20-12.21),
(12.29), (12.34) it follows that :

(T*T + pA*A)u, = —kA*ASFD
and

(T*T + pA* A)(up — M) = —pa*4zP.
By Theorem 12.4 the sequence u, — 2,5"’ converges to an element from N(T'),
which minimizes the deviation ||Au + A.E‘ék)”"'. Property (12.3) implies that

this element has to be zero. Thus, the divided differences u, converge to Z‘c(,k).

Yet we must check that the derivative L‘,(,k) is continuous for p =0, k > 2. To
do this, consider the equation

' : - * (k=1) _ (k=1)\ .
(T'T+pA*A)(2§.’°)—23*’>=~pA*A(23”+k2’ . )

wiﬁch follows from (12.21), (12.34). The elements z, = A(Z) + kgfg—z") con-
verge to —(k + 1)AZj, consequently, by Theorem 12.5 the difference u, =
Z’,(,k_) - 23"’ converges to an element u € N(T'), which minimizes the deviation

|Au + (k + 1)AZ} %

From (12.35) it follows that such an element has to be zero. o

12.5. Derivaties of the Smoothing Spline on Subspace

Let E be a finite-dimensional subspace in X having the basis wy, ...,wn. Note
(see Chapter 4), that we call the element

n
Ta =Y Giawi (12.38)
=1

as a smoothing spline on subspace, if it minimizes the functional o Tull} +
|lAu — 2||% among the elements from E. The vector of the coefficients 7, =
(01,45 y0n,a)T is determined from the system of linear algebraic equations

(SLAE)
(aT + A)go = f, (12.39)

where T is a matrix with the common element tij = (Twi,Twj)y, A is the
matrix a;; = (Aw;, Aw;)z, f is the vector (Aw;,z). Introduce the notations
Ly = o0yp, X, = G1/p- From (12.39) it is clear how to obtain SLAE for the
derivatives of the spline on subspace with p > 0:
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(T +pA)E, =pf, S C o 1240)
(T +pA)E, = f - AL, L L (12.41)
(T + pA)EZ(H) = ~kAZLD k>2. (12.42)

To find the spline and its derivatives for p = 0, assume that N(T) is cont.a.med
in E and has the basis ey, ..., e, :

Theorem 12.8. The following three statements are valid: I
1. The spline X is of the form

Ly = an‘ci, : ' (12.43)

i=1

whose coefficients ¢, ..., g, are determmed from the followmg SLAE
Z(ACHACJ)Z qi —(Z’Aej)Za J =1,..m

2. Let u = (uy,...,un)T be a solution to the following problem: oo

Tu=f—AX,, (12.44)
where Xy is a decomposition of the spline Xy on the basis wy,...,w,. The ﬁfst
derivative of the smoothing spline X is of the form -

Xy = Zu,w. Zq.e,, ' . 7 (1245)

=1

whose coefﬁcxents q1,---, ¢m are determined from SLAE;:

Z(Ae,,Ae,)z g = (Au, Ae,)z, j=1- p (12.46)

i=1 .

3. Let u = (uy,.. ,un) be a particular solution to the problem:

Tu=-kASSY, (12.47)
where E(k D is the decomposition of the spline Z‘( = on the basis Wiy eeny Wy

for k > 2 Then, k-th derivative of the smoothing sphne Z‘o is of the form

Ik = z Uiw; — Zq,e., (12 48)

i=1
whose coefﬁcxents g1, ...y gm are determined from SLAE:

Y (Aei,Aej)z - ¢i = (Au, Aej)z, j=1,..,m. T (12.49)
Proof. In this theorem, the first statement follows from Theorem 12.4, the

second and third statements follow from Theorem 12.6 and 12.7, respectively.
O
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12.6. Derivatives of the Smoothing Sphne by
Reproducing Kernels

Recall (see Chapter 2), that these splines are determined from the following
SLAEs

|t

where I is the identity matrix. Setting 4, = A, /ps Mp = vy, one can assure
oneself, that the spline 2, = (A4,, M,) and its derivatives are determined from
the following SLAEs

[I+pG pB][4 z

:BI: po ] ;\,_é] = [1:)] (12.50)
[I+pG pB][4,] _ [z G B Ay |
| pB* 0| |M| " o] [B* Mp - (125)
[ r AR (k-1)

I+pG pB|[4 ] _ G B[4 |

pB* 0 ] M| T —k | g 0] [aggs-v) k>2. (12.52)

Theorem 12.9. The smoothing spline Xy and its derivatives for p = 0 are
determined from the following SLAE

Ap=0, B*BM, = B*z, | (12.53)
o =2—~BM,, B*BM,=-B*GA}, : (12.54)
AR = k(GA”‘ V4 BMY), B*BMP = -B*GA®. (12.55)

Proof. Makmg use of the limit with p — 0 in equations (12.50-12.52) one can
make certain, that the equalities for A9, A} and A®) with k > 2in (12.53-12.55)

are valid. The equalities for My, M{ and M, O with k£ > 2in (12.53-12.55) follow
from conditions (12.23), (12.32) and (12. 37 )- n]

12.7. Numerical Formulas for Optimal Smoothing
Parameter for Different Algorithms
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12.7.1. Spline on Subspaces
When solving the equation ¢(p) = ¢! by the Newton method
Y(pe) — ¢!
¥'(px)
or by the 3-d degree Chebyshev method
posy = pp — 2R = e”!  ¢"(pk)($lpe) —e71)?
* ¥'(pe) 20¢'(pe))®
set p=0.

Derivatives of the function 1 (p) presented in formulas (12.56-12.57), should
be calculated by the following formulas:

¥(p) = |AZ, - 2|17, (12.58)

¥'(p) = =||AZy — 21 3° (£, AZ, - f), (12.59)

¥"(p) = 3| A%, — 2||7°(Z;, AZ, - f)*-

— A%, — 2l2° (A5}, 25 — ) + (AZ, 23), -
where

|AZ, — 2llz = (AZp, £p) — 2Z,, £) + [1217)"*.

Here we have used the notation from Sect. 12.5. An the first step with p = 0 the
vector of coefficients £ and its derivatives should be calculated with the help
of the algorithm, proposed in Theorem 12.8 and then one should use formulas
(12.40-12.42). :

Pk4+1 = Pk — k € 0, ,N (12.56)

(12.57)

(12.60)

12.7.2. Splines on the Basis of Reproducing Kernels

Solving the equation ¥(p) = £~! by the Newton method (12.56) or by the
Chebyshev method (12.57), one should calculate the derivatives of the function
¥(p) by the following formulas

¥(p) = G Ay + BM, — 2] 72,

¥'(p) = —[|GAp + BM, — z||7°(GA, + BM,,GAp + BM, — z)z,

¥"(9) = 31GA, + BM, — 2|7°(GA, + BM},GAy + BM, — =)}~

- ||GAp + BM,, — 2||7°((GAy + BM,,GAp + BM, — 2)z+

+ (G4, + BM,,GA, + BM,)z).
Here we have used the notations of Sect.12.6. At the first step with p = 0 the

vector of coefficients (A9, My) and its derivatives should be calculated with the
help of formulas (12.53-12.55), and then, for p > 0 - by formulas (12.50-12.52).
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12.8. Uniform Convergence of the Taylor Series for
Smoothing Splines

12.8.1. Investigation of Taylor Series by Parameter «

When computing the optimal smoothing parameter one needs to know how to
calculate the spline and its derivatives for different smoothi'ng parameters. In
this Section, we fix the parameter ag > 0 and using some auxiliary assertions
reduce the problem of calculating the spline and its derivatives for different
smoothing parameters to a few smoothing problems with the same parameter
@o. In order to do it, investigate the convergence of the Taylor series. It allows
us to approximately find the splines from the same operator equation with
different right-hand sides.

The derivatives a.g:) exist for all k¥ > 0, thus there is a point to consider the
partial sums of the Taylor series

n k
o —
k=0

Lemma 12.1. The partial sums of the Taylor series S, o and the remaining
terms

Rn,o: =0 — Sn,a (1262)

belong to the sﬁa,ce of splines Sp(T, A).

Proof. With the help of induction, it is not difficult to verify that for any
smoothing parameter and for any derivative k > 1, the following equalities

(aT*T + A*A)ol® = A*;,

take place, if

Aol _ Zk-1

«

zr==F + 25_yqs

k=1,2,.; 0&0) = Oqa, 20 = z. Thus, all derivatives of the smoothing spline
cr,(,’:) lie in the space of splines, consequently, their linear combinations Sn,a also
lie in Sp(T, A). The element o, is a spline, consequently, R, . is a spline as a
difference of two splines. O

Lemma 12.2. The following recurrent formula
(eT*T + A*A4)Sp o = (a9 — Q)T*TSp 1,0 + A*z, (12.63)

with the initial data Sy« = 0, may be used for calculating the partial sums of
the Taylor series for a smoothing spline.
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Proof. Making use of the operator equations for spline

(aT*T + A*A)o, = A%z, (12.64)
and for its derivatives

(aT*T + A*A)o® = —kT*Tol*—1),

and, also, utilizing formula (12.61), we have a few equalities:

no g
(@oT*T + A*A)Sn o = (a0T*T + 4" 4) wagﬁ) _
k=0 :

n - k
= Z ("‘—k,"-‘-")—(—kT*Tag’;—”) + A%z =(ap = a)T*"TSp-1,0 + A*z,
k=1 ’

which finish the proof of the lemma. O

Lemma 12.3. Reccurent formula (12.63) and the following recurrent formula
(oT*T + A*A)S, o = (a0 — a)T*TS; _; o = T°TSne1,a (12.65)

with the initial data Sp o = 0a,, 5§ = 04, may be used for calculating the
derivatives of the partial sums of the Taylor series.

Proof. 'This formula is established by differentiating formula (12.63). a

Theorem 12.10. Partial sums of Taylor series (12.61) uniformly converge to
the spline o, for all closed subintervals of the interval a € (0, 2ay), i-e.

oe _ k
Ta= -(E%O)ag?. - (12.66)
k=0 :

If the unit ball of the space Sp(T, A) is compact in X, then the uniform con-
vergence takes place for the whole closed interval a € [0, 2aq).

Proof. From equality (12.64) follows
(aoT*T + A*A)oo = (ag — a)T*Toqs + A*z,
and from the latter equality and from (12.63) follows
(0T*T + A* 4)(0a — Sn.a) = (@0 — @)T*T(va — Sact,a),
or, taking into account the notation of remaining terms, -
Rno = [(a0oT*T + A*A)  (ap — &)T*T|Rn-1,a- (12.67)

In order that the Taylor series be able to converge, it is necessary that the
spectral radii p(M) of the operator M = (agT*T+ A*A)~!(ao — a)T*T should
not exceed one. For estimating the spectral radii, the following inequality
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[(DMu,u)x|
p(M) < sup 21120
(M) flufi=1 |(Du,u)x|
can be chosen with any positive operator D: X — X. Let D = (aoT*T+A*A).
Then we have

{0 — a)T*Tu,u)x|
M) = sup —
P lull=1 [((coT*T + A* A)u, u) x|
_ o —af oo |Tul[}
a0 =1 @ol|Tull} + [|Aull}

(12.68)

Clearly; the supremum does not exceed one. Thus,

lao — af
and if the smoothing parameter a changes its value in a closed subinterval
of (0,2a0), then the spectral radias is bounded by unity, which provides the
uniform convergence in this subinterval.

In order to prove the convergence of the series for @ = 0 and o = 20, if
the additional condition takes place, note that in recurrent formulas (12.67)
the iterative elements (remaining terms) belong to the space of splines. Use the
notation M|g,(r, 4) instead of the restriction of the operator M on the space
Sp(T, A). If we prove the weaker condition

P(M|sp(T,4)) < 1,

then it will provide for the convergence of the Taylor series (12.61). Supremum
in (12.68) is exactly less than unity, if it is considered on a compact of Sp(T, A).
In this case, the spectral radius is uniformely restricted by one on the total
interval [0,2a0], and, even, on a little greater interval, and the theorem is
proved. ]

Theorem 12.11. If for a = 0, series (12.66) is converging, then it converges to
the interpolation spline.

Proof. Naturally, since the space Sp(T, A) is closed, then the limit of par-
tial sums, which is the sum of the series, must be the element of Sp(T, A).
Making recurrent formula (12.63) tend to its limit, one can obtain the equality
A*Aoy = A*z, which implies Aoy = z, i.e. the spline oy satisfies the interpo-
lating conditions. ' O
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12.8.2. Investigation of Taylor Series on Parameter p

A very interesting question arises about convergence of the Taylor series for the
smoothing spline X, at the point p = 0. Does a nonzero radius of convergence
of this series exist? The reply to this question is given in the following theorem.

Theorem 12.12. The partial sums:

Sn,p = 2(")
k=0

uniformly converge to the splines X, on some closed interval [0, po], where
po > 0.

Proof. Making use of Theorems from Section 12.4 about the representation
of the abstract smoothing spline £, with p = 0, we have

T*TSnp =T*TE + pT*TZy) + T'T Z 2! z"‘)

k=2 "
n k—1
=pA*(z — AXy) — pz U:J'- l)lA“Aﬂsk—l] =
k=2 :

— pA*(z — ASn-1,p).

Thus, we obtain the following recurrent formula for the calculation of the partial
sums

T*TSnp =pA*(z — ASn-1,p). (12.70)
Taking into account the equation for the spline ¥, we obtain
(T*T + pA*A)(Sn,p — Zp) = pA*A(Snp — Sn-1,p)-

From here it follows that the difference Spp, — X, converges to zero, if the
common element of the Taylor series:

1;. E(k) Skp — Sk-1,p

converges to zero. From equalities (12.29), (12.34) we have

sk o
(k e | (12.71)

k; (k) - (Tt )-lAlA

(p(T*T) A A)* ' p Xy

Here (T*T)™! stands for the inverse operator to (T*T) on the subspace of the
element u, satisfying property (12.37). This subspace is orthogona.l to N (T)
in a special scalar product, thus, the inverse operator (T*T)™? exists a.nd is
bounded. Clearly, common element (12.71) converges to zero, if
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p<p((T*T)"'4*4)7",

where p is the function of the spectral radius of operators. O

12.9. Discussion of Benefits of Extrapolation for Spline
Construction on Convex Set

A particular case of the spline problem on a convex set is the interpolating
spline problem. Using the method of splines in subspaces increases SLAE up to
two times exactly, which negatively affects the rate and accuracy of spline con-
struction. Besides, SLAE ceases to be positively defined. Using extrapolation
of two or more smoothing splines with different smoothing parameters

00 = 4104, + 0204, + a3oq,

allows us to avoid these difficulties. But, it is necessary to solve a few smoothing
problems. With the help of the idea of extrapolation on the basis of the Taylor
series, proposed in this Chapter, the requirement may be removed in a sense. In
conformity with formula (12.66) the, interpolating spline is represented (under
certain restrictments, which are in general fulfilled) in the following form

= kat(lk) k
opg = Z:(—"l) -k—‘ago).
. k=0 '

Consequently, by Lemma 12.2 (Sect. 12.8) the interpolating spline may be found
as the limit of the sequence of the partial sums Sn,0, defined from the following
smoothing problems with the fixed smoothing parameter aq:

(OtuT*T + A‘A)Sn’u = auT‘-‘TS,,_l,g + A*Z,

where Sy ¢ = 04,. Here Sn,0 is n-th partial sum ‘of the Taylor series. Now one
make of using the ideas of the full and incomplete factorization in order to take
advantages from solving a few SLAE with a fixed matrix. _

The same idea may be used, when one finds an arbitrary spline on a convex
set. In accordance with the algorithm proposed in Sect. 12.7, beginning with
the second. iteration of the Newton method or the Chebyshev' method, there
arises a sequence of smoothing problems with the decreasing parameters a; =
1/p1,2 = 1/ps, and so on. If here we fix the smoothing parameter o = ay,
then the rest problems with different smoothing parameters may be found as
limits of solutions to the problems with this fixed parameter. Since the iterative
smoothing parameters will be less than a1, then the convergence takes place,
and the respective limit exists. Thus, there arises an idea to use in the formulas
of the Newton methods (or the Chebyshev method of the third degree) instead
of the exact spline and its derivatives the approximate ones, calculated by
formulas (12.63), (12.65). This, again, allows one to get advantages from the
solution to few systems with a fixed matrix. o

-



