2. Reproducing Mappings and
Characterization of Splines

In the previous chapter, you learned something about splines and their proper-
ties. Now you know some types of splines (interpolating, smoothing and mixed),
some criteria of existence and uniqueness of such splines, some examples of
spline-functions.

This chapter deals with such an important aspect in the spline theory as
characterization. Here we introduce not a well-known notion of the reproducing
mapping in semi-Hilbert spaces, which is the generalization of notions of the
reproducing kernel in the functional Hilbert spaces, and carry out an investiga-
tion revealing its essence and properties. We do it successively because of the
great importance of this notion with respect to the problem of spline charac-
terization and, as we think, many other problems. In a sense, this investigation
moves forward the papers (Aronszajn 1950; Atteia 1970; Duchon 1977).

Proving general theorems of characterization for various types of splines
we draw your attention to particular cases, too. We successively simplify the
abstract interpolating operator A and obtain a simpler formulation of theorems
becoming more constructive and practical. Another very important way to solve
the problem of spline characterization, based on the finite-element approach,
will be proposed in Chapter 4. Further, these two ways will be widely used in
the following chapters.

Chapter 2 is well illustrated with examples. These are hyperbolic splines,
periodic and non-periodic polynomial splines, splines in the space of mesh func-
tions, splines on the sphere. Many other examples will be discussed in other
Chapters, where necessary definitions will be introduced in a more natural and
simple manner. We mean the chapters about splines on manifolds, vector and
tensor splines, and so on.

2.1. Reproducing Mappings and Kernels

2.1.1. Definitions

Consider a real Hilbert space X with a scalar product (u,v)x and a norm ||u|x.
Let X* denote the space of linear continuous functionals, i.e. X* = £(X,IR).
The Riesz theorem asserts that there exists the unique isomorphism of linear
spaces
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r: X* = X, (2.1)
which for all L € X* satisfies conditions

L(u) = (n(L),u)y, VYuelX. (2.2)

Definition 2.1. We will call the isomorphism 7 a reproducing mapping of the
Hilbert space X.

So, by the Riesz theorem the reproducing mapping of the Hilbert space :
exists and is unique. Let P be a Hilbert subspace in X.

Definition 2.2. A symmetric bilinear form (u,v), : X x X — R is called
o scalar semi-product and the induced functional |u|, = \/(u,u), is called a

semi-norm, if the last possess the following four properties:

1) ul, 20, VYuelX,

2) |ul, =0 u€P,

3) |Aulp = |A\||ul,, YueX, VIER,
4) lu+vlp <lulp +vlp," Vu,veX.

Lemma 2.1. The scalar semi-product and the semi-norm satisfy the following
three properties

|(u, )5 | < ulp vl (2.3a)
(u+p1,v+p2)p = (u,0)p, (2.3b)
1u+pllp = I“lP' . | (2.36)

for any u,v € X, p,p2 € P.

Proof.  The first property is proved in the conventional way by considering
the discriminant of the quadratic positive polynomial on the parameter A :
(v 4 Av, u + Av),. The second is proved using linearity of the scalar semi-
product:

(u +p,v+ p2)P = (u’U)P + (”7172)1’ + (pl'lv)}'-‘ + (plspz)l"

Applying the first property we have

I(uvp?)f'| < 1U|P|p2|P =0,

and, also, (p1,v), =0, (p1,p2), = 0. The third property trivially follows from
the second one. ' 0

Denote by X/ P the space of the factor-classes u+ P, where u is an arbitrary
element from X. .
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Definition 2.3. The space X with an additionally introduced scalar semi-
product and semi-norm is called the semi-Hilbert space, if
1) The seminorm is majorized by the norm, i.e.

lulp < ellullx; (2.4)

2) The factor-space X/P is hilbertian relatively to the following scalar prod-
uct and norm

(u+P,v+P)X/p=(u,v)P s (25)

e+ Pllxsp = Jul, - (2.6)

It is obvious from the previous Lemma that scalar product (2.5) and norm
(2.6) are correctly introduced.

Let us consider the operator T : X — X/P, putting in correspondence to

the element u € X the factor class u+P. Then, owing to (2.4), T is a continuous
operator:

ITullx/p = llu+ Pllx/p = luls < ¢flufx.

The linear space P* = {L € X* : L(u) =0, Vu eP} is called the annulator
of the subspace P. Obviously, dimP° = codimP.

Definition 2.4. The linear mapping 7, : X* — X will be called a reproducing
mapping of the semi-Hilbert space X, if

L(u) = (WP (L)au)p: Yu € X, (27)
for all L from P° C X*.-

The bilinear form (u,v), is annihilated in X on the elements from P, thus,
it is clear why not all the functionals L € X* are represented in form (2.7).

2.1.2. Basic Properties of Reproducing Mappings

Here we formulate (in the form of Theorems) and prove some basic properties
of reproducing mappings, which will be used further.

Theorem 2.1. The reproducing mapping 7, of the semi-Hilbert space X al-
ways exists. :

Proof.  Let Xp be the orthogonal complement to P in the Hilbert space X,
ie. X = P® Xp . Then, any element '€ X has unique expansion

u=uy+uz, u€P u;eXp, (2.8)

where (u1,u2), =0, Vu € X. Let us use the extended notation (X, - IIx)
instead of X, if we need an exact indication of the norm we mean. Prove that
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(Xp,||), is a Hilbert space, i.e. ||, is a Hilbert norm in X p. Really, introduce
the mapping '

R: (X/P, ” - “X/P) - (val' |P)’

which maps the element u + P onto the unique element u; according to expan-
sion (2.8). Clearly, R is a linear isomorphism. Norms of the elements u + P and
uz coincide: ||u + P||x;p = |u|, = |uz|p. It could be shown that R preserves
also the scalar product. Consequently, (Xp,| - |,) is the Hilbert space because
it is isomorphique to the Hilbert factor-space X/P.

According to property (2.4) the norm |- |, is majorized by the norm || - ||x
in the space Xp . Owing to the Banach theorem, these norms are equivalent.
This fact allows us to conclude that the conjugate spaces (Xp,| - |.)* and
(Xp, || - |Ix)* coincide as sets. To this end we will write X} instead of these
two. '

Let us introduce the reproducing mappings of some Hilbert spaces:

T X' = (X x) o Xp = (Xp - lix)s pr i Xp = (Xpy] - |2)-
They exist and are unique. Prove the following Lemma.

Lemma 2.2. If L € P° | then 7.(L) = p.p~'n(L), i.e. the mapping =, is
uniquely defined in the space P°.

Proof. Since L € P° , then L(u) = 0 for all u € P. According to equality
(2.2) m(L)LP or, which is the same, n(L) € Xp. Utilizing the properties of
reproducing mappings we have the following equalities
L(u) = (v(L),u)x = (v(L),uz)x = p~'m(L)(uz) = (ppp~ m(L),u2)p
= (PP p—lﬂ(L),u)P,

which prove the Lemma. D

To finish the proof of Theorem 2.1 we must extend the mapping ppp~'m
to the whole X* preserving linearity. It may be fulfilled, for example, with the
help of the project operator Pr, : X — Xp. Then the mapping

Tp = ppp  Prpw (2.9)
will be reproducing for the semi-Hilbert space X. 0

Theorem 2.2. Any reproducing mapping 7, of the semi-Hilbert space X is
symmetric on the space P?, i.e. for all L;, L, € P° it satisfies the condition

Ll‘ﬂ'P(Lz) = Lg'rr,, (L1 )

Moreover, there exists a reproducing mapping 7, which is symmetric on the
whole X*. , :
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Proof.  Symmetry of the reproducing mapping on P? evidently follows from
Definition 2.4 and from symmetry of the scalar semi-product:

Llﬂ'? (L2) = (WP(L_’I)aWP (LQ))P, = (WP (L2)a7rr(L1))p = LT’TP (Ll )

Show that mapping (2.9) is symmetric on the whole X*. Using the properties
of the mappings = and 7, we have

Ly7p(L2) = L1ppp™ ' Prpm(La) = (v(Ly), pp p*Prpm(La))x. (2.10)

Note that the element Ppp 'Pr.m(Ly) is from Xp and the element n(L,) —
Pr,m(L;) is from P, therefore, the last member in equalities (2.10) is equal to

(PrP n(Ly), Pp P_lPrP m(L2))x -

Since both elements from the last scalar product belong to Xp, then it reduces
to

P Prom(L1)(pp p ™ Prpom(La))

and using the property of the reproducing mapping p, the latter one reduces to
(Ppp™*Prom(Ly1),ppp~'Prpn(Ls)), . This expression is symmetric relatively
to Ly and L;. Thus, the proof of Theorem 2.2 is completed, O

Let L = {L,,...,L,} be a set of functionals from X* . Denote by IR, the
subspace in IR" consisting of the vectors (a1,...,a,) satisfying the following
condition

n -

ZGJ‘L i € P,
i=1

Theorem 2.3. The matrix G = {L;x, (Lj)}f:ll"_‘.'.‘": is symmetric and positive

in the subspace Rz. It is positively defined in the space IR if the functionals
Ly,...,L, form a linear independent system. '

Proof.  If any functional from the set {L1,...,La} is from P°, then Ry = R"
and symmetry in the subspace means ordinary matrix symmetry. In this case
symmetry follows immediately from Theorem 2.2.

Symmetry of the matrix G in the space IR, signifies that

(Ga,b) = (e,Gb), Yae Ry, be Rp,

where brackets denote the Euclidean scalar product in IR"™. Since the functionals
n n
A= 3 a;Ljand B= Y b,L; are from the space Py, then we have
=1 i=1

i=1 j=1

(Ga,8) =3 (3 Limy (L)ay)bi = (3 biLi)(mp () a;L;))
i=1 i=1

= B(WP (A)) = (Trp (B)a Tp (A))P = ("TP(A)’ Tp (B)).P = (Gb' a)
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and symmetry of the matrix G is proved.
The positiveness signifies that (Ga,a) > 0, Va € ]RL But from the previous
formulas we have the equalities

(Ga,a) = (7, (A), 7. (A))p = ITrP(A)I'i$

which confirm the positiveness. The matrix G is positive defined if (Ga,a) > 0
for all a € RL\{0}. Using the latter equalities we see that it is sufficient to
prove that equality

1w,,(A)|§ =0 (2.11)

holds only if @ = 0. From equality (2.11) and Definition 2.2 it follows that
7,(A) € P, but then A(u) = (7,(A),u), is equal to zero. Thus, A = 0 and,
hence, a = 0, because the set L = {L,,..., Ly} is linear independent. |

2.1.3. Basic Properties of Reproducing Kernels

Let us consider an abstract set of points £2 and a set of functions X = X (.Q)
given on 2 and forming a Hilbert space with the scalar product (u,v)x =
(u(s), v(s))x(m and the norm ||u|x = y/(u,u)x. Assume that the functional
k¢(u) = u(t) is continuous for any point ¢t € £2.

Definition 2.5. The function G(s,t) : 2x 2 — IR is said to be the reproducing
kernel of the functional Hilbert space X(12) if

a) for any point t € £2 the function gi(s) = G(s,t) belongs to X(§2) as a
function of the variable s;

b) for any function u € X(£2) and any pomt t € §2, the following equality
18 valid: .

u(t) = (G(s,1),u(s))x(n) - ©(2.12)

Theorem 2.4. The reproducing kernel G(s, ) of the Hilbert space X (£2) exists
and is unique. It is symmetric with respect to the components s and ¢.

Proof.  First, check symmetry of the function G(s,t). Sincé the function
g:(s) = G(s,t) is from X(£2), then g:(to) = (G(s,t0),9:(s))x. Further, we
have the equalities

9:(to) = (G(s,%0), 9¢(s))x = (G(s,%0),G(s,1))x
=(G(s,1)),G(s,t0))x = (G(5,1), 91, () x
= Gt (t)! .
which prove the required symmetry. Existence and uniqueness easily follow from
the fact that the reproducing mapping = of the Hilbert space X (§2) exists and

is unique. First, note that G(s,t) = n(k,) is the reproducing kernel of X(£2).
Really, since k; is from X* and 7 is a mapping from X* onto X, then (k)
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is from X. From the definition of the reproducing kernel follows the equality
k¢(u) = (w(k:),u)x, which is equivalent to (2.12). It only remains to prove that
the function G(s,t) is unique. Assume the existence of the two reproducing
mappings G(s,t) and F(s,t). Let g;(s) = G(s,t) and fi(s) = F(s,t), then we
have

g:(to) — fi(to) = (G(s,t0),94(s) — fe(s))x

= (G(s,1), G(s,t0))x — (F(s,t),G(s,t0))x
= G(t, to) - G(t, to) =0.

This completes the proof. O

Theorem 2.5. The reproducing kernel 7 : X* — X can be determined as
follows

m(L)(s) = L(G(s,")), (2.13)
where the operator L affects the function G(s,t) with respect to the variable ¢.

Proof. We have to prove that L(u) = (L(G(s,-)),u(s)x. In the proof of the
preceding theorem we noted that G(s,t) = n(k,). Since G(s,?) is a symmetric
function, then =(k¢)(s) = =(k,)(t). Teking in account these facts, equality
(2.13) is reduced to the equality n(L)(s) = L(w(k,)), and the latter is proved
in the following way:

L(n(ks)) = (n(L) m(ks))x = ka(n(L)) = n(L)(s).

This completes the proof of the theorem. O
Let P be a closed subspace in X({2), and let us equip the space X (£2) with
a semi-Hilbert structure (X(2),]-|,).

Definition 2.6. The function G,(s,t) is said to be the reproducing kernel of
the semi-Hilbert space (X (R2),]-|,), if ‘ '
a) for any functional L € X* the function f(s) = LGp(s,-) lies in X(2);
b) any functional L € X* vanishing on the space P can be represented by
formula

L(u) = (LG, (s,-),u(s))p, Vue€X. (2.14)
Theorem 2.8. There exists the reproducing kernel G, (s, ) of the semi-Hilbert

space of functions X(£2), though, it is not unique in general. It may be chosen
as follows

Gp(s,t) = mp(ks), - | (2.15)

where 7, is determined by (2.9).
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Proof.  Comparing Definitions 2.4 and 2.6 one can understand that for the
mapping, defined by (2.15), it is sufficient to verify

LG, (s,")=7,(L)s), VLe X", ' (2.16)
and Theorem 2.6 will be proved. We have
LGy(s,") = Lmp(ks) = (n(L), mp(ks))x = (Prpm(L), 7, (ks))x.

The last equality is implied by the fact that 7,(k;) € Xp. Continuing the
transformations

LGP(S") = (PrP“’T(L)"‘TP(kJ))X = (Prp’r(L)? ?r(k,))x
= (mp (L), m(ks))x = mp(L)(s),

we terminate the proof of the Theorem. 0O

2.1.4. Additional Properties of Reproducing Mappings and Kernels

Denote by X(12) the Hilbert space of functions, defined on some compact do-
main 2 C IR". Assume that X(£2) is compactly imbedded in the space of
continuous functions C(2). The set of linear continuous functionals on X (§2)
we will note as X*. By é-function we will call any functional k of the form
k(u) = u(t), where t is some point from {2. Let P be a closed subspace in X (§2),
and let us equip the space X(£2) with a semi-Hilbert structure (X(2),]- ).
Let, as formerly, P® = {L € X*: L(u) =0, VYu € P} be the annulator of the
subspace P.

Definition 2.7. The function G(s,t) will be called a reproducing mapping for
-functions if for any combination of 6-functions k = 3 a;6; € P° the following
equality ‘

k(u) = (kG(s,-),u(s)),

13 velid for all u € X. Here the functional k treats the function G with respect
to the second variable.

Henceforth we show that if G is reproducing for é-functions from P° then
it is reproducing for all L from P°. But now we formulate an auxulary Lemma.

Lemma 2.3. For any functional L € PV there exists a sequence of finite sums
of 6-functions from P°, which strongly converges to L. In o er words, a linear
shell of §-functions from P? is dense in P°.

Proof. LetS=dimP <oco, pi,...,psbe L-set of é-functions. If p;,...,ps
is the basis of P, then the following system of linear equa'.ons

[PI(PI) PS‘(PI)] [ﬁ1] !9‘1]
Lo =10 (2.17)
pi(ps) ... ps(ps)| | Bs gs| -
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has the solution for any set of real numbers g1,...,9s. Let ¢ > 0 be an arbitrary
value. Since X(f2) is compactly embedded in C(92), then there exists a finite
sum of é-functions ¥ A;6; such that IL =3 Xidi]| < e. Consider the finite sum
of é-functions

S
k= ZA,-&,-J,Z[J,-,»;, (2.18)
i=1

where the coefficients ﬂl,..'. »Bs are chosen from system (2.17) with g; =
L(pj) — 2" Xibi(pj), j = 1,...,n. Clearly, under this condition, sum (2.18)
is from P°. Let us estimate the difference ||k — L||. We have

S S
W= ZI < U3 Nbi = LI+ 1Y Bepill <+ 1Y Binill -
i=1

i=1

But the latter term is estimated: || "5, ;|| < C||8]| . where C = max llp:ll-
If R denotes the norm of the inverse matrix to (2.17), then B < R||g|| and, hence,

’ 5
1" Bipill < CRlg]l.
i=1

We have |g;| < [|IL — 3" Xéi|l |Ipsll - Thus, compiling the previous inequalities
we obtain

Ik —L|| <(1+CRC")e
where C' = max llp;]]. We proved that the difference ||k — L]} can become as
i=1,..., .

small as it is ne('eded. ]

Theorem 2.7. If G is reproducing for é-functions from P?, then G is repro-
ducing for all functionals L from P°.

Proof.  From the previous Theorem it follows that there exists the sequence of
the finite sums 3 A;é; from PY strongly converging to L. Consider the following
valid inequalities

(L =" Xib:)G(s,-), u(s))|
< I((L - Z Aiéi)G(sv ')'P fu(s)lp
SHZ =Y X G (s, )]l o us), .

The latter expression converges to zero. This shows that (LG(s,-),u(s)), is the
limit of the sequence (3~ X;6,G(s, ), u(s)), . But the latter expression is equal to
> Aidi(u), because G(s,t) is reproducing for 6-functions from P°. Since 3
converges to L then L(u) is the limit of the sequence 3 Aibi(u). Thus,
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L(u) = (LG(s,"),u($))»
for any'u € X and L € P°. O

Theorem 2.8. Let K(s,t) be a symmetric function such that
(K(s,t),v(s))x(2) = 0

for any point ¢ € £2 and any function v € X, annihilated at the point ¢. Then,
K(s,t) is the reproducing kernel of the Hilbert space X(£2) with accuracy to
multiplication on some constant.

Proof. The function v(s) = u(s) — u(t) is equal to zera at the point ¢. Thus,
the equality

(K(S,t), u(s) - ‘U.(t))x =0
is valid for any function u € X, or, which is the same, the equality

_ K@t ) .
((K(s,t),l)x’ ( ))X )

is valid for any point ¢t € £ and any function u € X(£2). Denote c(t) =
(K(s,t),1)x. Then, clearly, G(s,t) = K(s,t)/c(t) is the reproducing kernel
of X(92). Since G(s,t) must be symmetric, then

K(s,t) _ K(t,s)

e(t) — els)
Finally, ¢(s) = ¢(t) = const, because under conditions of the Theorem, K(s, )
is symmetric. (]

Let  G(s,t) be the reproducing mapping of the semi-Hilbert space
(X(£2), |- |p), n be the dimension of P, [y,...,I, be L-solvable set of func-
tionals. For such a set there exists the basis of the space P: p;(s), ..., pn(s)
satisfying the conditions

(pj) =8, i=1ym; j=1,0m. 3

The expression
(u,0) = Y Li(u)li(v) + (u,v)p
i=1

determines a Hilbert scalar product in X (£2), hence, (u,v)p is a Hilbert scalar
product in the space '

Xi(2) = {u e X(R): L(u)=0,Vi=1,..n}.

We assert that the reproducing kernel of this space is the function
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n

F(s,t) = G(s,t) = Y pi(IG(,1) = Y pu(OIPG(s,1)

i=1 k=1
+3 pi(&nOEVIP G s, 1).
j=1 k=1

Here the superscript with the functionals /; or I mean the component of the
function G(s,t), which is treated by the functionals. Firstly, one can convince
oneself that the function F(s,t) is from Xj(R2) for all fixed t. Secondly, in
accordance with Theorem 2.7 one must prove that

u(t) = (F(s,t),u(s))p
for all u € Xj(f2) and t € 2. We have
(P(s,t),u(s))p = (G(s,t) = Y pe(t)P G(s,2), u(s)) p

k=1

=u(t) = ) pe(t)i(u) = u(t).
k=1

The first equality follows from the répresentation of the function F(s,t) and
the obvious fact, that the expression :

=2 2G5, + 3 Y pi)pr (I G(s, 1)

=1 Jj=1 k=1

is a function of the space- P when ¢ is fixed, and, consequently, it annihi-

lates the scalar semi-product (-,-)p. The second equality follows from the main

property of the reproducing mapping G, and a simple remark that the func-

tional Li(u) = u(t) — 3 pi(t)i(u) is annihilated on the basis p;, ..., pn of the
k=1 . .

space P. The third equality follows from definition of the space Xi({2), because

(u)=0,Vi=1,..,n. '

2.2. Examples of Reproducing Mappings

2.2.1. Hyperbolic Reproducing Kernels in the Sobolev
Space W}[a,b]

Let us consider the Sobolev spa.ée W3a, b] of functions, defined on the segment
[a,b], with the scalar product

(u,v) = / ' u(@)o(2)dz + [ bu’(:c)v'(:c)da:

a
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Prove that the reproducing mapping of this Hilbert space is of the following

form
ch(z — b)ch(y — a) -
L shb—a) YT
K(e,y) = ch(z — a)ch(y — b) S
sh(b— a) o y=2

According to Theorem 2.7, it is sufficient to ascertain equalities

S b b
u(ﬂf)=/ K(w,y)U(y)dwafm %{-(ﬂ:,y)u'(y)dy-

d any u € W}|a,b). Applying integration by parts we have

(2.19)

for any z € [a,b] an

bdK ? ch(z — —-a
[ ety = [ HEZATE= D pay

f ch(w——a)ch(y b) ! (y)dy

sh(b
_ E:g [sh(z — a)u(z) — sh(0)u(a)] — _/ K(z, y)u(y)dy
___C’;ii %) (sh(0)u(b) — sh(z — blu(z)] - f K(z,y)u(y)dy

= u(z) - ] K(z,y)u(y)dy

Thus, (2.19) is proved.
2.2.2. Polynomial Reproducing Kernels in the Space W3*{a,b]

Consider the Sobolev space W™ [a, b] with the scalar product

b b

(u,v) = /u(a:)v(z:)d:r:+/u(’")(m)v(m)(m)da:.

a a

Let P = P,_; be the space of polynomials whose degries are less than m
Then, the scalar semi-product and the semi-norm

b b 1/2
(u,v)p = /u(m)(m)v(m)(ﬂi)d'ﬁ, lulp = ([(“(m)(-’ﬂ))zdz)

a
form a semi-Hilbert structure in W*[a, b]. Prove that the reproducing kernel

of this semi-Hilbert space is the following
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|z —y>
(=1)m2(2m — 1)1"

GP(II-',y) =

To do this it is necessary to verify that for any L € P° and u € W a, b

b

_ dm(LGP(IL',y)) m
L(u) = / —m u'™(z)dz.

According to Theorem 2.7 it is sufficient to verify its validity on the functionals
L of the following form

N
L= EA.-&,-,

i=1

where §;(u) = u(t;), i = 1,...,N, and ¢; are arbitrary different points lying in
the interval [a, b], the real coefficients \; satisfy equalities

N
Y Ath=0, Vk=0,..,m-1. (2.20)

i=1

The latter equalities provide the linear combination of ¢-functions to be from
P° i.e. it is annihilated on each polynomial from 1, z,...,z™~1, Thus, we have
to prove

b

N N T — ¢.[2m—1 (m)
> au(t) = Z;’\‘ / ((_’I)mzt(;lm = 1);) u™(z)dz, (2.21)

i=1

or, which is the same,
N N t;
t; — z)ym! .
Z.\.-u(t;) = Z,\.- £2(_m_—)_1)1_u( )(z)de
=1 i=1 7 .
a ; (z —¢;)m=1
. . —t; .
* ; . J (=1)m2(m - ks (z)dz.

Using the integration by parts replace the derivatives from the function u to
the polynomials in the following way

N 4 (t' T)m—l N (t a)m—l
Son [ gy = 3, B
pr A'/ 2(m —1)! W (@)de P A 2(m —1)!

N t
. (ti ~ w)m_'-z. (m-1)
+§;/\,f 2y (@),
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N b t)m-- ( ) )m—l
20 1)'"2( ~T) m(”)d‘”‘z"( 1)m2(m—1)'

=1
b

+ i Ai (z - tom 7 ul™(z)dz
o0 Foram -yt YT

/From (2.20) it folldws

o (ti—a)m X p—ty)mt
Z; 2(m 1) =0’_ ;A‘( ma(m =1y~
hence,
;,\u(t)_;,\ J ) ulm= ”(m)dm
b
+ i Ai (2 —ts)" 7 u(m_l)(a:)d.r.

=1

J C1r=ia(m = 2!

Continuing the integration by parts we obtain

N N Fut T r u'(z
S hatt) = 3o [ JECr. /%@]

t=1 i=] P4 b
_ZM(” ZA [u(a)+u(b)]

The latter sum is equal to zero, because of (220) So, (2.21) is proved, and the
introduced function Gp(z,y) is really the reproducing kernel.

2.2.3. Analog of the Space W}[a,b] for Mesh Functions

Let X be the space of the mesh functions @ = (u(t;),...,u(t,))7, deﬁned on
the mesh A = {t; < i3 < ... <t,}. Introduce the sca.lar product

(@5) = 1 S utyoce) + Z —-M( o(tin) - v(t:)

3—1

and the norm

2 5’
""‘“=( Zu’(t)+2(t,+l—t)[““=+l u‘(t)])

t —_
i=1 +1
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in the space X. It is easy to see that X is the Hilbert space, whose scalar
product and norm approximate the scalar product and norm in the Sobolev -
space W7 [a,b], [a,] D A. '

Any functional from X* has the representation

L(3) = 3" anu(ti) (2.22)

with an appropriate vector (a;,...,a,) € R". Conversely, any functional (2.22)
is a linear continuous functional in X. It is easy to see, because X is finite-
dimensional and, consequently, X * is the same. For this reason, let us identify
X and X* with IR", when the matter concerns their elements, but not their
internal structures.

Let P be the space of constant mesh functions. Clearly, dimP = 1. Let us
now introduce the scalar semi-product

(1,9, = - L) U0 ) e

and the semi-norm

poee tig1 — 1

in the space X, annihilated in the space P. It is easy to verify that they define a
semi-Hilbert structure in X. How the reproducing mapping 7, could be found
in this space? The answer is in the following statement.

The reproducing mapping is determined by matrix

1 i=1,...,n
G={-§It|‘—fjl‘r Ly

i=1,...,n?

-80 that ‘

7,(L) = Ga, ' (2.23)
where a is a vector satisfying (2.22). To prove this fact, first, let us find the
space P° C X*, which is the annulator of the space P. Verify that

n

P° = {(ai,...,a,) € R® : Zag=0}. (2.24)

i=1
Indeed, if u(t;)=c¢, Vi€ 1,...,n, then

n

L(u) = Zn:a,-u(t,-) = cz a;=0, VLeP°
i=1

i=1
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Since there exist nonzero functionals from X*\P? , for example, L(u) = u(t1),
then dim P° < n — 1. Hence, we have correctly found P, because the dimension
of space (2.24) is equal to n — 1. '

Expression (2.23) will be a reproducing mapping, if

L(i) = (Ga, i),

for all 4 € X and L € P?, or, which is the same,

n : n-1 ) _ a):
Yty = 3 ED 0Dy ) (2.25)

= pmr tiv1 —t

for u € X° and the vectors a, satisfying equality (2.24).

The basis in the space of vectors a, satisfying equality (2.24), may be
chosen as e; = (-1,1,0,...,0)T, e = (0,-1,1,0,...,0)7,..., en-1 =
(0,..,0,—1,1)T. It is sufficient to verify equality (2.25) on these vectors, i.e.
to check

R (Ger)isr — (Ger)

u(tien) —u(t) =) =5 i) — u(ti)) (2.26)
e it1 — ti
forall 1=1,..,n—~1. We have
2Ge; =
[ 0 11 —"tg t1 — 1 ty —tipr ...7 707 Fi1 — 141 ]
t1 — 19 0 .t —1 tg —ti41 ... 0 :tl_tH-l
ti —t ta —1; 0 tr—ti41 ... =1 =t =t
tl_tH-l t]—t[+1 1 1 t1+1—t1
L t; —tn t1 —tn tig1 = tn ... _“0_ _tH-'l—ti-
and, thus, '
o ftp—t o, i i=l
(Ge)irr — (Ger)i = { 0 , otherwise.

From here immediately follow equalities (2.26) and the statement is proved.

2.2.4. Space W0, 2] of Periodic Functions and Bernully Functions

Let us consider the integer m > 1 and the Sobolev space W0,27] of peri-
- odic functions. More exactly, the functions u € W3*(0, 27| are from the space
C™~10,27] and R

u(0) =D (27), Vr=0,..,m-1.

the m-th derivative is summable in L,-norm:
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21. 1/2
[ulm = (/(u(m))z(z)dm) < 0.

The scalar product, additional scalar semi-product and semi-norm are defined
by the same formulas as in Section 2.2.2. The only difference is that the kernel
of the semi-norm | - |, consists of constants only, i.e. the polynomials of zero
order. ' '

To determine the reproducing kernel in this semi-Hilbert space of periodic
functions, let us introduce the Bernully functions (Korneichuk 1976):

D,(z) = f E’?L’ET—’"@ (r=1,2..).
k=1

Indicate some important properties of the Bernully functions:
L. Di(z) = Dy_a(z), (r=2,3,..),

_ (/2 - {x/27}), =x #2xk
_2' Di(=) = {0, T =2rk
3. D, are 27 - periodic functions.
Here {z/27} stands for the fractional part of the ratio x/2m. It is interesting
that the Bernully function D,(z) is the r-th order polynomial on the period
[0,27).

Now the reproducing kernel in the semi-Hilbert space Wj"[0,27] may be
determined as follows

Gy(z,y) = P%TgT_"rx)’

To prove this fact it is necessary to verify that for any L € P° and u €
W3[0, 2]

2m
L(u) =/ﬂ%£Mu(m)($)dm.

0

According to Theorem 2.7 it is sufficient to establish this on the é-functions

N
L= Z Xib;,
i=1

where é;(u) = u(t;), i = 1,..., N, and t; are arbitrary different points lying in
the interval [0, 27). The real coefficients ); satisfy equalities

N
Z Xi =0, (2.27)
i=1
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because only the constants belong to P.
Thus, we have to prove

2

N N )\
3 Nu(ti) = Z;,\.- j (%'j“"ilt)?w—l) ul™(z)dz. (2.28)

i=1 0

Using the first property of the Bernully functions one can reduce the latter
term to the following

N 2r
Z A;/w]Dm(t; — 2)u™(z)dz.

i=1

Produce the integration of the expression by parts

N
>~ /7 (Dt = 2mu™ D (2x) — Dpn(t:)u™1(0))

N 2m
+ 3 Xifm / Doy (ti — 2)u™ ) (z)dz.
0

i=1

The first sum is equal to zero for any m > 2, because the Bernully function Dj
and the derivatives of the functions u € W;*[0,27] up to the (m — 1)-th order

are 27 - periodic functions. In the same manner we can reduce the right sum
of (2.28) to the following

> hifx f Dy(t — z)u'(2)dz.

Now applying the implicit form of the Bernully function Dy (the second prop-
erty) we reduce the latter expression to the following

N

t; 27
>N [ [G - @ie + [ - D
0 t;

i=1

N t

=N [gu(m - (G- (o) - [ 1%

=1 0

2
+ (5= gom) + Ju(t) - [ —(2%‘@}

i
2T

. .
_ N u(z)dz
= ; Aiu(t;) -/ -

0

N N
> o= E Aju(t;).

i=1
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Here, in the first equality we used the integration by parts, in the second one
- "2m-periodic” of the function u, in the third one - condition (2.27). Thus, we
obtain required expression (2.28).

2.2.5. Reproducing Kernels in Hilbert Spa;::e of Spherical Functions

This Section is composed on the basis of the papers (Freeden 1980, 1984) and
(Wahba 1981). Here the precise proofs are absent, but the brief results are
formulated. ‘

Let £ denote the unit sphere in the Euclidean space IR®. The rectangular
coordinates in IR® are related to the polar coordinates by the equations

r=rf, E=tez+1—1t%e cos ¢ + €3 cos )
t=cosf, 0<0<m 0<op<2r
(6 is the polar distance, ¢ is the geocentric longitade).
If by
8 & il

A=5;:?+a—$§—+'a?§

one denotes the Laplace-operator, then in terms.of the polar coordinates one
has the representation :

? 20 1,
Ah__aj-*_;é;_*-ﬁél'

Here A* denotes the (Laplace-) Beltrami-operator of the unit sphere

& 0 1

A =2 ——

ot? Ot 1—12 Jp?

As usual, the spherical harmonics Sy of order n are defined as everywhere
on {2 infinitely differentiable eigenfunctions, corresponding to the eigenvalues
An=n(n+1)forn=0,1,2,... of the (Beltrami) differential equation

BnSn = (A" + An)S, = 0.

A* = (1-1t%)

Spherical harmonics of different order are orthogonal in the sense of the I2-
inner product:

/ Sa(6)Sm(€)dw = 0, n £ m.
n

There exist 2n + 1 linearly independent spherical harmonics Sn,1yeee Sn2nt1
of order n. We assume this system to be orthonormalized in the sense of the
L%-inner product. Then, for any ¢,5 € 2 the additional theorem gives

2n+1

Z Sn,j(E)Sn‘j(T]) = g%:_l‘Pn((esﬂ))!
=1
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where P, is the Legendre polynomial
| [n/2]
k__ (2n—2k)! n—2k
= — te|-1,1
PO =2 (D 5 e T te L,

k=0

(&,m) is the cosine of the angle beetween the vectors € and 5. The additional
theorem allows us further to obtain the reproducing kernels in a simple form
of series.

Let H be the space of distributions F' on £ for which the partial deriva-
tives 87°...09m F are square integrable (a0,...,am are fixed positive integer
constants): '

H={Fe&: &°.05F=fe Q). (2.29)

H is naturally equipped with the scalar semi-product (-, ) corresponding to
the semi-norm

1/2
Pl = ( f |a§°...a;mF12dw) . (2.30)
7

Freeden has thoroughly investigated the reproducing kernels of such spaces. We
only give one particular result. ' '

Let ap = 1,...,a;, = 1. Then, the semi-normed space H is a functional
semi-Hilbert space embedded in the space C(£2) of continuous functions on f2.
The kernel of semi-norm | - |, is the linear space P = P,,_; of the dimension
dimP = M'= (m + 1)? of all spherical harmonics of degree m or less. The
reproducing kernel of the semi-Hilbert space H is given by the formula

G(&a 77) = Z 2n laiPﬂ((é, 77)):

n=m-+1 4r

where o = [(Ao — An)ee.(Am = M), n=m +1,....
Another result we take from (Wahba 1981). Let the semi-norm of the space
H be defined by the formula

( . 1/2
Q(a:"""F)ﬂdw) , m even

1/2
|| = { (_a__at(‘m-l)ﬂF)z !
[~

D sin” 6

+(GA™ D FRd b m odd

\
The kernel of the space F consists of the constants only , and the reproducing
kernel of such a space is the following;

GlEm = 323 gy P
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The next step of Wahba was a simplification of G(¢, 1). To this end she has
considered the equivalent functional in the form of a series, instead of |F|,.
Thus, she obtained the kernel in the following form

1 & 1
G(&m) = e ; (n+1)(n+2)..(n+2m — l)P"((g’n))’

and showed how to simplify the latter series and reduce it to the function
consisting of logarithms and polynomials only.

2.3. Spline Characterization

First, give the definition of the interpolating spline, which is equivalent to one
given in Chapter 1, but which is more convenient for our aims of characteriza-
tion.

Let X, Z be real Hilbert spaces, 4 : X — Z be a surjective continuous
linear operator, P be a closed subspace in X and (X,|-|5) be a semi-Hilbert
space.

Definition 2.8. Take an element z € Z. The element o € X will be called the
interpolating spline if it satisfies equality

o= argueglllll(z) lulp. (2.31)

Let Y = X/P be a Hilbert factor-space corresponding to Definition 2.3.
Set the operator T : X — Y of canonical embedding as the energy operator
introduced in Section 1.1.1. Then, setting P = N(T), (u,v), = (Tu, Tv)y,
lulp = ||Tully one can be convinced that this Definition coincides with the
definition of interpolating spline given in Chapter 1. We give also the orthogonal
property in new notations

(0.,u), =0, Vue N(A). (2.32)

If will be recalled that it is the necessary and sufficient condition for & to be an
interpolating spline. We can assume to fulfil some of the sufficient conditions
of existence and uniqueness of the spline among the proposed ones in Chapter
1.

2.3.1. General Characterization Theorems

Before the main characterization theorem will be formulated, we introduce
some new notations and prove two Lemmas. Define the conjugate operator
A*: Z — X with the help of the equalities

(AN u)x = (M Au)z, VA€Z, VYuelX
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We assume
N(AP = (ke X*: Ku)=0, VueN(4)}

to be the annulator of the space N(A), Z, = (AP)* be the orthogonal com-
plement of the image AP = {Ap € Z : p € P}. Let 7 and 7, be the
reproducing mappings of the Hilbert space X and of the semi-Hilbert space
(X,|-|p), respectively.

Lemma 2.4. If k € N(A)?, then there exists the unique element A € Z, which
satisfies equalities

k(u) = (\, Au)z, Yu€ X. (2.32)

In other words, k = m~1(A*)).

Proof.  According to the Riesz theorem, there exists the unique element f € X
such that k(u) = (f,u)x, VYu € X. Since k € N(A)°, then fLN(A) and,
thus, the equation A*\ = f has a solution. Since A is a surjective operator,
and, consequently, N(A*) = {0}, then this solution is unique. Finally, we have
the equalities

k(u) = (f,u)x = (A*Au)x = (A, Au)z,
which prove the Lemma. 0

Lemma 2.5. If k € N(A4)® N P°, then there exists the unique element A € Z,,,
which satisfies equalities

k(u) = (m, 7 ' (A*A),u),, YueX. (2.33)
Proof. Making use of the preceding Lemma we have k = 7~1(4*}), and,
then, utilizing the property of the reproducing mapping 7, we obtain

k(u‘) = (”P(k)’u)r = ('"'P'"'_](A*A)su’)p- . (2'34)

The condition A € Z, follows from representation (2.32) and from the condition
k € P°. Uniqueness follows from Lemma 2.4. ]

Theorem 2.9. For all A € Z, and p € P the element
c=m,7m (A" N) +p (2.35)
is an interpolating spline. Any interpolating spline is represented in form (2.35),

where the elements A and p are uniquely defined from the interpolating condi-
- tions Ao = z.

Proof. Y A€ Z,,then n71(A*)) € N(A)° and, consequently,
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(0,u)p = (mpn~? (A*A),u), = W“I(A.)‘)(u) = (A"A,u)x
' =(XA4u)z =0, Yue N(A).

Thus, the orthogonal property is fulfilled and o is, naturally, a spline. To prove
the second proposition of the Theorem, assume ¢ to be an interpolating spline
and consider the linear functional k, € X* of the following form

ko(u) = (0,),. (2:36)

Orthogonal property (2.32) and scalar semi-product properties bring about to
the condition k, € N(A4)° N P°. With the help of Lemma 2.5 we have

ko(u) = (mp = (A°X), u), . | (231)
From equalities (2.36) and (2.37) we obtain the following equa.lity. |
(6 —mpr ™ (A*A),u), =0, Vue X. _

Hence, lo — mpm™1(A*A)|, = 0 and representation (2.35) is established. The
uniqueness of (2.35) can be proved by the proof by contradiction. Let (A;,p)
and (A, p;) be two different solutions. Then,

rpw_lA*(/\l d /‘\2)= PZ - pP1-
Considering the scalar semi-product (-,-), we have
(mpm T A (M1 = Ma),u)p = (P2 — p1yu), =0 Vue X _

and, hence, 4*(A1 = Az) = 0. Since N(4*) = {0}, then Ay = Ap, and, certainly,
p1 = pa. S 0

Apply the proved Theorem to the characterization of splines in the fune-
tional space X(42). To this end use two following lemmas.

Lemma 2.6. Let A € Zp, | k*(u) = (A, Au) z be a linear continuous functional.
Then,

kl(u) = ((/\,AGP(S,'))Z,U(S))P, Vu_e X(‘Q)a ) (238)
where G p(s, ) is the reproducing kernel of the semi-Hilbert space (X(12),]-|p).
Proof. Since k* € P°, then

kNu) = (*Gp(s, "), u(s))p, Yue X(0). .

From the condition of the Lemma we have kAGp(s,-) = (X, AGp(s,-))z, which
implies (2.38). o
Lemma 2.7, ‘n‘P?r—l(A*z\) = (A, AGp(s, Nz, YA€ Zp.

Proof. The Lemma follows from two equalities Tp(k*) = (A, AGp(s,-))p and
k* = 7=1(A* 7). The first one is implied from (2.38) and the second one arises -
from Lemma 2.4. |
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Now the following characterization theorem is a trivial consequence of The-
orem 2.9 and Lemma 2.7.

Theorem 2.10. For all A € Zp and p € P, function
a(s) = (A AGP(s,"))z + p(s) . (2.39)

is an interpolating spline in the space of functions X(£2). Any interpolating
spline is represented in form (2.39), where the elements A and p are uniquely
defined from the interpolating conditions Ao = z. ‘

9.3.2. Characterization for the Interpolation with Composite
Interpolating Operator

Assume that the Hilbert space Z is composed of the Hilbert spaces Z,, A
with the help of the direct sum, i.e. the space Z = ®N ,Z; consists of the
vectors (u1,...,uN), ui € Zi, i = 1,...,N. The scalar product in such a space
is introduced in the following form

(u,v)z = (ul, ‘vl)zl + ...+ (uN,vN)zN (2.40).

Definition 2.9. We consider A : X — Z a composite operator, if A =
®N Ai — X 1is composed of the linear continuous operators A;: X — Z;, 1 =
1,...,N, and maps in accordance with the following rule

Au = (Au, ..., ANu). ‘ (2.41)

If A is a composite operator and z = (21, ..., 2N) is an element from Z, then
Definition 2.8 about the interpolating spline is modified to the following form

o = arg 1&1}1(1 lulp.

Aju=z;, i=1,...,N

Theorem 2.11. If the operator A is composite, then the interpolating spline
o is represented in the following form

N y
o= mpr (ATN) +p, (242

=1

and for the case of the functional space X(f2) -

N
o= Z(Ai,A;G,(s, ))z: +p(s) (2.43)

where the elements A = (A1, ..., An) € Z, and p € P are uniquely defined from
the interpolating conditions Ajo = z;, i =1,..., N.
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Proof. Representation (2.43) readily follows from Theorem 2.11 and equalities

(2.40 - 2.41), and representation (2.42) follows from Theorem 2.10 and the
N

equality A*A = 3 A*);. The latter is verified in the following manner

=1

N N
(A" u)x = (A Au)z = 3 (A, Aiw)z, = Y (AfAi, u)x.

i=1 i=1
O
Theorem 2.12. If the composite interpolating operator 4 = k, 65 e B ky is

formed by the functionals k; € X*, i = 1, ..y IV, then the interpolating spline
o is represented as

N
o= Nimp(k:i) +p, , (2.44)
i=1

and for the case of the functional space X (12) -

N
o= NkiGy(s,") + p(s). (2.45)

=1
The vector X = (A1, AN) € Z, and the element p € P are uniquely defined

from the interpolating conditions k(o) = z1,....kn(0) = z,.

Proaf. The proof follows from previous Theorem 2.1 I, where it is necessary
to assume Z; = R, V2, and Z = R”. Then, we have the following equalities
A,‘(?T(k,‘), u)x = )x,-k,-(u) = (A,‘, k,‘(u))]ﬁ = (kr)\,, 'U.)X,

from which it follows that k}A; = A;x(k;). Thus, from (2.42) follows (2.44).
Equality (2.45) trivially follows from (2.44) and the following equalities

N N N N .
Z Nimp(ki) = 7p Y Nik; = (Z Aiki)Gy(s,) = 3 NikiGy(s, ).

i=1 =1

The Theorem is proved. O
The next Theorem is the most important theorem for applications. It deals
with spline interpolating problem
o = arg min lulp, (2.46)

ug X
ky(u)=x vk y (u)=zy

when P is finite-dimensional space. Let py, ..., ps be a basis of the space P,

Theorem 2.13. The solution to problem (2.46) in the functional Hilbert space
X (£2) is represented in form
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N S
o= Z AikiGo(s, ) + Y 1ips(s)- (2.47)

i=1

The vectors A = (A1,..., AN), p = (g1,..., ps) form the solution to the system
of linear algebraic equations '

o SI0 -6 e

Here z = (21,...,zn)7 is the unput vector, 0 is the null vector of the dimension
S. G = {kik;Gp(s, t)}f_’___wll"ﬁ is a square matrix, B = {k.(pj)}f:ll"ﬁ is a
rectangular matrix, B7 is the transposed matrix to B.

Proof. Expanéion (2.47) as have already shown, coincides with (2.45) for the
finite-dimensional P. Consequently, we must prove only (2.48). It is not difficult
to see that the first block of the equations GA+ Bp = z means the interpolating

conditions. Let us that the condition BTA = 0 is equivalent to the condition
A € Z,. Really,

A€Z, & ALAP ©Ype P () Ap)py =0

N .
&Vi€l,.,S Y kipj)-di=0&BTA=0.
=1 ;
The condition X € Z, is satisfied, and the Theorem is proved. - a

2.3.3. Smoothing and Mixed Splines

Here we give the definition which includes both the interpolating and smoothing
splines as particular cases. Instead of the space Z and the operator A : X — Z,
introduced in the preamble to Section 2.3, define two Hilbert spaces Z1, Z, and
two linear continuous surjective operators 4; : X — Z;, Az : X — Z3. Set
Z=721D2Z;, A= A4; & As. :

Definition 2.8. Take elements z; € Z1, 22 € Z, and a parameter a > 0. The
element 0o € X 1s called the mized spline if it satisfies the condition

0o =arg min alul} + ||Azu — 2||%, : (2.49)
w€AT (21) :

Clearly, the case A2 = 0, 23 = 0 corresponds to the interpolation with the
interpolating operator A;, and the case 4; = 0, z; = 0 corresponds to the
smoothing with the smoothing operater A;. In Chapter 1 we have already for-
mulated the orthogonal property for the mixed splines. Taking into account the
discussions in the preamble to Section 2.3, concerning the orthogonal property,
it accepts the following form
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a(0q,u)p + (A204 — 22, A2tt)z, = 0, Yu € ATH0). (2.50)

Assume that the operators A;, A; are independent, i.e. A2(A7'(0)) = 2, and
A1(A77(0)) = Z;. In other words, the restriction of the operator Az to the
kernel of the operator A4, is a surjective operator and vice versa.

Theorem 2.14. The mixed spline o, is of the following form
da = Tpn (AT Aa) + mpm (A3 pa) +p (2.51)

Where (Ao, pa) € Z,, p € P are uniquely defined from two interpolating
conditions

Aoy = 21,
{Azaa = 29 — QPq- (2.52)

Proof. In Chapter 1, any smoothing spline was proved to be some interpolat-
ing one. One could prove more general assertion that any mixed spline with the
operators A; and A; is some interpolating spline with composite interpolating
operator A; @ Az. Thus, representation (2.51) may be considered to be proved,
because of the Theorem 2.11. It remains only to check conditions (2.52). Let
us use properties of reproducing mappings, to do the following transformations

(00 8)p = (7 (A3 Ao + A3pa), w)p = 7 (A1 A + A3pa)(u)
= (A;’\a + A;Paau)x = (PaaA2u)337 Vu € A‘.l-l(o)'
Then, orthogonal property (2.50) is equivalent to
(apa + Azoq — .z'z,Agu)z.2 =0, Yue A7Y0). (2.53)

Since the operators 4; and A; are independent, i.e. Az(Al_l((])) = Z,, then
(2.53) is equivalent to apy + A204 — 22 = 0, which coincides with the second
interpolating condition in (2.52). The Theorem is proved. O

Finally, let us formulate the analog of Theorem 2.13 for mixed splines.
Consider N; + N; linear independent functionals ky,...,kn,, l,...,IN, in the
space X(2) and the mixed spline

ugX
ky (u)=21,. kN, (w)=2p,

Nz )
0o = arg min alulp + Z(li(u) -
i=1

Theorem 2.15. The mixed spline o, in the functional Hilbert space X(2) is
represented in the form

. N Ny - s .
Oa =3 NkiGpl(s, )+ 3 piliGpls, ) + 3 ips(s). (2.54)
=1 i=1 i=1 .

The vectors Ay = -(/\1,...,/\N1)T,, Po = (pl,...,_pNz‘)T, o = (g1, ps)T form
the solution to the system of linear algebraic equations
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G G2 B [A, z '
Ggl Gzz +al Bg Po | = | T : . : (255)
BT BT 0 B, 0 :

Here 2z = (z1,...,zN5, )7, * = (r1, ..y 7N,)! are the input vectors, 0 is the null
vector of the dimension coinciding with the dimension of the vector g. The
matrices forming system (2.55) are the following

Gu1 = {kik;jGp(s, ODHIRY,  Grz = {kil;Gy(s, ) HI] R,
Gn = {I-k-Gp(s t)}g; o, Gaz = {l; Gy, £)}i=] 1, ,Nz
By = {ki(p) V21N B, = {li(p)}21:; o

I is the identity matrix of the order N;.

Proof. We will not completely prove the Theorem, but only explain the sense
of (2.54) and (2.55) and their sources. Expansion (2.54) is reduced from (2.51)
like expansion (2.47) is successively obtained from Theorems 2.10 - 2.13.

The first two groups of equations (2.55) bring about from interpolating
conditions (2.52), has applied to expansion (2.54). The third group of equations
follows from the condition (Aq, p,) € Zp of Theorem 2.13. O



