4. Splines in Subspaces

In the previous chapters we have already discussed the main theoretical
questions concerning characterization formulae and convergence of variational
splines It is obvious now that there are certain numerical difficulties which arise
in the construction and applications of the variational splines (for example, of
multi-dimensional D™-splines on the scattered meshes).

To construct the variational spline in the analytical form, we need to know
exactly the reproducing mapping or kernel of the corresponding Hilbert or
semi-Hilbert space. In the particular case of D™-splines we need to know the
the Green function of the polyharmonic operator A™ in the multi-dimensional :
domain (2. Usually, this function is known in the analytical form only for one-
dimensional case.

If the reproducing kernel is known, then the second difficulty is the solution
of the linear algebraic system (see Section 2.5) with a dense matrix. Only in
one-dimensional case this matrix can be done a band matrix.

And the last, the representation formula with the help of the reproducing
kernel is very complicated and often unstable for numerical calculations: But -
the main preferance of the splines in applications was simple representation
formulae, like in the case of the piecewise polynomial splines.

All these reasons suggest us the following simple idea: instead of the com-
plicated analytical solution of the variational spline-problem we need to find
simple approximation of the exact solution using ideas of the finite element
method. In this case we obtain sparse linear algebraic systems and simple rep-
resentation formulae.

The aim of this chapter is to discuss in the general form the finite-
dimensional analogs of the interpolating and smoothing splines, to obtain the
corresponding convergence theorems and to give the error estimates. The finite
element method will be illustrated for the multi-dimensional D™-splines on the
scattered meshes.
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4.1. Interpolating and Pseudo-Interpolating Splines in

Subspaces

4.1.1. Definitions, Algebraic Systems
Let X,Y and Z be some Hilbert spaces and T: X — Y, A: X — Z be linear

bounded operators. We assume that (T, A) is spline-pair. It means that spline
interpolation problem

o=arg min I T=|l3 (4.1)

has the unique solution if A7'(z) # @, z € Z. The pseudo-interpolation problem

o = arg IT=|l} (4.2)

min
zE(A*A)~1(z)
also has the unique solution for every z € Z.

Let us consider in the space X the family of the finite dimensional subspaces

{Ek}zc’:r

Definition 1. The pseudo-interpolating spline or in the subspace Ey is the
solution of problem '

o) = arg xer.fllei;r(iz) Tz |3 | (4.3)

Ri(2) = {ax € By : || Awk — 2|z = min [[Aui — 2|1%}- (4.4)

If the interpolation condition Aoy = z is non-contradictory in the space Ei
the pseudo-interpolating spline o} € Ej is the interpolating spline in .

It is a trivial fact that when (T, A) form a spline-pair, the pseudo-interpola-
ting spline o does always exist and is unique.

We obtain a linear algebraic system to find the pseudo-interpolating spline.
Let wy,ws, - ,wn(x) be some basis of the space E . Then

(k)
=Y oiws (45)
i=1

where o} are any coefficients. Qur aim is to find the minimum of the quadratic
functional

n(k)
ITo|® = ) oiot(Twi, Tw;) | (4.6)

i,7=1

with respect to the variables o},0%,-- - ,J;:(k) under the linear constraint
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n(k) . '

D oA Agwi = A3z, (4.7)
i=1

where Ay, is the restriction of the operator A to the subspace Ej;. We calculate

the scalar products of both sides of (4.7) with wy,ws,--- »Wn(k) and obtain
n(k) . ‘

> ok(Awi, Aw))z = (2, Awj)z, §=1,2,---,n(k). (4.8)

i=1

The index k disappears because A is equal to A in the subspace E;. We
introduce the vectors-colomns & and f by the following formulae

— k
o= (ai,ai,---,a‘;( ))T

f = ((27 Awl )Z, ey (z} Awn(k))Z)T

and consider two n(k) x n(k) matrices T and A composed of the elements
(Twi,Tw;)y and (Aw;, Aw;)z. Then our problem for the pseudo-interpolating
spline in E} can be written in the form

?

o = arg zréljit?,-(Ti’f)’ (4.9)
M;={z e R"™: 4z = f}, (4.10)

where (,) denote the usual scalar product of the vectors of the length n(k). If
A = (A, A, ..., An(k))T is the vector of the Lagrangian parameters, then the
corresponding Lagrange function can be written in the form:

&3, A) = %( I'3,5) + (4, A = f). (4.11)

The minimization of this function gives us the block system

(x2)(D)-0) 012

This system is symmetric, in the general case it is singular but always solvable,
it has the unique solution with respect to the vector & and a non-unique solution
with respect to A. The eigenvalues of this matrix have the different signs. To
find the spline o4 € E} we need to find any solution of system (4.12).

If the interpolation condition Aoy = Z is non-contradictory in the subspace
E} and Z is the finite-dimensional vector space then instead of (4.12) the other
system arises for the interpolating spline in Ej ‘ -

T B*\ (& 0
G 0-0
where B is rectangular n(z)xn(k)-matrix of the rows Awi € Z,i=1,2,...,n(k),
n(z) = dim Z.
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4.1.2. Convergence

Let us consider in the space X the family of the finite-dimensional subspaces
{E;}r>0 where 7 > 0 is the real parameter (for example, the size of the finite
elements).

Definition 2. We say that E, converges to the space X (E; — X)) if for every
element * € X the sequence z,, € E;, does erist such that ||z — z,,||x — 0
when T, — 0.

Definition 3. We say that E, weakly converges to the space X (E- i X) if

. w
for every element x € X the sequence x., € E;, does exist such that z,, — =z
in the weak sense when 1 — 0.

We assume that (T, A) is a spline-pair, z € Z, A7!(z) # 0 and ¢ € X is the
solution of the spline interpolation problem

o=mg min 1T} | (4.14)

We suppose that the interpolation condition’ Az, = z is also non-contradictory
in the subspace E. for the sufficiently small 7 < 79, and consider the corre-
sponding spline interpolation problems in the subspace E,, 7 < 7,

or =arg min ||Tz.|%, (4.15)
T€AT N (2) '
where
A7Y(2) = {z, € B, : Az, = z}. (4.16)

Assume now that N(T) C E, for 7 < 7. In this case for z € AN(T)
|ITe||3 = || To-||2 = 0 and 0 = o, . In other words the element of the null
space N(T) is reproduced exactly both in problems (4.14) and (4.15). In fact
the non-trivial approximation process goes in the orthogonal complement: of
N(T).

Let us consider the maximal spline-pair (7, A) with respect to (T, A) and
the corresponding scalar product

(z1,22)s = (Az1, A23) 5 + (T21,T22) o (4.17)
and norm
. o2
lalls = (I4all% + IT=l}) © | (4.18)

which is equivalent to the initial X-norm. In the orthogonal complement
N(T)$ = N(A) the expressions (Tz1,Tz2)y = (z1,22)s and | Tz|ly = ||z||«
become the scalar product and the norm. For these reasons we can consider
only the situations
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z€AN(T)}, E. >Nt or E, % N(T):

and can reformulate problem (4.14), (4.15) in the following forms for the normal
splines
o = argmin ||z||?,
z€ER (4.19)
R:{méN(T)f:Aa::z}

and
o, = arg min ||z, |2,
T Teew, T (4.20)
R, = {2, € E, : Az, = z}.
We have already obtained the resolvent formula for the solution of problem
(4.19) (see Section 1.4.2)
o=A"(AA*) 2. (4.21)

To obtain the corresponding formula for problem (4.20) let us consider the

following problem: find o, from the conditions

AB.§, = z,

[|6-)|12 = min.

(4.22)

Here B, is the orthogonal projector of the space, N(T)} to the subspace
E. C N(T){} . It is obvious that B, is the self-adjoint operator. Then from
the general consideration of Section 1.4.2 the solution of problem (4.22) can be
written by the following way

&, = B A*(AB,A*) 2. (4.23)

But it is clear 6, € E, .Thus, the minimization of the functional |6+]|% can be
done only in the subspace N(T)L. Since the solutions of (4.22) and (4.20) are
unique, &, = o,. Finally, the solution of problem (4.20) for the interpolating
spline in the subspace E, can be represented in the form

or = B.A*(AB, A*) 'z, (4.24)

Theorem 4.1. Let the operator A have the finite dimensional range and E, LA
N(T);. Then ||lo, — o, — 0 when 7 — 0.

Proof.  Since the interpolating spline o and interpolating spline o, in the sub-
space E. justify to the interpolation condition Ao = Ao, = z then the orthog-
onal property takes place (see Chapter 1)

llor = all = llo- 1% = o3 (4.25)

In details
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loll? = (A*(AA*) ™ 2, A*(AA®) '2)e = ((AA%) 712, 2) 22, (4.26)
llo-||? = (B,A*(AB,A*) 'z, B, A*(AB,A*)™'z)
= ((AB;A*)7'2,2)z,

because B, is orthogonal (self-adjoint) projector. The mapping A can be de-
scribed by the finite number of linear bounded functionals. In other words,
the elements k; € N(T)+,i = 1,2,...,n, n = dim R(A) do exist and are linear
independent, such that

Az = {(kl,.’l")*, s 1("’1!’37)*]'

(4.27)

The space Z = E, is n-dimensional Euclidian space. In this situation the
“adjoint operator A* : E, — N(T)# acts by the formula

A X =) Aiks (4.28)
i=1
because

Vze N(T)} VA€E, (Az,Mg, =) Ni(ki,2).
=1

= (m, iz\,‘k;‘). = (m,A*A)*-

=1

On this account the operator AA* : E, — E, is n X n-Gram matrix of the
elements

aij = (kikj)e, 7 =Tm. (4.29)

For the same reason the operator AB,A* = (AB;) x (AB,)* is also the Gram
matrix of the elements

of ; = (Brki, Brkj)s = (Brkikj)x, 14,7 =1,n. (4.30)

Since E, & N(T);, it means that

Vz,y € N(T)ih (Brz,y) = (z,y)x, T—0, (4.31)
and we have the convergence of the elements of the matrix AB,A* ,

o

Iy, Gj=Tm, 70 (432)

The solution of the linear algebraic system continiously depends on the elements
of the matrix. Therefore

((AB;A*)7'z,2)g, — ((AA*) 7'z, 2)E,

or taking into account (4.25) to (4.27) we obtain o, — oll. — 0. o
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4.1.3. Error Estimates

In this Section we obtain an error estimate in the general form for the interpo-
lating spline in the subspaces E, in the situation when the operator A is not
fixed, but depends on the mesh parameter h, and T tends to zero, simultan-
iously.

‘Let Ay : N(T)i* — Z; depend on the small parameter & > 0 and (An,T)
form a spline-pair for h < ho. Let L be some element from N (T)i+. Denote
by

ar . -

ot = Sty S Aj(And}) T Anpd (4.33)

its spline-interpolation and let

of = Stot L B AN(AWB A Anpt (4.34)

be its spline-interpolation in the subspace E,. We assume that the interpolation
condition Apz, = App} is non-contradictory in the subspace E,, when r <
7(h). Denote by Sp(h) the space of the interpolating splines corresponding to
the operator Ay, Sp(h) = S*N(T)L.

Let D! : Sp(h) — N(T)# be a restriction of the operator I — B, on the
spline-space Sp(h).

Lemma. If a family of operators Df,‘( ny is uniformly bounded by the constant

C < lindependent of h < hg, then the corresponding splines 0'1','( ») are bounded
in'the X-norm by the constant which is independent of h.

Proof. Denote

M} = A;(AwB.AL)" Ay (4.35)
Then

M} - S* = A} [(AwB,A)™! - (AnA;)™Y] As.
By the identity C~' — D=1 = D=Y(D — C)C~! we obtain

M} — S* = A(ARAL) T AT — B:)A,(AnBrA}) 7 Ay = S*(I - B,)M?".
Hence,

Mf(h)‘#’i' = Sk‘P;L + Sh(I - Br(h))Mf(h)Saf'-

Taking into account Mf( h)cp;f" € Sp(h), we have
IMZyexlls < ISPkl + |1S™)) ¢ 1Myl
Since ||S*]| = 1, |S"oL||s < [0t we finally obtain

h h -
”C’r(h)”* = ”BT(IA)MTE(I:)(P:.“* < ||Mf(h)90l||t <(1-0) 1”9":"”*
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‘and Lemma is proved. O

Theorem 4.2. Let V be a semi-normed space with the following embedding
condition

Ve e X |lzllv < Cillz||x, (4.36)

and the following error estimates are valid

Vor € X lpx — SPoullv < Co - ga(h) - | Toully, (4.37)

s = Brpullv < Cs - ga(r) - | Toullys (4.38)
Then under the lemma constraints the error estimate takes place

llox = Srayealls < [Ca - g1(R) + Cs - ga(r(R))] - IToully, (4.39)

Here C) + Cj are any constants independent of hA.

Proof. It is clear from error estimates (4.37), (4.38) that the elements ¢,
from the null space N(T) are reproduced exactly in the spline-interpolation
and projection to the subspace E,. Hence, the proof can be done only for
s = @ € N(T)L. We have
lpe = SEmyenllv < llow = S*eully + (I = Bogay)Sneullv
+ 1By (8" = Mly)eullv < [Cagi(h) + Csg2((h))] - | Tex|ly
+1Br(ayS*(I = Brin)) M2 ol

The latter term can be estimated in the following way

IBrayS™(I = Briny) MYyl < I1Brmlneryz—v - IS* I nery 2 —v
X (I = Br(w))Myeullv < CEH1 = C) 2 ga(r(h)) - | Tpully-

In this estimation we use the following simple fact: Since B, (1) and S* are
orthoprojectors we have

IB-wllvemyz—neryz = 1M vy —nemys = 1.

However, from embedding condition (4.36) we obtain

Shy
"Sh”N(T);'-—.V = sup ” ” V =0C;.
s#0x ||zl
The same fact takes place for B () and Theorem is proved. )

Remark. We are able to replace the requirement of Lemma to another stronger
condition. Let E;, E; be two subspaces in the space X, and B,, B; be the
corresponding projectors to E;, E; . Then the angle @(E,, E;) between E,
and E; is
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O(E1, Ey) = max{[[(I — B1)lg, |, (I = Ba)|g, |}, ' (4.40)

where (I.— Bi1)|E, and (I — B;)|g, mean the restrictions of the operators I —
By,I — B; on the subspaces Ey, E; . Thus, the requirement of Lemma can be
replaced by

O(Sp(h), Brn)Sp(h)) < 0y < 1 (4.41) .

with the constant @y independent of h. In this situation if Sp(h) is finite-
dimensional, then B,(;)Sp(h) has the same dimension.

4.2. Smoothing Splines in the Subspaces

4.2.1. Definition, Algebraic System

Let X,Y and Z be some Hilbert space, and operators T : X — ¥V | A4 :
X — Z form a spline-pair (T, 4). Consider a > 0,z €Z and the corresponding
smoothing spline o4 € X,

0o = a.rgnéi{}aHTxH%/ + || Az — 2||%. (4.42)

The smoothing spline o% in the subspace Eic C X is the solution of the problem

ok = arg min o|Tz|} + ||Az - 2|)%. (4.43)
L EE}

If Ei is the finite‘dimensional subspace, then o does always exist and is
unique. Let wy.wy, -+, wyr) form the basis of Ej . Then

n(k)

k E k
T = Uo!iw;'

=0

and the variational functional of problem (4.43) can be written as the function

of the coefficients o ;|

Pal0g) = a||Toh |} + |40k — 2|3
n(k)
= Z ai.iag'j [a(Twi, Tw))y + (Aw;, Aw;) 7]
t,j=1
n(k)

_9 Z of (Awiz)z + =1%.
i=1

Using the notations of Section 4.1.1, we have

bo(0y) = a(To,5) + (A5,0) — 2(f,5) + ||=||%.
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The minimization of this quadratic functional with respect to the variables o
results in the following algebraic system

(aT+ A)g = f (4.44)

with the symmetric and positive defined matrix.

4.2.2. Convergence

Theorem 4.3. If EkLV»X and for every £k Eiy1 O Ei, then 0"; —vY& 0o When
k — oo.

Proof. At first we show that the sequence {o*} is bounded in the X-norm
with respect to the index k. We represent o in the form

k _ k21 k,2
acr_aa, +aa,’

where a'" 1 € N(T)t, oF?% € N(T). Every subspace Ej contains zero point
Ox. As o, is the point of minimum of the functional

Po(z) = a|Te|l} + [ Az — 2|%

in the subspace E} , we have

1 1 1 1
5 %a(03) = ITog|y + ~ll4og - 21% < ~&(0x) = ~|=|1%- (4.45)

=]

Thus, the sequence ||To%||? is bounded with respect to k. The sequence
|Aoq ||z is also bounded because from (4.45) we have

lAoallz = llzllz < [|Aog = 2I1% < llzllz, |l Aogllz < 2||z]|2-
By the norm equivalence theorem we have
loallx < CUITosl? + Aog]®) 7 < (4 +1/@)?||2]| 2.

Let us separate from the bounded sequence o the subsequence o* " which
weakly converges to any element o, € X. By the orthogonal property of the
smoothing splines we can write

a(Taf,',Tw;)y + (Acrf —z,Aw —2)z = —(Aag' —z,2)z. (4.46)

Here w; € X is the sequence such that w; € E; and k' > I. If k' — oo then we
obtain

a(Tow,Twi)y + (Aow — 2, Aw) — 2)z = —(Aox — z,2) 7. ©(4.47)
We can choose w; w 0o because E}, w X. Then from (4.47) we obtain

a(To.,Tos)y + (Aox — 2, A0q — 2)z = —(Aow — 2,233, ~ (4.48)
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On the other hand the left-hand side of (4.48) is equal to —(Agq —2z, z) from the
orthogonal property. If we use now in (4.47) the sequence w; W . we obtain

al|To. |3 + |Aow — 2|5 = —(Aow — 2,2) 2. : (4.49)

Finally, #,(0.) = ®Pa(04) and by uniqueness of the solution for the initial

spline-problem we have 0. = 0,. So, every weak limit point of the sequence

k

: . w :
{ok}is 0q, ie. 0f = 0, when k — o0. m]

Corollary. If the operator A : X -+ Z has the finite-dimensional range, then
under the theorem conditions we have '

||az—a(,|x~—r0, k — oo.

Proof. Really, the value

$o(ak) = al Tok |} + A0k — 21} = —(Ack — z,2)z
tends by the weak convergence to

~(A0a — 2,2)z = alToally + | Aca — 2|3.

Since R(A) is finite-dimensional, ||As¥ — Ao,||z — 0 and ||Ack — 2|z —
|Aoo — z||z. Therefore ||Tok|ly — ||Toq|y, and by the well-known theorem
|Tek — Toslly — 0. At last, by the norm equivalence theorem we obtain

2
Ix S C[IT(oq — oa)l} + |A(cs - 0a)lZ]” =0

and the corollary is proved. |

“‘72 —Oa

4.2.3. Error Estimates

As we have already shown in Chapter 1 (Section 1.4.3.), the non-trivial smooth-
ing process goes in the subspacé N(T)} because it is impossible to smooth the
elements from the null-space N(T'). Then the initial smoothing problem

Oa,h = argmin of|Tz||} + ||Arz — 2||%
rz€X
can be reformulated in the form

s =ag_min ool + [l dss ol O (4s0)

where the subspace N(T)} is connected with the maximal sphne -pair (T, A)
with respect to the initial spline-pair (T, 4;,), and

N(T)y = N(4),

with the special scalar product
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(z1,22)% = (Tz1,Tx2)y

and the corresponding Hilbert norm z]|« = (=, a:)i/ ?. As we have already
known from Chapter 1, the resolvent operator for problem (4.50) can be written
in the form '

Oah = Sanpr = Ah(al + AnA}) " Anpy, (4.51)

where Appt = 2z, ¢ € N(T);.

Let E. be the finite dimensional subspace in N(T)} , and B, : N(T)3 —
E, be the corresponding orthogonal projector onto E; . If we consider the
smoothing problem '

ou = argmerﬁigwallxlli +[|ABrz — 2||Z,

its solution can be obtained by the formula
o = B Aj(al + Ay B, A}) 7 Anpy,
and o, belongs to E, . Therefore o, is the solution of the problem

ov = arg min afle.| + [ Az, — 2II%

T T

or in other words o, is equal to the smoothing spline Ogp i the subspace E;
and can be represented in the form

0o =Sinpy = Brdj(al + AnB- A7) Anpy (4.52)
Theorem 4.4. Let V be the semi-normed spacé with the embedding_con.difion
VeeX lelv<Clelx | | (459)
and the following error estimate be ‘valid .
Vou € X |lpx — Brpul| < Cs - g2(7)|| gl v (4.54)

If the restriction of the operator (I — B,()) on the space Sp(h) of the inter-
polating splines is bounded by the constant C < 1 independent of h, then the
error estimate takes place

loa —oZ®|lv < Cuga(r(R))IT¢. |, (4.55)
where C, = C3(1 + Ci(1-C)™).

Proof. It is necessary to make an estimation only for ¢, = o+ € N (T)E . Let
us prove the identity '

;,h - Brsa,h = Br‘Sa,h(I - BT)M;,,FH
where M7 , = Aj(al + ApA})™" Ap. Really
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B, Aj(al + AyB-A}) A — B Aj (ol + AnA}) " As
= B- A} (ol + AyA}) T Ap(I — B,)Aj(al + Ap B, AL) "1 A,

Taking into account the obvious inequality (see Lemma preceding Theorem
4.2)

IMZ ¢l = 147 (el + AbB.43) ™ Angi|,
< || 45(al + AnBrA3) T Anpdlls < (1= C) 7l |
we obtain
loas = o2 v < ll0a = Brwyoanlly + 1Briwyoan — ot Pl
= |00 = BeryOanllv + |1 BrihySan(I = Brny ) MIW v
< Cs-ga(7(h)) - lpwlle + CIC3(1 =€) - |l || - ga(r(h))
and Theorem is proved. O

Remark. In inequality (4.55) the constant C, is independent of a. If o — 0,

then the smoothing splines o4, and a;(,,’:) go to the interpolating splines o}

andcr()

lon — of ™Iy < Cuga(r(h)) - | Tpully. (4.56)

There is the other way to prove the error estimate (4.39) in Theorem 4.2.

correspondingly, and we obtain the error estimate

4.2.4. On Estimation of the Angle Between Subspaces

The main property which provides obtaining the error estimates both for inter-
polating and smoothing splines in the subspaces: the restriction of the operator
I — B; to the spline-space Sp(h) is uniformly bounded in the X — X-norm by
the constant C' < 1. What does it mean?

Let a subspace E, have the basis wy,ws, - yWn(r) and B, be the orthogonal
n(r)

projector from N(T); onto E,. It means that B,y = 3 ,u,w. is the best
=1

approximation of the element ¢,

n(r) n(r)
* 2 . * 2
Y pwil= m -3 w2, 4.
Il 2 prws|? m““‘l‘f}‘mllqs .§=1 piwill2 (4.57)

Since (4.57) is the least square problem, the best coefficients can be found from
the following linear algebraic system

ep=F, p=[un...., l”‘n(f)]T; (4.58)

where 2, = {(w.',w‘,-),}:'_gt__), 15 the Gram matrix and F = [(¢,w))s, -,

(@sWh(r) ).]"I. If we denote by B : N(T) — E, (5 the operator
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By = [(,w1)xs v (03 @n(r))e] T (4.59)
system (4.58) can be written in the form
(BB*)u = Be.
It is easy to see that
n(r)
= plw.
i=1
Finally, the operator B, can be represented in the form
B¢ = B*(BB*)™! Be. (4.60)

The problem of estimating the operator (I — B-)|spsy is: how to find the
constant C' < 1 such that

Vo € N(T)y  ||She = BrSuplle < C|IShella, (4.61)

where S), = Ap(AnA} )~ Ap is the operator of the spline-interpolation. So we
have

ISk — B=Shpll2 = (Shep, Shp)w — 2(Shp, BrShp)a
+ (BTSMP’ BTS“P)* = (Sh‘P! Shw)* - (B‘l'Shﬁo’ Sh‘P)*a

or, in other words, condition (4.61) is equivalent to
Vo € N(T);  (ShBrSap,9)s < (1 = C*)(She,¢)s (4.62).

To simplify the situation we assume that the operator A, has the finite-
dimensional range, i.e. the linear independent elements k1y..oyknen) do exist
such that

App = [(kl 1P )ws (k2,0)es -0 (kn(h)a ‘P)*]T- (4.63)

Let us introduce n(h) x n(h)-Gram matrix

K = {(ki, k). } 72, (4.64)
and the rectangular n(h) x m(7r)-mixed Gram matrix
n(h),m(r
M, = {(kiswj). JEDIZ"- (4.65)
n(h)

As Spp = Y Aik;, we write
i=1

ISk — BrSupll2 = (KnA, Mnhy — (Mar 27 M5t X, Nuihy

where A = [)\q,.. D WPy L ),,(h) is the usual scalar product in n(h)-
dlmensmnal vector space Thus, in the matrix form mequahty (4.62) can be
replaced by
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My 27 My . > (1 = CHE,,. _ _ (4.66)

Since the matrices M} 27 11'!4',?,‘|r and K} are self-adjoint and K}, is positive
defined, the best constant dependent on % and 7 in (4.66) is the minimal eigen-
value in the following generalized eigenvalue problem

My 27 My .z = AKyz ‘ (4.67)
and
or, in other words,

1— (k1) = An (K P My e 07 M KT 21 - 2, (4.69)

where A,’;;(D) means the minimal eigenvalue of the matrix D, and ¢(h, 7) is
exactly the norm of the restriction of the operator I — B, on the spline-space

Sp(h),
c(h,7) = (1= AbTy1/2, (4.70)

min

It is clear that A" < 1 and the condition ¢(h,7) < C < 1 is equivalent to
/\;‘i’; 2 Yo > 0 with the constant 4y which is independent of h and .

The weaker condition /\;’i; > 0 means that the interpolation condition

Aot = Ap,, o €N (T)3+ can be exactly realized in the subspace E;. Actually,
the matrix

My 27 M, = AyB(BB*)™'BA}, = AyB.Aj,

is positive definite iff (A, B, A})™! exists.

4.3. Finite Element D™-Splines at the Scattered Meshes

Let §2 C R™ be any parallelepiped

.Q=[al,bl])( [ag,bg]x...x[a,,,b,,], (471)
a; < b;,i =1,2,...,n, and wy, be scattered mesh in £2,
(h (h h
wy = {PM, P >,...,pg,(>h)}. (472

We assume that w, forms h-net in 2 when A < ho . Let X = W]*(82) be Sobolev
space with the natural embedding condition m > n /2 to the space C(£2). Then
D™-spline o(P), which interpolates in wh the function ¢, € WJ*(£2) is the
solution of variational problem -
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o(PM) = (P™), i=1,2,... N(n), . (4.73)
l .

> 7—27 f (D*0")?df2? = min. (4.74)

lal=m =" 5 S

The coefficients m!/a! are introduced to energy functional (4.74) to provide
the invariance of this functional with respect to rotations and shifts of the
domain f2. For the sufficiently small & < kg the problem (4.73)-(4.74) is always
uniquely solvable, and the following error estimate takes place

ID*(pu = oMz, < Ch™=n/24nlo=k Doy ), (4.75)

Here 2 < p < oo, k—n/p<m—n/2, except thek=m—n/2 & p = oo.
Let us introduce in every interval [a;, ;] the uniform mesh Ay, with the
mesh size 7;, = ‘

Ay = {mgkl) = aj +k7j, k=0,..,N, 7; = (b; - a;)/N;} (4.76)

and consider the space SkJ(A,,j) of the piecewise polynomial splines of the
degree k; with the defect 1 (S"J‘(A,-j) C C*%~a;,b;]). Suppose that ki > m.
In this situation S.’FJLA,J&_}__C*EW_/'Z’“[aj,bj]. Let A, = A; x A, x ... x A,
and S¥(A,) bea tensor product of the spaces S*i (A7), 7 =1,2,...,n. Tt is
clear that every element o, from § k(A,) belongs to the space Wi (£2). The
interpolating spline o in the subspace S*(A,) is element from this subspace
which provides the interpolation conditions at the scattered mesh wy,, o

o (B)=ouPP), i=12 N@R), (4.77)
and minimizes the eneré;y functional,
!
Z E}/(D“ai’)%!!): min . - (4.78)
lae|]=m o i - Stan .

If interpolation conditions (4.77) are non-contradictory in the subspace S k(a,),
then the solution of this problem does exist and is always unique for sufficienly
small h < hy.

According to the general theory (De Boor 1978) every one-dimensional
spline o, € Sk (Ar;) can be represented with the basic B-splines,

Nj'i'kj
k;
O'fj ($J) = Z C;J.B,,, (.TJ) (479)

=1

Every B-spline is the local piecewise polynomial function concentrated at kj+1
mesh intervals (or less near end points a;j and b;). Thus, the basis of the tensor
product S¥(A;) consists of the local functions '

W (P) =ity .1, (1,22,0,20) = [[ BY (3), o (4.80)
=1
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and dim §%(4,) = ﬁ (Nj + Kj). The support of the function wf(P) is any
i=1

parallelepiped 2f. To find the finite-dimensional analog o} € S*(A,) we need
to solve system (4.12) (or system (4.44) for the smoothing spline). The matrices
T and A arising here are fairly sparse because the elements

1
= (D™t D™k, = n DWF . D*whdn, 81
t,s = (D™w), D™wi)L, Mé:m o /n,'nn:D W] w, (4.81)
as = (Ahwf,A;.wf)EN(,,) = Z W;”(P) ' ‘*’f(P) (4.82)
PEwy NR2FNIY

of these matrices are not zeros if the intersection of two supports £2f and 2F is
not empty. The structure of non-zero elements is the same for both matrices.
The problems of fast computations for the matrices T and A including the
special decomposition and fast multiplication on the vector fg organize the
iterative process for the solution of the carresponding linear g}ggbra,ig gystem
will be discussed in detail in Section 5.2,

An application of B-splines as a finite element method for the data interpo-
lation at the scattered meshes is not only possibility. Many other finite element
constructions ean be applied here. But the maig property to provide the con-
vergence of the finite element spline to the exact function is §%(A, ) — W (92),
when 7 — 0. For the spline-spaces on the rectangular grids this fact is well-
known. _ o

And the last but important question is: how to provide the preservation
of error estimates (4.75) for the finite element analogs of splines? What is the
connection betweﬁeari‘ﬁhe condensation laws of the scattered mesh w, and the
grid A,? : e

It is easy to show (Vasilenko 1976) that the analytical D™-spline o* (so-
lution of problem (4.73), (4.74)) belongs to the Sobolev space W;“"'ﬁ (2) for
0 <8 <m-n/2 Let B be the orthoprojector of the space W7*(£2) onto the
B-spline subspace $*(A,) connected with the special scalar product, and the
following approximative property takes place

Vue WHP(0) (I = B, Jullwp < leﬂ”u”W;nw. (4.83)
For D™-splines o* it was shown (Matveev 1991) that
Cs
”"h”wz’"” < '“C’h“wgﬁﬁa (4.84)
min
where
hmin = ’_!l}‘féljh “P - Q“? : (485)
P#Q

Let D} be the restriction of the operator I — B, on the space Sp(h) of the
mterpolating D™ -splines on the mesh wy,. .Then
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I-B)oullwr - 5
Dl = sop AL Brlonlwg <aon () (4.86)
onesphy  llonllwyp Bsia

Finally, to provide error estimates (4.75) for the finite element spline o? it is
necessary to have

C’IC2("'/hmin)‘9 <6 < 1, (487)
where the constant @y is independent of 7 and A; in other words
T/hmin < C3 = (90/(0102))1/’3- (4.88)

If the scattered mesh wy, is quasi-uniform (hpin > C4h,Cy = const), then it

means that the grid step 7 is proportional to the scattered mesh parameter h.

4.4. Discontinuous Finite Element D ™-splines

Here we consider the problem of spline interpolation of a discontinuous function
of two (or more) variables which is sufficiently smooth everywhere except for
the separate lines (or surfaces), where this function has discontinuities of the
first type (limits on both sides of discontinuity are finite). There are two aspects
in this problem. The first is as follows: we know only values of the function on
the scattered mesh and the first problem is localization of discontinuity lines,
which probably have complicated geometry in the domain where the function
is defined. It may be that the discontinuity line begins at the boundary of the
domain and finishes also at the boundary (but possibly inside) or this line is
a closed curve. How are various discontinuity lines situated with respect to
one anothers? This problem have to be solved in some practical sense. And
the second part of the problem is spline interpolation, when the positions of
discontinuity lines are already given.

4.4.1. Discrete Localization of Discontinuities

Let A be a finite set of pointé'in' R™ and some metrics p(P, Q) in R™ be given.
We say that A is e-connected set if for every point P € A and for every point
Q € A the sequence Py, P, ..., Py of points from A does exist such that

P] = .P, PN = Q, P(Pi,P:'+l) < g, = 1,2,...,N —1. (489)

Let A be e-connected set and at every point of it some real valued function
f(P) be given. We say that two points P and Q from A are (R,€)-connected if
the sequence Py, P,, ..., Py of points from A does exist such that

Py =P, Pn =Q, p(Pi,Piy1) <¢, |f(P;)— f(Pi+1) <R. (4.90)

It is obvious that (R,¢)-connectiveness is the relation of equivalence in &-
connected set A and A is divided into classes of the equivalence 4, ,As, ..., As.
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Remark. If we have the values of discontinuous function on the scattered mesh,
then only the user knows the "level of discontinuity” R > 0. If the distance
~ between two measurement points P and @ is Smaller than the measurement
step € > 0 but the “jump” |f(P) — f(Q)| is greater than R > 0, there is "dis-
continuity” here; in other situation the mesh function is already ”continuous”.

We say that two points P € A and Q € A are (R, ¢)-separated if p(P, Q) <e,
but |f(P) — f(Q)| > R. Note that two points belonging to (R, )-connected
subset may be (R, ¢)-separated.

Let us consider (R, ¢)-connected class A;. We say that P € A; is the bound-
ary pointof A; (or P € 94;) if its e-neibourhood M. (P) = {Q € R™ : p(P,Q) <
€} contains the point @ € A which is (R,¢)-separated from P. If the point
P € 0A; contains in its neibourhood only the points from A;, we say that P
belongs to the inner boundary AP of the class A;, in the other case P belong
to the external boundary OAS*. Thus, 04; = OAI® U 9AS*.

Every point P € dA' contains in its e-neibourhood one or few points from
A;. The union of these additional points and the set A; is the closure A; of the
class A; . We call the set

0A; = A;\(A:\04;)
full boundary of the class A4;. Finally the set

‘ s
o= ok
i=1
we call the full boundary of whole set A. L
If we consider now e-connectiveness relation only at the full boundary 94,
then 9A is divided into classes of the equivalence Iy, I}, ..., I, (see Fig. 4.1.,
where we have 3 classes of equivalence and 4 components of the full boundary).

4.4.2. Accuracy of Localizations

Remember one of the possible definitions of Hausdorff’s distance between two
sets in a metric space. Let p(P, Q) be some metrics in R" and A be some set
in R". For every ¢ > 0 we define e-neibourhood A, of the set A by formula

A. = |J B.(P),

PeA

where B,(P) is the ball of the radius ¢ with the center P. Let A and B be two
sets in R™. We introduce the values

€(4,B) = inf {e: 4. > B},
e(B,A) = i:;%{s :B. D A}__ (4.91)

The essence of these values is very simple especially for the bounded sets A
and B. For sufficiently large ¢ the neibourhood A, of A “absorbs” the set B,
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Fig. 4.1.

and £(A, B) is the minimal among ¢ > 0 with this property. So the Hausdorff’s
distance between A and B is the value

p(A, B) = max{e(4, B),e(B, A)}. (4.92)

It is clear that p(4,A4) = 0, p(A,B) = p(B,A). If a. is e-net for A, then
p(A,ac) <e.

Let f(z,y) be the function defined in the domain {2 on the plane and I’
be some curve, where f(z,y) has the discontinuity of the 1-st type. Denote by
'R its “R-visable” part, i.e. the “jump” at every point of I'F is greater than
R > 0. Let us assume two properties of I'E.

1. Some fixed neibourhood I'? of I'" is included to the doma.m .Q and
there are no other curves of dlscontlnulty in IR

2. I'® is connected curve without self-mtersections with the finite length
and bounded curvature.

In this situation the following condition of e-regularity can be ensured: for
sufficiently small £ > 0 the finite cover of ' with the balls B.(P1), .., Be(Pn(e))
does exist such that the centers of e-balls lie on FR and every ball is divided
by I'? into two parts with the squares of the order 2. The exception here may
be the end balls B.(P;) and B.(Py()) (see Fig. 4.2.), when I'? is unclosed
curve. We assume now that the curve I'R is e-regular for ¢ < &;. Then for
sufficienty small e2 = Ce (C = const) at least one point of the set A., lies in
the ball B.,(P;) from one side of the curve ' and at least one lies from the
other side of it. It is clear that both these points belong to the full boundary
of A,,, because the distance between them is not greater than 2¢ and they are
(R ¢)-separated. Using a simple consideration connected Wlth the finite cover,
we obtain
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(IR, PRy < Ce, (4.93)

where "¢ i ¢-connected component of the full boundary, which approximates
the curve I'E,

Fig. 4.2.

Thus, if R-visable fragments of discontinuity lines are sufficiently smooth
and distances between various fragments are sufficiently great, than it is possi-
ble to localize them in Hausdorff’s sense by points of the discrete full boundary
of the scattered e-mesh.

If we want to construct now some continuous curve which separates points
of two classes, then it is possible to execute the following procedure. Because
for every fragment the points from the discrete full boundary are naturally
separated into two sets (from one side of the curve and from the other side)
let us give the mesh values (+1) on the 1-st set and (—1) on the second. If we
construct now some simple interpolant in the “layer” near I'R (for example with
the help of linear finite elements) then the isoline of zero level is approximation
of the discontinuity line.

4.4.3. Special Finite Element Method for Discontinuous D™-Splines

Let us consider some bounded domain 2 on the plane and assume that 2
is divided into elements 2} (triangular, rectangular etc.), 2 = U; 2% . Every
element has the linear size of the order A and the square of the order A? .
Let us connect with this division some finite element space H;", which is a
subspace of the Sobolev space W3"(£2),m > 2. Denote by 1, 72, - YN(n) the
basic functions in H}", and Sy, S, -y SN(ny Will be their local supports.

We want to solve the problem of interpolation of the function f (z,y), which
has discontinuity lines I, I3, ..., T, of the 1-st type, and discontinuity curves
are a priori given. We assume that: -
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1. every curve I is sufficiently smooth-and has no self-intersections;

2. different curves have no intersections;

3. every element .Q,’: may be cut by the curve I into not more than two
connected parts;

4. if some element £2f is cut by curve I; then there is no other curve which
cuts it;

5. end points of every curve I'; are situated only at the boundaries of ele-
ments 2.

If some curve starts (or finishes) strictly inside the element, then its first
(or last) part has no influence on algorithm which presented here.

Fig. 4.3.

Let us consider the basic function ¢ and its support Si. Let Si be divided
into a few parts S3,5},...,S f* by the curves I'; . Then we correspond to the
function ¢y a few functions ¢}, 92, ... oF* by the rule

‘Pk(x,y), (-'1:,?}) € Sia J = 1121'"5Rk

4.94
0 otherwise. ( )

Ph(z,y) = {

If S is not divided by the curves I; (it does not mean that Si has no intersec-
tions with curves, see the curve I's in Figure 4.3.), then we put'Ry = 1,0} = ¢
everywhere in S*. For example, in Figure 4.3 the support is divided by the
curves Iy and I into 4 parts and 4 functions ¢!, 92,03, o* appear, but the
curve I3 does not generate any function because it does not divide the support
into two (or a few) connected parts; it divides only an element and may play
its role in other supports. -
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Let us denote by H h.r the linear span of the new basic functions ¢},j =
1,2,.., Ry, k =1,2,...,N(h). It is evident that every function of this subspace
belongs to the space W3"(£2r), where 2r = Q\(ILU TR U...UT}).

Let f € Wy"(£2r) and its values f(P;) be given at the scattered mesh
points P; € £2r,1 = 1,2,..., M. We formulate the problem of interpolation in
the following way: find the finite element discontinuous D™-spline ot e H R
which provides interpolating conditions

ohM(P) = f(P), i=1,2,..M (4.95)
and simultaneously minimizes the energy functional ‘
m m! o
|D af‘AHr‘i?mr) = Z - /(D ot dor. (4.96)
lal=m .

Here the integration is executed only in 2 without discontinuity lines I" =
S
I';. Using the expansion

=
N(h) R,

N o

o= > Mk
k=1 j=1

with undetermined coefficients A} and the usual Lagrange coefficients
V1,V2,...,VM, We obtain a linear algebraic system of the order R; + Ry + ... +
RN(h) + M :

G- e

where T is the square sparse matrix of the order n = R; + ... + Ry (ny with the
elements (without reordering of the basic functions )

. ! o™i o™t
4l m Pr_ \d
=2 eordyer  Bper gyer o - (498)

s;ns]

. |q|=m.
A is a sparse rectangular n x M-matrix with the elements
aij = So;c(Pj)v
3 Jog T | T
A= (Ak,; =1,., R k= 1,..‘,N(h)) 7= (v, ey ong)T,

f=(f(P), F(Py), ... f(Pur))" .

If the interpolation conditions are contradictory, the least square method can
be used and a systemn arises:

(e W00 0 ew
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"This matrix consists of square n X n-blocks and 7 has also n components.

Remark. In calculation of the coefficients ¢}/ in (4.98) some difficulties arise
because integrations are executed in the domains S§ N S'f , which have a com-
plicated geometry. In this situation the following trick is possible: except for
ty, we calculate the other element

i B ﬁ am(,DL ‘ 8'"&,9( '
bt = Z ol Oz 1 Jy™2 axf’layﬂzdﬂ:dl’ : (4.100)

ij
M,

|aj=m

where M, i‘; is the union of elements which have non-empty intersections with
the set SiNS f I other words, except for the initial subspace H i we consider
the other finite element space H hr Function from this space is doubled near
the discontinuity line (in the general case some multi-valued function arises).
Certainly, in calculation of values for the spline we need to ignore prolongations
of the finite elements to obtain one-valued spline.

Fig. 4.4.

The error estimation techniques for discontinuons finite element D™ -spline
are the same as in the continuous case. The main difference is only the fol-
lowing: to provide the error estimates in Lp -norm fot dnalytical D™-spline
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(see Chapter 3), it is necessary to have the cone condition for the boundary of
the domain £2. It is not true for the domains with discontinuity lines with the
end points inside £2. In this case it is possible to consider domain 25 = N\T
where I’s is §-neibourhood of a set of discontinuity lines and § is fixed. Using
the results of Chapters 3 and 4 we obtain the same error estimates like for
continuous case, but only in 2.

Fig. 4.5.

4.4.4. Numerical Examples

Let us consider a rectangle 2 = [0, 1] x [0,1] with the rectangular grid (uniform
meshes with 12 points in the direction z and 8 points in the direction y) and
connect with it the space of biparabolic finite elements of the class C1. Dimen-
sion of this space is 13 x 9 = 117. There are 100 scattered interpolation points
in our domain obtained by some standard randomizor. We want to construct
the finite element D2-splinc or by the minimization of the functional

”Dzal'”i,(n\m = f (O'F)zz + 2(01")35, + (UP):,,,
mr

under interpolation constraints, where I' is the union of a few broken lines.

For a few functions f(z,y) with the given discontinuity lines the results of.

interpolation are presented in Fig. 4.4-4.6.

N



Fig. 4.6.
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