6. Splines on Manifolds

In the present chapter, we propose a method of solving approximation prob-
lems for functions defined on manifolds in IR" by using D™-spline traces onto
the manifolds. For the sake of simplicity, we confine ourselves to the case of
(n — 1)-dimensional smooth manifolds in IR", which are boundaries of simply
connected bounded domains. In Section 6.1, an analysis is given of existence
and uniqueness of traces of interpolating D™-splines and, also, of their con-
vergence (convergence orders) in the case of condensed grids of interpolation
nodes on a manifold.

In Section 6.2 we propose the method of numerical realization on the ba-
sis of D™-splines in IR", which brings about-the presentation of the solution
in terms of reproducing kernels of the semi-Hilbert spaces D™™L? which are
known in the explicit form (see Section 5.3.1). Section 6.2 contains three exam-
ples illustrating the algorithms for fitting 3-dimensional surfaces by using its
prescribed points and normals to the surfaces at these points.

Another method of numerical implementation may be the finite element
method. In this case, finite elements could be constructed in a fixed domain in
IR", comprising a manifold, but not on a manifold, which is much simpler. So,
in Section 6.3 we suggest method named "spline-approximation in thin layer”,
where this idea is further developed having advantages over the finite element
approach. _—

6.1. Traces of D™-Splines in 2 Onto a Manifold

We refer the reader for the definition of D™_splines a‘nd attendant notations to
Section 5.1.1.

6.1.1. Definitions

Let 29 C 12 be a simply connected bounded domain whose boundary I is an
infinite differentiable (n — 1)-dimensional manifold.

Definition 6.1. Assume that f € Wy (£2), A C I'. The restriction of the
interpolating D™ -spline '

A : m
= D 6.1
o arguET'u‘l(f) |1 D™ ul| 22 | ( 1)
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onto the boundary I' is said to be a trace of D™-spline onto the manifold I'.
Here, A7'(f) = {u e W*(£2): u(a) = f(a), Ya € A}.

Henceforth, we will find the conditions of existence and uniqueness for the
trace of D™-spline onto the manifold I and prove the convergence of the splines
o4 in the space of traces. To obtain the convergence orders, it is necessary to
define the space of traces. The space of traces of the Sobolev functions from
W3"(£2) is known to be a space of the Sobolev functions H™~'/2(I") with a
fractional index.

Let us give the definition of H*(I") according to (Lions, Magenes 1968). Let
Qj, J=1,..,v be bounded domains in R" covering I'; ¢; : z — y = ¢;(z)
be infinite dlﬁ'erentlable ma.ppmgs from Q; into @ = B,_; x [—1,1], where
B,,_; is the unit ball in R"™!, which are such that the parts @; N I" of the
boundary I' transform into the ball @ N {y, = 0} and the inverse mappings

: @ — @Q; are also infinite differentiable.

If {a;} is a partition of unity on I', which consists of infinite differentiable
functions having compact supports in @;NI", then for any summarized function
u on I' we determine the functions ¢3}(u) on the ball B,_;:

05 (w)(y) = (aju)(¢;(y,0)) (6.2)

and set them to zero outside the ball B,_;. Assume s to be a real number,
then the space of functions

H(I) = {u: ¢j(u) € H*(R"™)}

with the norm
1/2

v
lullzzecry = | D 1e3@) e mn-ry
=1

is the Hilbert space. Here, H*(IR"™') denotes the Sobolev space with a frac-
tional index.
For the integers s = k > 0 we can give another definition

HY(D) = {u: ¢3(v) € WE(Ba_1)}
1/2

_ * 2
lull zxery = Y o3 lwr s,y |
j=1

(6.3)

since the norms in the spaces W}(IR"™!) and H*(IR"™') are equivalent (see
Appendix 1), and the supports of the functions ¢¥(u) are located on the com-

pact in the ball B,_;. Theorems on traces and continuation (Lions, Magenes
1968) directly imply

Lemma 6.1. The trace of a function of the space Wi*(§2) on I" belongs to
H™1/2(T), and the operator of the trace is continuous
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Il zm-172¢ry & pll Fllwge () ' (6.4)

There exists a continuous linear operator G of prolongation onto the domain
§2 of the functions of the space H™~1/2(").

1G fllwy 2y < k| fll zrm-1r2¢ry.- (6.5)

6.1.2. Sobolev Functions with Condensed Zeros on Manifold

Now we formulate and prove the Lemma on the Sobolev functions with con-
densed zeros, which is an analog of Lemma 5.6 for the case of a manifold. Like
previously, we say that a set A C I" forms h-net, if for every t € I' there exist
a € A such, that |la — ¢|| < h. The distance Il - || is the ordinary metric in R"
(not connected with I').

Lemma 6.2. There exist the constants ¢, hg > 0 such that

el ey < Chm_s_l/z““”ﬁm—lfﬁ(r) (6.6)
for any function u € WJ"(£2) which has an h-net of zeros in the manifold I"
for h < hg. The constant C depends on the manifold I" and the parameter
s<m-—1.

Proof. Let B = B,,_; be the unit ball in IR"™', then Lemma 5.6 implies that
ho > 0 exists such that any function v € W;"~!(B) having an h-net of zeros in
the domain B for h < hy satisfies inequalities

”V”W,*(B) < C'}chm_khluynwp*l(a)- (6.7)
Assume that the function u has an A-net of zeros on I'. The functions a; of
partitioning unity have compact supports in Q; N T, and the functions ¢ j are
infinite differentiable and, therefore, satisfy the Lipschitz condition ||p;(x) —
?iWll < Mllz —yll, Vj€1l,.,v, Vz,y€supp(a;). Equality (6.2) and the
Lipschitz condition imply that the functions ©7(u) have a Mh-net of zeros in
the ball B. Therefore, inequalities (6.7) imply the relations

”‘P;(“)” W (B) < eph™ Tk ||9°;(“)I|W;“-'(B)

which are valid for any function u € H ™~1(I') having an h-net of zeros on I’
for h < hg. Finally, definition of norm (6.3) implies the inequalities

”u“H"(F) < Ckhm—k_luuuHm—l(p).

For fractional s, we make use of the fact that the spaces H*(I") are interme-
diate between HI*J(I") and H+1(I"), and therefore any function v € Hl*I+1()
satisfies the interpolation inequality
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sj+1— -
lull ey < ellull oy el
where [s] is the integer part of s. Estimating the factors [ul| Hiel(r) and
llull gier+1(ry in terms of inequalities (6.8), we obtain the inequalities

lullfe(ry < esh™ " ul grm-1(ry

which is a generalization of inequalities (3.7). Concluding inequalities (6.6) are
easily obtained from the latter one on the basis of the fact that the space
H™~1(I') is intermediate between H*(I') and H™~1/2(I"). 0

6.1.3. Existence and Uniqueness

We call I' an algebraic manifold (of degree m — 1), if there exists a non-zero
polynomial p(z) € Pr—1, which vanishes at any point z € I',i.e. p(z) = 0, Vz €
I'. Let Pr be the space of traces of the polynomials € P,,—_;. The space Pr
may be identified with the subspace in P,,_;, which are not degenerated on I"
( except for the zero polynomial). It is easy to understand that Pr = P,,_q,
if I' is not an algebraic manifold, because Pp,—1 = Pr & PIJ:, where Pﬂr 1s the
set of polynomials, annihilated on I". We leave it to the reader to prove the
following simple

Lemma 6.3. There exists ho(I") > 0 such that any set A C I" forming h—net
for h < ho contains L—solvable set for polynomials Pr.

Theorem 6.1. There exists ho(I") such that for any set A which is an h-net on
I for h < hq and any function f € H™1/2(I"), the trace of the interpolating
D™-spline 04 onto I' exists and is unique.

Proof. When I' is not an algebraic manifold, Pr is equal to P,—; and the
spline o4 is really uniquely defined owing to Lemma 6.3 and the general theo-
rem on D™ —spline existence (see Section 5.1.1.)

Let I" be an algebraic manifold. Prove that if the set A contains L-solvable
set for the space Pr, then all the solutions to spline problem (6.1) coincide
on I'. Let the points Qy,Q,,...,Q from the set A form L-solvable set for
Pr. Supplement it with points Ry, Rz, ..., Ry—_1 lying outside of I" up to the
L-solvable set for the space Pp—; in such a way that the points Ry, ..., Rn_rL
form L-solvable set for the space Pi. Assume that s;,s2, ..., sy_p, are arbitrary
values. By Theorem 6.1, the solution to problem

A .
o, = arg

. m
w1 o 1Pl (6.9)
is uniquely defined as the set AU{R,,..., Ry_1} contains the L-solvable set for
the space Pp,_;. To prove existence, it is necessary to show that there exists a
function f, € W3*(£2) coinciding with the function f on the set A and taking the
values sy, s2,..., SN, at the points Ry, Ry, ..., Ry 1. To this end, in accordance
with Lemma 6.1, consider the prolongation function G f for f onto the domain
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§2. Since the points Ry, Ry,...,Rn_; form the L-solvable set for the space
P, there exists a polynomial Q(z) € P# satisfying the conditions Q(R;) =
$i = Gf(Ry), i= L,..,N — L. 1t is obvious that the function f, = Gf + @
meets the above-indicated requirements. Thus, the existence and uniqueness of
problem (6.1) have been proved.

Prove that the traces of the solutions to problem (6.1) on I' coincide for
any choice of the values 1,82, ..; SN—r. Consider two problems

— i D™ 6.10

o1 a'rguEA—t(l}l)l,Ii(m):o [ ullL2(2) (6.10)
= i D™ . 6.11

PTG i NP g (6.11)

The solutions to both problems exist and are unique, and 0 = ¢; + ¢, by
virtue of the orthogonal property (see Section 5.1.1). The solution to problem
(6.11) is a polynomial of the space P vanishing on I'. Hence, the trace of the
spline 0! coincides with the trace o1 on I' which is independent of the values
51,825+, SN—L. It is obvious that the solutions to problems (6.9) describe the
entire set of solutions to (6.1), as they differ in the polynomial vanishing on I"
and annihilating the functional [ D™ ]| g2 2)-

Thus, if the set A4 contains L-solvable set for the space Pp, then all the
solutions to problems (2.6) coincide on I Owing to Lemma 6.3, we obtain the
statement of the theorem. O

6.1.4. Convergence Rates

For the traces of éplines to converge, it is necessary for us to make use of the
fact that X = H™-1/2(p) i compact embedded in C(I'). Let & be a unit
sphere of the space H™~1/ }(I"). Then the set G& consisting of the functions
Gf € W;*(£2) for f € & is bounded by virtue of Lemma 6.1. Compactness of
the embedding Wy"(2) ¢ C(£2) implies that the set G& is a precompact in
C(2), i.e. a set of uniformly continuous functions. It is obvious that the set &
also consists of uniformly continuous functions, i.e. @ is a precompact in C(I").
The compactness of the embedding has thus been established.

Theorem 6.2. Let f belong to H’"_l/z(f‘) and the sets A4, A,, ... form a con-
densed h-net in I'. Then the traces of the D™-splines o4 onto I” converge to
the function f in the norm of the space H™~1/2().

Proof.  Touse Theorem 3.2 on convergence of abstract T-splines, it is necessary
to reduce the problem of calculating the trace of a D™-spline on I to problem
(1.1).

First, we do it for non-algebraic (m — 1)-dimensional manifolds I'. Assume
that- X' = H™=1/2() y = H™ Y2(I')/Pr is a factor space, T : X - Y is
the operator of canonical embedding, which puts the function in correspon-
dence with a factor class = u + Pp. Henceforth, we define the norm in the
space Y. The set of solutions to problems
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r . m .
= D .
oy =arg min [D™ul|2(0) (6.12)

for any functions f € H™1/2(I') will be denoted as Sp(I'). Since I is a non-
algebraic manifold, then I" contains L-solvable set for the space P, _;. Then,
we conclude that Sp(I') is a Hilbert space, because the interpolating spline

operator is a projector (see Section 1.4.2).
It is easy to establish that the factor space W3 (2)/ Pp—1 with norm

I flm = llw+ Pracs[| = [|D™u]| 2y

is a Hilbert space, and hence S P(I")/ Pm-1 is its Hilbert subspace with the norm
| - llm- Prove that the factor space ¥ = H™=Y*(I')/Pr with the norm

Ilwlly = inf{|D™ f|| 12¢a) : flr = u} (6.13)

is a Hilbert space. Note that the definition of norm (6.13) is independent of the
choice of a function u in the class % = u + P,_;. Introduce the mapping

t: H™Y*(I')/Pr — Sp(I')/Pm-1,

which puts the class u + Pr € Y in correspondence with the class ol + Py,
where o is the solution to problem (6.12). ’

The orthogonal property enables us to conclude that the definition of the
operator ¢ is correct and independent of the choice of a representative in the
class, and the operator ¢ is a bijection. Since, the norms of the elements + Pr
and o + Pp_; coincide and t is a bijection, the space ¥ = H™~Y/2(I")/P,,_,
is also a Hilbcrt space as in the case of Sp(I")/Pp—1.

The continuity of the operator T' can be proved from the relations

I lly < ID™Gullr2(ay < |Gullwmay < kllull ggm-1/2¢y
2

using the operator G' from Lemma 6.1. Hence, |T|| < k. So, the proof for
non-algebraic manifolds is completed.

Now we indicate the modifications in the proof for the case of I’ being an
algebraic (m — 1)-dimensional manifold. In Section 6.1.3, we have proved that
the problem of determining the spline trace onto the manifold I” is equivalent
to the solution of the problem

g] = arg “Dmu”L:(g).

min
w€A~(f),u(R:)=0

Hence, it is equivalent to the construction of D™-spline on a closed subspace
in WJ*(42):

{ue W"(2):w(R;)=0, i=1,.,N—L}

The modifications in the proof of Theorem 3.1 for the case of an algebraic
manifold consist in replacing the space WJj(2) with its closed subspace. O
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Theorem 6.3. Assume that f € H™Y/2(I"), m > n/2 and the sets A;, A,, ...
form a condensable h-net on I'. Then, for the traces of the splines 047 onto the
manifold I', the asymptotic estimates

:

o = fllae(ry = o7 ™*71%)
hold for ¢ — co. The parameter s belongs to the interval [0,m — 1].

Proof.  Lemma 6.2 implies the statement of the theorem, because the differ-
ence |lo4 — fllzgm-1r2(ry tends to zero by virtue of Theorem 6.2. O

Remark 6.1. A similar technique can be used to establish asymptotic esti-
mates of the convergence in the space of continuous functions C(I') of the
form

ot = fllery = oA"Y .

6.2. Traces of D™-Splines in IR™ Onto a Manifold

We refer the reader for the definition of D™-splines IR™ and attendant notations
to Section 5.3. It is not difficult to extend the results obtained in Section 6.1
about existence, convergence and convergence rates to this type of D™-splines.
We do not make this, because this could be similar and is done in (Bezhaev
1984). We only give definition of traces of interpolating smoothing splines and
construct an algorithm for computing the trace of an interpolating smoothing
spline. Also, we give three practical examples.

6.2.1. Interpolating Smoothing Splines-on Manifolds

We refer the reader for the definition of interpolating smoothing spline to Sec-
tion 5.3.2. Let functionals k1, ..., k, be located on the manifold I'. To be more
precise, if we denote by Pj+ the space of polynomials from Py, 1, vanishing on
I', then it is sufficient for us to suppose that the functionals k; are annihilated
on functions of the space Pi+. These conditions are satisfied, for example, by
the functionals of point evaluations k;(u) = u(P;), P; e I.

The obvious condition Ko(0)N P,y D P# implies that condition (5.91) for
uniqueness of the interpolating smoothing function is violated for the non-zero
space Pj. Nevertheless, the functionals k1, ..., ks can satisfy a condition for the
uniqueness of the trace of spline (5.88) on the manifold I".

Theorem 6.4. If the functionals kq,...,k, contain the L-solvable set for the
space Pp, all the solutions to problem (5.88) coincide on the manifold I

»
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The proof of the theorem does not differ much from that of Theorem 6.1.

Note only that the trace of a spline on the manifold I" is determined by the
trace of the unique solution to problem

=31 __ _ 2
o, = argueKn(r) L Ry [w|m + Zp, (ki(u) —r;) (6.14)

where Ry, ..., RN is L-solvable set for the space Pj.

6.2.2. An Algorithm for Computing the Trace of D™-Spline on a
Manifold

Let ey,...,er be the basis of the space Pr, and er41,...,en be the basis of the
space P#. Formulae (5.89)-(5.90) imply representation

a;lzi)\ik Gm(P - X)+Za, (P —Ry)

+ Z viei(P) + Z b;e;

i=L+1

(6.15)

where the expansion coefficients are found from the system of equations which
schematically can be written down in the form

K+1, A F
KR R a 0
KE, RE, 0 vl |0 (6.16)
KE, RE, 0 0] 1Lb 0

The matrix of the system is symmetric and non-singular. The block K has
the elements k;k;(Gm (P — X)); the block R - the elements GG, (Ri — R;); the
block K R - the elements k;(G (P —R;)); the blocks K Ey, RE;, KE,, RE, have
the common elements kj(e;(P)), e,-(RJ-),z' = 1,...,.L, kj(ei(P)), ei(R;),i =
L+1,...,N, respectively. ,

Consider a group of equations defined by the four lower blocks: 4 x 4 and
4 x 3 are zero, K E; is also zero by definition of the functionals k;. Hence, the
unknowns ay,...,an—, are determined independent of the system of equations
RE;a = 0. By construction, the points R;,..., Ry_r constitute the L-solvable
set for the space Pi, therefore the square matrix RE, is non-singular, and the
coefficients a; are equal to zero. This fact makes it possible to reduce system
of equations (6.16) to a system of a smaller dimension

K+1, KET 0
KE, 0 0
KR RE, RE,

(6.17)

S I
I
ool 3

Here, we have taken into account the fact that K E; = 0, and the second and
the third groups of equations are rearranged. In view of the non-singularity of
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the matrix RE,, we obtain the following system of equations for finding the
coeflicients A and

[I;Efp ng{f} [5] - [g] ' (6.18)

The coefficients bg 41, ..., by can be found from the remaining equations of sys-
tem (6.16), but we are not interested in these coefficients as the terms of expan-
sion (6.15) corresponding to them vanish on the sphere. Thus, we have proved
the following

Theorem 6.5. Let the linearly independent continuous linear functionals
k1,...,ks contain L-solvable set for the space Pr and vanish on the functions
of the space Py. Then the trace of the solution to problem (6.14) onto the
manifold I can be presented in the form

3 L
o(P) = ZA,-kg(Gm(P—X)) + Zu,-e,'(P) (6.19)

where the expansion coefficients can be found from system of linear equations
(6.17).

6.2.3. Approximation of Surfaces with Known Normals at the
Points

Let a surface @ star-like with respect to the origin in IR® be given by the pre-
scribed points (z;,y;,2:),é = 1,...,s. Define the points on the sphere Qy, ..., Q,
and the values 7y, ...,r, by the following relations:

Qi = (Ti,yi,2i)/ri, ri=1lzt+y?+ 22 (6.20)

It is natural to assume that the prescribed points do not coincide with the
origin. If u(z, y, z) satisfies the conditions u(Q;) = r;, i=1,....s, the trace of
the function « onto the sphere I' = {(z,y,2) € R® : 22 4+ 2 + 22 = 1} defines
the surface described by the radius-vector

r = r(p,n)(cos sinn,sinpsinn, cosn)

where

r(y,n) = (cos psinn,sinpsinn, cosn) (6.21)

and this surface goes through these prescribed points.

Note that the standard technique is to construct a function r(p,n) satis-
fying the above-mentioned requirements (Q;) = r;. However, the approach
suggested makes it possible to obtain a more flexible rule.

Thus, the problem of surface fitting by given points has been reduced to
the problem of approximating a function on the sphere I', i.e. on a manifold in
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R®. To make use of Theorem 6.5, it is necessary to specify the definitions of
the spaces Pr and Pf.

Lemma 6.4. Monomials of the form
P =z™y®z% lal=m—-2,m—1 (6.22)
do not become singular on I" and form the basis in Pr. Polynomials of the form
(@® + y® + 22 — 1)z™ry22 08 a| <m -3 - (6.23)

form the basis in the space Pf.

The lemma is directly implied by the fact that the polynomial vanishing on
the sphere can be evenly divided by (22 + 4% + 22 — 1), and a non-zero linear
combination of monomials (6.22) cannot be annihilated of I" (cannot be evenly
divided by z? + y2 + 2% — 1)

According to Theorem 6.2, to construct a trace of a D™- spline, it is suf-
ficient to know the basis Pr. Note that the basis in Pr can be also given in
terms of spherical harmonics of degree m — 1 in the Cartesian coordinates, but
basis (6.22) is much simpler.

By prescribing the linear functionals kg, (u) = u(Q;) in D™™L? for m > 2,
we can thus solve the problem of surface fitting by given points or construct an
approximation to the surface by using the trace of an interpolating smoothing
spline. In Fig. 6.1 one can see a 3-dimensional surface, interpolated by 14 points,
and then scaled on 14 x14 grid. Fig. 6.2 illustrates the possibilities of D™-splines
for a function given on torus.

Now, we prove that the prescribed normal to the surface at the -prescribed
point defines a pair of linear functionals vanishing on the functions of the space
Pi-. Indeed, if (Z,7,2) € I', then the normal to the surface, defined by the trace
of the function u onto the sphere I', satisfies the following relations (Bezhaev
1987):

Ou, , __ Ou

)\?’L] —-E:'(LL‘ —1)+ay.’5y+ EIZ-FHI‘
ou__ Ou, , ou__ '

Ang = 5, %Y + 3 ge—-1)+ 5,97 + uj (6.24)
Ou__  Ou__ Ou,, _

/\n;; == a:rz-}—%yz-i- E(Z —1)+uz

where A is the normalizing multiplier.

. This multiplier can be eliminated from equations (6.24) leading them to the
following two equations (in the general form) relating the value of the function
and those of its derivatives:

ki(u) =0, ky(u)=0, (6.25)

where the functionals k; and k, are continuous in D=™L? for m > 3, which
vanish on the functions of the sphere P#. If a prescribed point of the surface @ is
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Fig. 6.2. Interpolation on torus

an interpolation one, the value of the function u is defined at the point (Z,y, z),
and when eliminating ), the terms containing u in representation (6.24) can be
taken to the right-hand side of equalities (6.25). '

Fig. 6.3 illustrates the sphere, interpolated with the help of prescribed points
and normals. One normal is not correct, it is shifted by 45 degrees, therefore
the sphere is deformed.

Remark 6.2. The geometric arguments imply that the vector n = (ny, ns, n3)
of the normal cannot be orthogonal to the vector (%, 9, Z). Equation (6.24) and
the orthogonality condition n1Z + nagj + n3z = 0 imply u(Z,y,2) = 0, i.e. the
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Fig. 6.3. Interpolation with prescribed normals

prescribed point coincides with the origin, which is impossible and confirms the
arguments. .

Remark 6.3. Linear functionals used to construct splines are often given in
local coordinates defined on a manifold. It is obvious that they can be reduced to
linear functionals for the functions defined on IR". To transform the functionals
given in the spherical coordinates, we can use equation (6.24). This formula is
used in a particularly simple manner to express the functionals of the partial
derivatives of the function r in terms of the functionals of a combination of the
partial derivatives of the function u.

Remark 6.4. It would not be difficult to give a rigorous justification for the
method of spline traces on a manifold in terms of the reproducing kernels of the
semi-Hilbert space H™~1/2(I') with the special semi-norms |f|; = inf{|u|m
u € D™™L% u|r = f}. The reproducing kernel in such a space is the trace of
the Green function (see Section 5.3.1) on the manifold I'. This fact gives us
another possibility to prove characterization Theorem 6.5.
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6.2.4. Discussion

Other methods of solving spline approximation problems on the sphere were
investigated in (Wahba 1981, Freeden 1984, Dierckx 1984, Bezhaev 1987). An
algorithm based on B-splines was constructed in (Dierckx 1984), with the prob-
lem of poles specially solved. The energy functional was chosen as a sum of
squares of defect of spline’s derivatives at the nodes of B-splines. The problem
of poles was more successfully solved in (Bezhaev 1987) on the basis of trigono-
metric T-splines. Here, the energy functional can be chosen in the manner
similar to that in (Wahba 1981).

In (Freeden 1984, Wahba 1981), energy functionals are introduced in the
explicit forms by means of the Laplace-Beltrami operators on the sphere. This
1s, to a certain extent, a generalization of Atteia’s splines for the case of the
sphere as very simple functionals approximate the energy of a thin plate de-
scribed by the function on the sphere. But unfortunately, the solution to the
problem of interpolation and smoothing can be obtained only in the form of
a series. Therefore, (Wahba 1981) deduced an energy functional equivalent to
the original one. The generalization of similar splines to non-spherical manifolds
seems difficult to achieve. '

6.3. Spline-Approximations in Thin Layer

In Sections 6.1, 6.2 the traces of analytical splines on smooth manifolds were
considered. To find the trace on the manifold I' ¢ R"~! we need to solve an
analytical or a finite element problem for the variational spline interpolation in
any domain 2 C R" which includes I'. The number of arithmetic operations
to find a spline and trace extremely depends on the size of the domain £,
especially for the finite element case. Since the interpolation points form any
h-net lying only in I', it is natural to require that £ be any "thin layer” near
I’ of the size h. But how to provide in this case the error estimates, which we
have already obtained? The consideration of this question is the goal of this
paragraph.

6.3.1. Analytical Approach

Let I' C R™! be a smooth bounded manifold and 2, C R" be a bounded
domain of the fixed size which includes I'. Let us consider the family of the
subdomains 2 C f2,, each including the manifold I". We suppose that 2, and
cvery {2 have sufficiently smooth boundaries.

Let us introduce at I' the Hilbert functional space z(I') with the scalar
product (u,9),(r) and the norm ||ul|,(ry = (u, u)iffq) We assume that the space
z(I') is continiously embedded to the space C(I') of the continious functions
in I,

Vu€ z(I') |ullery < Kllullzry, K = const. (6.26)
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Let wp be a set of points in I' which forms h-net in I' in the sense of the
distance inside I', and ¢, € z(I') be the fixed function. The normal spline
which interpolates this function on the mesh wy, is the solution o} of problem

df
ahah:ahlwh = (P*"Ub = QhPx, (627)
loall2 ry = min. Co

Here ay, is the trace operator to the mesh wy. Then by the general theory (see
Chapter 1) the resolvent spline-projector Sy : z(I') — z(I') can be written in
the form

Sk = aj(ana}) an (6.28)

and error estimates for the normal spline o, = Spp. can be obtained in the
usual way (see Chapter 3), but the structure of the spline o4 may be too
complicated for calculations.

Let X (2) be some Hilbert functional space in the domain §2, which is also
embedded to the space C(f2). Denote by Py : z(I") — X({2) the prolongation
operator with the minimal X (§2)-norm; exactly Yu € z(I') Pgqu is the solution
of the following variational problem: find U, = Ppu from the conditions: Ug in
I'is u and ||Uq|| x () is minimal. We assume that the operator Py is bounded.
If po: X(2) — z(I') is a trace operator (also bounded), then we have a spline
interpolation problem: find Ppu from conditions

{pn(Pgu) = u,

. 6.29
IPull%, gy = min. (6.29)

Hence, according to the general results from Chapter 1, the resolvent operator
of thls spline-problem is

P = pp(papp)™. | (6.30)

Consider now the spline-interpolation problem: find Zf € X(2) from the
conditions

PaX) =
{ a} 24 ) QhPx, (6.31)
<5 ||X(n) min.
The trace o’ = ngh can be represented in the following form:
of? = Boa}(anBaal) 'anes, (6.32)

where By = poph : rc(F) o :r:(I") Let
mhn =a}(anBoa}) ay
then

my’ — Sp = a}[(anBaa})~! — (apal) an _
= a}(ana}) Yan(I — Bo)al(anBaa}) ay = Sp(I — Bo)mP?,



140 Splines on Manifolds

therefore,
MEPs = Shpu + Sa(I — Bo)mPo.,.
Using ||Sk|| < 1, we have
Nmeullzcry < lpallecry + ) = Ballz(ry—z(r) - [miewllz(ry.

Under the assumption || — Ballz(ry—z(ry < 1 we obtain

| Ballz(ry—z(r)

N llary. 6.33)
= I = Balla(ry—z(r li-ll=cr (

ok llzcry < I

The constant in this inequality is independent of h, but possibly dependent on

2. ;
Denote the constants C;(£2) and C2(£2) by the formulae

Ca(2) = | Pallo(ry—x (2,

(6.34)
C1(2) =1/|lpallx(2)—=(r)-
Then we have _ ‘ o ‘

Yuea(I) Ci(Dlullr < IPaullxay < Co(@lulqry. (6:35)

By formula (6.30) we obtain

IPaullk gy = (Pa(Pap) ™ v, Ph(paph) u)x(n) = (B3lu, u)z(r)- (6.36)

In other words,

Vu€a(I') CYHD)|ulZry < (B7'u yU)z(ry < Cz(ﬂ)ﬂullz(r)s (6.37)
1
Vu € w(F)m““”i(m < (Bau,u)y(ry < =5 Cg(n) =zronlullzr), (6.38)

because the operator By is self-adjoint. It means that

1Balle(r)—zry = 1/CH(2),

(I - Bo)u,u) z(I) )
I—-B " —- = su < 1 inf —————-~
I allzr z(I) u;jo) (u, U)p(ry T u#0 .(u,u)r(p)

<1-1/C¥(R).

The last value is always less then one. Fmally, 1nequality (6.33) can be
transformed to s ‘ :

lesllecry — [Ca()]?
Il < ot - 13 oz = o] * el 6

or, in the other form,

o llzcry < ”Pn”i(r‘)—u\'(n)HPQHZX(Q)—-::(I‘)”‘P*”z(f'}' - - (6.40)
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The main question is: in what situation the constants in inequalities (6.37),
(6.38) are independent of £2? This problem can be solved by the special choice
of norms in the spaces X(£2).

Let ¢ be a real parameter, 0 < ¢ < 1, and {£:}o<e<1 be some parametric
family of domains with the sufficiently smooth boundaries such that 2, = .,
2., C f2.,, when ¢; < ¢,, each domain 2. includes the manifold I and mes
(2¢) — 0, when € — 0. Let us introduce a bijective and sufficiently smooth
mapping @, : £2; — {2, and define the norm in the Hilbert space X (f2.) by the
formula

IUe(ze)ll x(2) = NUe(0e(z)) || x(020)- (6.41)

Then the element 0. = Po,u, u € «(I') is the solution the prolongation
problem

P, 0 =u

lloellx(e,) = min (6.42)
or, in other words,

pﬂi(as ° ‘Pe) =u . (6 43)

HO'e o tPeH_x(n,) =min. .

The symbol o means the superposition of the functions. Thus, 0. 0. = Pg,u
and o¢ = Pp,u = (Pp,u) 0 p.!. Therefore

IPa.llz(ry—x(2,) = sup |Po,ullx,)= sup |Pa, uo vl x(ay)
ulle(ry=1 lelle(ry=1

= sup ||Ppullx(2) = 1Pa,|lo(r—x(21)-

llellery=1
In the same way:
Ipe. | x(92,)—2r) = gup lPe.Uellzry = sup Ipa, (Ue o ¢o)ll=cry
€ )T - e~ € -
Vel x (e y=1 ‘ Ucope#0  ||Ue © @c|l x (1)

= IPa I x(2)~=(r)-
Finally, the constant [C3(£2,)/ C1(92.))? is independent of ¢.
Example 1. Let us consider the square
2 = [-0.5,0.5] x [~0.5,0.5]

in the (z,y)-plane and I' is the interval [—0.5,0.5] in the z-axis. Let m > 1 and

z(I) = Wzmmll 2(~0.5, 0.5). The function from this space can be prolonged to
the space X (§2;) = W;*(£2;). Denote by

e =[-0.5,0.5] x [-¢/2,¢/2], O0<e<]l.

The simple mapping . : £ — £, is as follows:
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Te=12, Ye=¢cy
and the special norm in the space X(f2.) = Wj*(£2,) is

1Ue(ze, ye)llx(2.) = IUe(2,e9)llwypm (20

0.5 0.5 m amU | . ‘1‘/2
= / f (Uz(msy) + Z(Ekm(x’ey))) dz dy
—0.5 -0.5 k=0
0.5 €/2 \ i/2
= / / ( _1U2($€$y6)+2 2k— l(a m— kayk(.'rs.,yc))) dxedye
—0.5 —¢/2 k=0 |

Since the difference af‘ — ¢« 1s equal to zero on h-net wy, we have the following
error estimates for the trace of a spline in I

o’ = ullwg (ry < CRPTHEme M BB 6 — | g

2 2\pm—1+41/p~a (644)
S C(1+ || Po ” “|lpa [IF)R : ||'~P*”W;a-1fz(r).

Herem > 1,2 < p < oo, a—l/p<m—1(exceptforp o & a=m-1).
Fmally, the constant in the last error estimate is independent of h and .

6.3.2. Finite Element Case

Let X-({2) be a finite-dimensional subspace in the Hilbert space X(£2) (for
example, X (§2) is the finite element space with the element size of the order
7) and BZ be the corresponding orthoprojector from X(92) to X,(£2), and the
natural condition takes place

VU e X(2) |U-BPU|x@—0, 7-0. (6.45)

We preserve the notations of 6.3.1 and assume that the interpolation condition
apu = app, is not contradictory in the space X,(f2), i.e. the function U}, €
X-(12) exists such that

PaUglun = ¢slun, ox € 2(D), | . (6.46)

where pg is the trace operator from X (f2) to the manifold I' C 2. Let us
formulate the following problem: find the normal spline Z'f € X, (1) from
conditions

ah(PQZ}?r) = QhPx,

NZ2 xca = m(lg)-

(6.47)

By the general results of Chapter 4 we have
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B = Bfppai(anpaBlppat) tane. : (6.48)
and the trace of this spline on I is
| = anfr = Cna (ahcnah) AP, (6.49)
where Cn = prﬂpn Let . . - |
mf, = a3(anCla}) oy

Then

" m2, - Sn = ail(anCPa})" — (ana}) Man = Su(I - CHmf . (6.50)
Therefore . ' . ' _
mh P = Shgp* + S;,(I -C; )mf?qp‘.. : ' _ (6.51)

It is clear that m,L - belongs to the space of the mterpolatlng normal splines
Sp(h,I') on the mesh wy C I'. Taking into account ||Shlz(ry—z(ry < 1, we
obtain

ICFimllsper,ry—2(r)

ot v llzcry < 1o “Nlellz(ry

1= Cr(h)HSp kD) —z(I) (6.52)
< (1-60)" IIIC,(;,)“r(r‘)—-z(P) ) ||90*||x(1')
S (1-6)" lllpﬂ”){(ﬂ)——uz(f') Nowllz(ry-

It 1s clear that (see 6.2. 1)
I — paB: pﬂ”Sp(h M—z(r) < III PnPniix(r)%(m
+ llpe(I = BE)ph |l sp(n, r)—z(r) S1= 1/||PQ||x(F)—>X(ﬂ) (6.53)
+ |lpellx(@)—=zr) - |(I = B Wil sp(h,r)—x(2)-

Usually, the interpolating spline o5 € Sp(h,I") belongs to the space z(I")
of smoother functions. For example, if z(I") = Wzm_ll 2(1'1 ), then the normal
spline oy, on the mesh wy, C I' can be represented in the form

Op = Z )\Qk‘Q, (654)
QEW».. ' R

where kg has'{he' pr,operi;y- _
Vu € Wi.:n—lﬁ([‘) (k.éa_u‘_)lw;l—lf?(p). = U(Q), (655)

m—1/2> (n—1)/2,and kq € Wzm_1/2+ﬂ(1") for0 < 8 <m—-n/2. Furthermore,
it is obvious that for every Q'€ wy we have

VUq € X(2) (kq,palUa)z(r) = (Phke,Un)x(2) = Ua(Q) (6.56)
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and every normal spline in X(£2) on the mesh wy, can be written in the form

Zh= ) Aophkq. : - (6.57)
QEwy . :

For the same reasons Ty belongs to the space W"*?(2), 0 < 8 < m —
n/2; and it is natural to assume that the orthoprojector B2 has the following
approximating property

YUq € W;""'ﬂ”Un - B?Uﬂ"w;ﬂ(g) S C]Tﬂ”Un“W;:-}-,ﬂ(n) (6.58)
and in a particalur case
P20 — B phonllwpa) < C17°||phon lwp+# (- (6.59)

Usually error estimate (6.59) takes place in the local sense and the global esti-
mate is obtained by the summation of local estimates. Therefore, the constant
C is independent of the size of the domain 2.

The second assumption is: inequality

* C
||P90'h”W;1+ﬂ(m < 'ﬁ_llahllw:'—lﬁ(p) “llpall . (6.60)

min
takes place with the constant C; independent of 2 and h, here hpi, is the
minimal distance between mesh points in wy. In this situation we have

lPhon — BZphowl x(a)
llonllzcr)

(2 = Ol spnry—xcan = sup
o #0

Cl"'ﬁ|lp?20h||w;"+*’(m

< sup

< < Cl . C'z("n"/hrniny9 : ”pﬂ”
or#0 ||°’h||w;"-1”(r) o

Finally, to provide (6.53) we need
1 - 1/||Pal® + C1Calpal*(7/hmin)® < 6 < 1,

and we have the following inequality for two mesh parameters 7 (a finite element
mesh) and A (a scattered mesh)

( r )" < 1-(1-60)|Pa|?
hmin — CiCy - “pn”2 ' ”‘Pﬂ'”2

If we introduce in the space X(f2) the special norm (see Section 6.1), then
the constant in the right-hand side of (6.58) becomes independent of §2, 7 and
hmin are proportional, and it is possible to solve the problem for the finite
element analogue of the D™-spline only in a sufficiently small thin layer near
the manifold I', and the trace to I" of this finite element analogue has the same
accuracy as the exact normal spline, i.e.

V‘P* € Wzm—lf?(p) ||f7f _ (P*“W;(F) < Chm—n/2—a+(n—-l)/p"¢*

(6.61)

Hw;'"‘ll'?(p)

where the constant C' is independent of ¢,,h and 2 O I'.



