9. Optimal Appfoximation of Linear Operators

In this chapter, we introduce the general problem of optimal approximation
of a linear operator by the value of another operator. The spline interpolating
method helps us to solve this problem and to obtain numerical formulas of
optimal approximation for a wide variety of functional spaces and linear opera-
tors. More exactly, it is possible when the reproducing kernels or mappings are
known and effectively calculated. Besides, in these cases the exact estimates of
errors on classes and extremal elements can be obtained, too.

Further, we give various examples which include the Sobolev cubature for-
mulas, cubature formulas on a unit sphere and on subspaces. All these meth-
ods we consider from the point of view of the indefinite coefficient method.
The main application of the theory are the cubature formulas for integration
of mesh functions. For example, consider the integral

[euxax,

n

where {2 is a domain or a manifold, X € 2, w(X) - weight function, u(X) is
the function known on a mesh only.

The method of integration may consist in the preliminary construction of
coefficients of cubature formula and its application to a concrete mesh function.
The second method consists in the interpolation of the mesh function and
subsequent explicit integration of analytic representation. The first method is
more preferable if repeated calculations are produced with the help of the same
cubature formula. '

9.1. General Approach

Let X, Z be Hilbert spaces, V be a Banach space, A: X = Zand G: X =V
be linear continuous operators. Let there be given the element Az from Z, but
we do not know z. The question arises how to find the value Gz on such an
information.

It easy to see that if V = X and G is equal to the identity operator, then
the problem consists in inversion of the operator A. In general, the problem
of finding Gz has not a unique solution, but we formulate a very simple and
natural variational problem which leads to an approximate solution, defined
with the help of the interpolating splines.



General Approach 181

For the operator A, choose the linear operator T : X — Y in such a way
that (7, A) would be a spline-pair (see Chapter 1). Denote by S : Z — X the
operator of spline-interpolation. Then the following properties of the
operator of spline-interpolation are valid.

1. S is a right inverse operator for the operator A, i.e. for every z €
Z ASz =z

2. S is a left inverse operator for the operator A in the subspace N(T), i.e.
for every t € N(T) SAt=t. ,

3. (Minimal energy property). For every u € X ||TSAu|ly < ||Tu||y.

4. (Orthogonal property). For every u € X

IT(w — SAw)|5 = |Tull} - ITS Aul)3
5. If u— SAu € N(T), then u = SAu.

Proof. Properties 1-4 are well-known from Chapter 1. Prove Property 5. Ac-
cording to Property 1  A(u — SAu) = Au — ASAu = 0. Consequently,
u—SAu € N(T)NN(A). Since (T, A) is a spline-pair, then N(T)NN(4) = {0}
and u — SAu = 0. Property 5 is proved. O

Now we are ready to pose the variational problem for optimal approximation
and to solve it.

Definition 9.1. Operator Eopy : Z — V' 13 called the optimal restoration op-
erator for calculation of Gz by the value Az, if it minimizes the following
functional:

$(E)= sup |Gu— EAuly (9.1)
1Tu]ly=1

on the set of linear continuous operators E € L(Z,V).
Theorem 9.1. E,,; = GS.

Proof. Let us verify that &(GS) is bounded. Since G is a linear bounded
operator, then

|Gu — GSAully < IG] - lu — Sdulx. (9.2)
The spline-pair defines the norm
VITullZ + 4w,

which is equivalent to the main norm. Thus, we have

lu ~ SAullx < ey/IT(u — SAW)E + | A(u — SAu)|2.

From Property 1 it follows A(u — SAu) = 0 and with the help of Property 4
we obtain
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lu — Saullx < el Tully. | (9.3)

So from (9.1-9.3) we have #(GS) < c||G||. To prove that GS is the optimal
operator, it is necessary to establish 9(GS) < &(E) for any E ¢ L(Z,V) or,
which is the same,

sup  [|Gu — GSAully < sup ||Gv— EAv|y.
ITully=1 1 Tufy =1

It is sufficient for any u € X (||Tuy = 1) to find v € X (||Tv|ly = 1) with
condition

|Gu ~ GSAully < ||Gv — EAv||y. _ (9.4)

Let u € X (||Tu|ly = 1) be an arbitrary element. Consider two opposite cases:
the element u is an interpolating spline and it is not. In the first case, SAu = u
and inequality (9.4) is valid for all v.

In the second case take w = u — SAu. The element Tw is not equal to zero,
because if Tw = 0, then according to Property 5 u = SAu, and, consequently,
u is an interpolating spline (case 1). So, we can consider the element

u—SAu

T ——
| Tw|ly

It is easy to see that || Tv||y = 1. We have
IGv — BAvlly = - ||Gu — GSAu — E(Au — AS Au)|y.
ITwlly
Since Au = ASAu and E(0) = 0, then

1
Gv — GSAv|v = ——||Gu — GSAu||y. 9.5
IGv vllv Tl 1C ullv (9.5)

Using Property 4 we can easily obtain |Tw|ly <1:
ITwlly = I1T(u ~ SAw)[} = |Tull} - |TSAu|} < |ITul? = 1.

Now from equality (9.5) follows (9.4) and the Theorem is proved. a

Remark 9.1. We need only the property E(0) = 0, and we do not fully use the
linearity. Thus, Eyp; = GS is valid for a wide class of the non-linear operators.
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9.2. Optimal Approximation of Linear Functionals

Let X be a semi-Hilbert space with the semi-norm |- |p and the kernel of
the semi-norm P C X. Connect with a linearly independent set of functionals
ki,....,kn from X* and the semi-norm | - |p the space of splines, which are the
solutions to problems
ki(u)=r;, i=1,..,N, uelX,
o = argmin |u|p.

(9.6)

Definition 9.2. Let L be a linear continuous functional from X*. The formula
of approzimation of the functional by the linear combination

N
L~ ak; (9.7)
i=1

18 sa1d to be exzact on the space of splines if any spline (9.6) obeys the equality

N
L{o) = Zaik,-(a). (9.8)

Theorem 9.2.  The coefficients of formulae (9.7)-(9.8) are determined from the
system of linear algebraic equations

G Bl |a L,
o o] 412 e
with the matrix which is a transpose of that of system (2.48). The vectors L,
and Lp have the components L(rp(k;)), i = 1,..., N, and L(pi), :=1,..., 8.

Proof. Write down systems of equations (2.48) and (9.9) in the abbreviated
forms HA = R and HTA = L, respectively. Making use of the parentheses
(+,-) for denoting the scalar product of vectors, from representation (2.44) we
obtain

L(o) = (A, Ly) + (C?LP) =(4,L) = (H_IR,L)

N
=(R,(H")7'L) = (R,A) = (z,0) = }_ a;Li(0)

i=1

and this completes the proof of the Theorem. O

Definition 9.3. Approzimation formula (9.7) is said to be an interpolation
one, if it is ezact on the elements of the space P. The interpolation formula is
called an optimal one, if its coefficients are chosen from the condition for the
minimization of the following functional:
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N

L(u) = > aiki(u)

=1

P(a) = sup
uelX, lulp=1

: (9.10)

Theorem 9.3. The optimal approximation formula is exact on the space of
interpolating splines.

Proof. The interpolation condition for formula (9.1) can be written in the
form BTa = Ly, thus coinciding with the second group of equations of system
(9.9). Taking into account main property (2.7) of the reproducing mapping m,,
we can rewrite functional (9.10) in the form of scalar product

N
) !P(a) = sup (‘R'P(L — Z aiki), u)p . (911)
uEX, |u|p=1 i=1
It is obvious that the supremum is attained on the function
N N
mp(L =) aik)/ |mp(L =Y aiki)
=1 i=1 P
and is equal to
N
®(a) = |vp(L- ) aik;) (9.12)
i=1 P

Then, making use of the properties of the norm, we can conclude that the
coefficients of the optimal formula can be determined as the solution to the
following problem of the constrained optimization of quadratic functional:

BTa = Lp,

N N 9.13
QZ(G)=(WP(L—Zaik,‘),ﬂp(L—Za,‘ki))p — min. ( )

=1 i=1
For problem (9.13) make up the Lagrange function

D(a,d) = %@2((1) +(d,BTa - Lyp)
N

= % (p(L),7p(L))p — 2Zai(7rP(L)77TP(ki))P
N N B .
+ Z Z aiaj(rp(Li),mp(k;))p | +(d,BTa— Lp).

Putting the partial derivative in the vector d equal to zero yields the second
group of equations of system (9.9). Put the partial derivatives in the vector a
equal to zero. We have
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N
a%(:;d) = —(mp(L),mp(km))p + ; ai(mp(ki), mp(km))p + (Pid)m = 0,
m=1,...,N.

Making some manipulations with the expression

N
al;(:;d) = —(mp(L =) aiks), mp(km))p + (Prd)m

i=1

N
= (Z ajk; — L)(’J’Fp(km)) + (Pld)m =0,

=1

m=1,..,N

we have

N .
> aiLinp(km) + (Pid)m = Lrp(km), m=1,..,N. (9.14)

i=1

Equations (9.14) imply that the vectors @ and d satisfy the first group of
equations of (9.9) as well. This completes the proof of the Theorem. O

Definition 9.4. Approzimation formula (9.7) is called an optimal one on the
subspace E C X, if 1t is an interpolation one and its coefficients are chosen
from the condition for minimization of functional

N
Pp(a)= sup  [L(u) =Y aiki|. (9.15)
u€E, |ulp=1 i=1

Theorem 9.4. The coeflicients of the optimal formula of approximation on
the subspace E are determined from the following system of linear algebraic
equations:

5510

with the matrix coincident with that of system of equations (7.22). The vector

L(y) consists of the components L(1), ..., L(¢ ), where @1, ..., o is the basis
of the space E.

Proof. By Theorem 9.3, the optimal formula is exact on the interpolating
splines; in this case, it is exact on the splines on subspaces (see (7.19), where
instead of the functionals L; it is necessary to consider the functionals k;).
Pursue the proof of this Theorem in the way similar to that of Theorem 9.3.
Write down systems (7.22) and (9.16) in the form HA = R and HA = L,
respectively. Making use of representation (7.21), we obtain
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L(J) = (d:L(“P)) = (A)L) = (H_lRaL) = (R’H_IL)
=(R,A) =(r,a) =Y aiki(o).

This completes the proof of the Theorem. O

9.3. Prolongation of Mesh Functions and Cubature
Formulas Based on Indefinite Coefficient Method

Let {2 be a compact in IR". The totality of chaotically located points { Py, ...,Px}
from 2 is said to be a scattered mesh. The function f is said to be a mesh
function if it is defined only on the introduced scattered mesh, i.e. only the

values f(Py),..., f(Pn) are known.

Definition 9.5. Prolongation method I for mesh functions is said to be given
if the linear operator I: RY — R? is defined which to any vector (f(Py),...,
f(Pn)) puts into correspondence the function o : 2 — IR. Prolongation method
I is said to be interpolating if

o(P) = f(P), i=1,..N. (9.17)

The remaining methods are said to be smoothing.

Most linear prolongation methods are constructed by using the indefinite co-
efficrient method. Let wy(X),...,wp(X) be functions giwen in §2. Denote by r =
(f(P1), s F(PN))T the column vector of mesh values and by a = (ay,...,ap)T
the column vector of real numbers.

Definition 9.6. Let K be a non-singular M x M matriz and U be a rectangular
M x N matriz. The prolongation by the indefinite coefficient method is said to
be a function

M
o(X) = Zaiwi(X) (9.18)

whose ezpansion coefficients a;, i = 1,..., M, are determined from the following
linear algebraic system:

Ka =TUr. (9.19)

Definition 9.7. Let L be a linear functional on the space R™. The approzima-
tion formula

N

L(f) = Y a:f(P) | (9.20)

=1
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18 said -to be ‘exact for prolongation method I, if the coefficients aq,...,an are
chosen from condition

N

L(o) =) aif(P) (9.21)

for any (f(Py), ..., f(Pn)) € RN, o = I(f(P,), ..., f(PN)).

Henceforth, expression (9.20) is said to be a cubature formula by analogy
with the standard term when the functional to be approximated is an integral

L(f) = [ fx)dx
/

in the bounded measurable subset V from f2.

Theorem 9.5. The coefficients of the cubature formula exact for the indefinite
coefficient method can be written in the form

a=(a,..,an)T = UT(KT)'L,, (9.22)

where the matrices UT and KT are transposed to U and K, and the vector L,,
has the components L(wy), ..., L(wpr).

Proof. Denote by ( , )am the scalar product in an M-dimensional space of
vectors and by w the vector function (w;(X),...,wm(X)). Then the statement
of the Theorem is implied by the obvious equalities

L(o) = L((a,w)m) = (o, L) m = (K™'Ur,L,)m

N
= (r,UT(KT) Loy = Y aif(P).

i=1

O

Remark 9.2. If the prolongation method of the indefinite coefficient type is
defined, the calculation of the corresponding cubature formula raises no diffi-
culties. We must only know how to calculate components of the vector L,,.



188 Optimal Approximation of Linear Operators

9.4. Cubature Formulas Based on Interpolating and
Smoothing Prolongation Methods

9.4.1. Lagrange Method

Let §2 be a segment [0,1] and the set {z; < ... < zN} be an arbitrary mesh of
nodes on the segment [0, 1]. Set M = N and choose for the functions wi(z) the
basis monomials =, i = 1,..., N.

It is known that for any values of f(z,),..., f(zN) there exists an interpo-
lating Lagrange polynomial

N .
o(z) = Z a;z'!
i=1

satisfying the conditions o(z;) = f(2;), i = 1,..., N, whose coefficients can be
determined from the system of equations

1z ... 2V ay f(z1)
1 zny ... x%_l an f(mN)

Theorem 9.5 implies that the coefficients of the cubature formula

N
L(f) ~ Za;f(o:.-)

corresponding to the Lagrange method are determined from the adjoint linear .
algebraic system :

Ty .  IN as L(z)
= : . (9.23)
2Nt 2N ey L(zN-1)

For the following three functionals L(f) = fol f(z)dz, L(f) = f(0), L(1) =
f'(0) the right-hand sides of system (9.23) are of the form '

(1,1/2,...,1/N)", (1,0,..,0)7, (0,1,0,...,0)7.
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9.4.2. Interpolation and Smoothing by D™-Splines

Let m > 0 be an integer. Prescribe a class P,y of polynomials of total degree
not exceeding m — 1 of n variables with the basis functions

X'=z".2l", [yl=n+..+1m<m-1 (9.24)

whose dimension is equal to

0= m—1+4n\ (m—14n)!
- n T (m=D!
Assume that the points Pi,..., Py from IR" do not lie on the (m — 1)-th
order algebraic surface. Suppose that m > n/2.

Theorem 9.6. Let 0 < s < m and functions w;, : = 1,..., N, be given of the
following form

(3 = (s [ IX = Pl s is not an integer
wiX) = (1) { |X — P;||**In||X — P, sisan integer (9.25)

where [s] means the integer part of the number s. Let us order polynomials
(9.24) in an arbitrary way e;(X), i=1,...,Q. Then the matrix

[wi(P) .. wn(P) e(P) .. eo(Pr)]

I,_[G E]_ wl(.PN) wN(.PN) el(é’N) eg(.PN)
TIET o]l T | e(P) . ePy) O .. 0

-eg(Pl) eQ(PN) 0 0 i

is non-singular, and function
N Q
o(x) =Y aiwi(X)+ Y ciei(X) (9.26)
=1 i=1
with the coefficients a = (ay,...,an)T, ¢ = (c1,...,co)T satisfying system

[-’g’" 15] [(j N [;] (9.27)

determines the interpolating method of prolongation of the function f by the
values r = (f(Py), ..., f(Pn))T.

Theorem 9.7. Let In be the identity N x N matrix. For any A > 0 matrix
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K [G+AIN E]
W= pT 0

is non-singular, and function (9.26) with the coefficients satisfying system

L 0

defines the smoothing prolongation method.

These theorems summarize the results of (Duchon 1977). For the particular
case s = m —n/2 they are contained in Section 5.3. The functions o(X) are the
solutions to some variational problems and are called D™-splines. Theorems
9.6-9.7 readily imply

(9.28)

Theorem 9.8. Depending on the prolongation method the coefficients of cu-
bature formula (9.20), which exact either for interpolation or smoothing by
D™-splines are determined, correspondingly, from the following system:

G E||a| _ |[L. G-l-)\INEa_Lw
E v P = MR 30
where L, = (L(w1),..., L(wn))T, L. = (L(e1), ..., L(e@))T, d is an auxiliary
vector. The matrices K and K are not transposed as they are symmetric. .

Let £2 C IR" be a bounded simply-connected domain with the Lipschitz
boundary. Set m > n/2 and s = m — n/2, and let the set {P,, ..., Py} form an
h-net in the domain f2. Then the estimates of approximation of the function
f € Wi*(12) by t ~ interpolating D™-spline ¢ are of the form

1D (e = £)"r () < k™=K IHRIP D |1y . (9.31)

Here, k > 0 and p > 2, are such that k — n/p < m — n/2 excluding the case of
p=o0 and k = m —n/2. The constant c is independent of the location of the
points Pj,..., Py and the parameter h.

Theorem 9.9. The cubature formula
N

L(u) = / u(X)de ~ Y cru(P) (9.32)

n =1

exact for interpolation by D™-splines obeys the following error estimates:
N
AL(f) = | [ F0)aX = 30 af(R)] < k™D flaa (9:33)
n =1

where f € WJ*(12).

Proof. From formula (9.21) we have
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AL(f) =1 [(H3) - o(X)ax] | (9.34)
2

Making use of the Schwarz inequality and interpolation estimates (9.31) we
obtain

AL(f) < (mes  2)'2||f — o]| 2y < (mes M2 ™| D™ £ 12 o

This completes the proof of the Theorem. O

Remark 9.3. The latter cubature formulae, whose coefficients are defined from
equations (9.30) may be named the Sobolev cubature formulas because it was
S.Sobolev who first invented them.

9.4.3. Approximation by Traces of D™-Splines on the Sphere

Let us introduce the unit sphere
Sn-1={(z1,...,2n) ER™: z}4 .. 422 = 1}

of the space R™ and points Py, ..., Py on the sphere S,_;.

In Chapter 6, an algorithm has been proposed for prolongation of the mesh
spherical function f(Py),..., f(Pn) by using the spline traces on the sphere
Sn—1. We formulate two following theorems, which are particular cases of more
general theorems of Chapter 6.

Theorem 9.10. Assume that the points Pj,..., Py are not the roots of the
generalized polynomial of the system of functions

X'=z]".2l", m-2<|y|<m-1. (9.35)

Then the traces of the interpolating and smoothing D™-splines on the surface
Sn—1 are uniquely determined.

Remark 9.4. The matrices K and K for m > 2 with the interpolating points
on the sphere are singular. Nevertheless, systems (9.27) and (9.29) will be
compatible. Hence, there will exist an affine space of interpolating D™-splines
for the mesh spherical function f(P;),..., f(Pn). Note that any two D™-splines
will differ in the polynomial

(2% + ... + 22 — 1)P(z)

where P € Pp,_3, which is annihilated on the sphere S,_;. The trace is thus
uniquely determined. The same is true for smoothing D™-splines as well.

Remark 9.5. The singularity of the matrices K and K\ does not exclude
the possibility of using Theorem 9.5 for constructing coefficients of cubature
formulas. We can show that the cubature formulae exact for approximation by
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using the traces of D™-splines are determined from system (9.30). The solutions
to these systems will be unique with respect to the vector a.

Remark 9.6. It has been shown in Chapter 6 that for obtaining the non-
singular matrices K and K it is necessary to remove linearly dependent func-
tions on the sphere S,_; from linear expansion (9.26). It can be achieved by
replacing bases (9.24) with (9.35).

Theorem 9.11. Let m > n/2, s = m — n/2 and the set {Pi, ..., Py} form an
h-net on the sphere S,,_;. Then the estimates of approximation of the function
f € H™ 12(S, 1) by the trace of the interpolating D™-spline o are of the
form ' '

lo = fllars._,) < Chm_k_l/z”f”Hm-llﬂ(s,,_l) ' (9.36)

where 0 < k < m —1/2, ‘H* (Sn—1) is a Sobolev space of the fractional index
on the sphere S, _;.

Theorem 9.12. The cubature formula

N )
L(u) = f u(X)dSx = 3 cau(P) (9.37)
Sp-1 =1

exact for interpolation by traces of D™-splines obeys the error estimates

~

AL(f) < k™ 2| fll gm-syags, .- (9.38)

Proof. The proof is carried out in the same way as for Theorem 9.9:

AL(f) < f [o(X) = F(X)|dSx < (mes Sp—1)"[lo — fllzocs, .
Sn—l
S (mes Sn_l)1/2chm_l/2”f”Hm...Uz(Sﬂ_l)‘

This completes the proof of the Theorem. o

9.4.4. Finite Element Approximation

Let Py, ..., Py be points in §2 and wi,...,wp be a basis of the M-dimensional
subspace of the functions IR”. Assume that the matrix T = {tij}, 4,5 =
1,..., M is symmetric positive semidefinite and the matrix A — {wi(P)}, ¢ =
1,..N, j=1,...,. M, is of the rank N.

Lemma 9.1. If ker T Nker A = {0}, the matrices

K:[i ‘H, Ko=aT +A*A, a>0
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are non-singular..

Definition 9.8. The function

M .
4@:Z}w@m (9.39)

18 said to be a finite element interpolating spline if its coefficients o =
(01,...,0m)T can be determined from system

|\ T A*| |o |0 ‘

&SI 040
and a finite element smoothing spline, if its coefficients can be determined from
the system '

(aT + A*A)o = A*r. (9.41)

Lemma 9.2. If the rank 4 < N, ker T Nker A = {0}, system

e =L L) e

has a unique solution with respect to the vector .

Definition 9.9. Function (9.89) is said to be o finite element quasi-interpolating .
spline if its coefficients can be determined from system (9.42). If the rank
A =N, the quasi-interpolating spline coincides with the interpolating one.

The proof of Lemmas 9.1 and 9.2 is trivial. The general scheme of construc-
tion of interpolating, smoothing and quasi-interpolating finite element splines
is done in Chapter 4. :

Theorem 9.13. Depending on the prolongation method the coefficients of cu-
bature formula (9.20) exact for interpolation, smoothing or quasi-interpolation
by finite element splines can be determined, correspondingly, in the following
way:

55 -[5]) emsereane

a=[0 A][ATA A;A]_l [I;)w]'

Proof. 'The proof is carried out similarly to that of Theorem 9.5. O
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9.5. Exact Integration of Certain Special Functions

9.5.1. Exact Integration of Radial Functions || X — P;||?* and
| X — Pi[>**In|| X — P;|| on the Unit Sphere Sp_,, n > 3

To construct cubature formulas on the surface of the sphere
N
L(u) = / u(X)dS = 3" au(P,) (9.43)
Sy =1

by using the traces of D™-splines (see Subsection 9.4.3), it is necessary to know
the value of the vector L, i.e. it is necessary to find integrals of radial functions.
Before passing on to calculations we recall the Catalan integration formula for
n > 3 (Fikhtengolts 1969):

(n—1)/2

/ f((P,X))dS = (= 1)

/ FIPI)(L = u?) = 2y (9.44)
and the basic properties of B- and I'-functions (Gradshtein, Ryzhik 1971):

/(1 —2)*(1—2)’de =2°H BB+ 1, a+1), a> -1, > -1 (9.45)

I(z)I'(y)
B(z,y) = Tty ~ B(y,=) (9.46)
I'(z+1)=2al(z), I'(n)=(n-1) (9.47)
F(%):w, F(n—%—%):@g;—l)”. (9.48)

First, calculate

L(w;) = / | X — P;||**dS.

We have
Lw) = [ (X1 - 20x, P) + | PPy ds
Sn-1

and as the points X and P; lie on the unit sphere S,_;, the integral can be
reduced to a one-dimensional one by using the Catalan formula in the following
way:
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L(wi) = /(z—ztxjp,-))-*ds*

Sn—'l

(n—1)/2
— 95+1 ™ 1/ f(l _ u)s+(nw3)/2(1 +11)("_3)/2du.
resy J
Making use of (9.45) and (9.46) we reduce the last expression to the following
one:

(n=1)/2 n+l n-1
Lw;) = 23+1""_H23+n—2B nT 2
_ 22s+n-—177(n41)/2 I'(s+ l;_l)r(ﬂi_“l)

F("T_l) I'(s+n-1)

-1

— 92s+n—1_(n—1)/2 I'(s + 75 _
I'(s+n-1)

Thus, we have the general formula

I'(s+ n-l
_ p.||2s — 928+n—1_(n-1)/2 a 2
f IX = Pjfras = gssnointeoa S LT (9.49)
Sn-1
which for odd n = 2k + 1 can be simplified as:
92(s+k) Lk
X — P||**dS = . 9.50
S[ I I7*d (s+k)s+k+1)..(s+2k-1) (9-50)
~ To find the integral
[ 1x = Pie 1 ix = Pijas (9.51)
Sn-1

differentiate both sides of equality (9.49) with respect to the parameter s. We
have

i}

5 f |X = Pi||*dS | = / |X - P|**In|| X — P;||dS.
Sn_1 Sn-1

Thus,

[ 1% = PgPeinx - Rjas

S (9.52)

_ 9 92s+n—1_(n=1)/2 I(s 4274
ds I's+n-1)/)"

The exact representation of the derivative can be easily found in case of n =
2k + 1 where the explicit differentiation of expression (9.50) is possible.
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9.5.2. Integration of Monomials X on the Unit Sphere Sn-1, n>3.

To construct cubature formulae (9.43) we additionally need the vector L, (see
(9.30)), i.e. we must know how to calculate integrals of the form

/X"dS: /xf‘...xﬁ"dS (9.53)
Sn—l Sn—l

for any multi-index o = (iyesyitiy):
Find these integrals again making use of the Catalan formula, We have

rn=1)/2 }
/ (%, Pymas =2 s / IP[™um™(1 — u2)=9/24, (9.54)
Sp-1 2 -1
but, on the other hand,
m! (s 4 o 3
/ (X, P)™dS = 1 ‘Z — / X*ds. (9.55)
Sn—l K=m sn—l

Let the point P ’run through’ the space IR". Then expression (9.55) is a poly-
nomial of n variables of degree m; in this case, monomials of less degree are
not contained in the polynomial.

For odd m = 2k + 1 the integrand in (9.54) is odd in the variable u and,
hence, the integral is equal to zero. Therefore, monomial (9.55) as well is iden-
tically equal to zero. It means that all its coefficients are zero, i.e. integrals
(9.53) are equal to zero for odd m — a1 + ... + a,. Then prove that integrals
(9.53) are equal to zero, even if at least one of the indices ajy,...,an 1s odd.

Consider the case of m = 2k. Then expression (9.54) is equal to

1
27.r(n—1)/2 2+"'+ 2\k .
r(f’l'—l) Pn) /(uz)k(l—uz)(" D2 gy (9.56)
2
-1

i.e. it is a polynomial of degree m = 2k containing only cven degrees of the
variables py, ..., pn. Thus, if at least one of the indices ay, ..., a, is odd, integrals
(9.53) are equal to zero.

Taking into account the above-said, rewrite the right-hand side of ( 9.55):

(Zk)' 2a 2« . [
> WP / X?e4s. (9.57)
Ial:k Sn—l

Calculate the integral in (9.56) in the explicit form. We have (taking into ac-
count the change of variables u? = (1 — v)/2)
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[(u (1 —u?)m 3>/2du —2](u — ) 2y

A
1 n—
zm/(l—v)" 12(1 4 0)(n=3)/2 gy
4
1 n— 15 F(k+ )r(25L)
) ST TR )

_Bw+

Expression (9.56) can be rewritten in the following way:

> Spe

lo|=k

or(n=D/2P(k + 1)
Ir'k+%)

Comparing the last expression with (9.57) we have

I(k+1) k(20)
2c _ (n—1)/2 2
f X70dS = 2m T(k+ %) al(2k)!

Sn—-l

_gnrop L) a1t
T(k+2) k=D

9.6. Discussion

Spline methods for constructing cubature formulas were studied by many au-
thors. It bas been shown in (Laurent 1972) that the formulas exact for spline
interpolation methods are optimal in the sense of Sard and Golomb-Weinberger.
The spline methods are optimal for approximation of certain nonlinear func-
tionals as well.

In the one-dimensional case of n = 1, there are results (Nikol’'sky 1974;
Mysovsky 1981) concerning the construction of cubature formulas with an op-
timal choice of coefficients ay, ..., a, and nodes P, ..., P,.

An alternative technique of construction of interpolating and smoothing
spherical spline functions and also cubature formulas of integration on the
sphere is the method contained in (Freeden 1981). However, the method given
here seems to the authors to be simpler and more convenient. Both methods
are likely to be optimal on the same spaces for different norms.

In addition to the considered functional-integral on the sphere S,_, in
Section 9.5 we could consider a functional of the form

L(u) = / P(X)u(X)dsS,

Su—l



198 Optimal Approximation of Linear Operators

where P(X) is a polynomial. In this case, it is also possible to exactly define
the vectors L, and L., i.e. exact integration of radial functions with a poly-
nomial weight. There is, for example, a possibility of construction of cubature
formulas for determining the Fourier coefficients of expansion of functions by
using spherical harmonics,

Better possibilities for constructing cubature formulas arise in using finite
element prolongation methods (see Subsection 9.4.4). In this case, the func-
tions wy, ...,wp have a simple polynomial form and the (exact or approximate)
determination of the vector L, = (L(w;), -y L{wpr)) does not raise great diffi-
culties.



