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SWORD: Genetic algorythm tool for protein-RNA
interaction motifs recognition
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Abstract. Recognition of potential for protein-RNA interaction is an important
problem in bioinformatics. The solution may present a clue for understanding gene
regulation. Formalization of the problem leads to in silico search for a complex mo-
tif in the 15-letter UIPAC alphabet in RNA sequences considering their secondary
structure. The genetic algorithm with island modification was used to solve the
related discrete optimization problem. The algorithm named SWORD was imple-
mented on GPU and CPU. The comparison has shown a significant performance
advantage of the GPU implementation. The algorithm was applied for searching
RNA-motifs interacting with Hu antigen R (HuR) protein. The result achieved is
better than that obtained in the previous work based on fitness-function criterion.

Keywords: GPU computing, parallel genetic algorithm, protein-RNA interaction,
RNA motif recognition.

1. RNA motifs search problem

Modeling of molecular biology processes is a very important problem. Nowa-
days a huge amount of experimental data needs to be analyzed properly to
extract new knowledge for medicine and diagnostic tests development. For-
malization of molecular biology processes in living cells leads to the modeling
of complex digital-analogue systems. Digital information coded in DNA pro-
vides instructions to cells on metabolism, proliferation, virus response and
even cell death. Spatial organization of DNA, RNA molecules and proteins
is not random and serves for analogue way signal transmission.

A DNA molecule can be formally represented as a sequence in the four-
letters alphabet {A,C,G,T}, denoting the types of nucleotides connected
in the linear order. The total length of human DNA sequences is about
3× 109 nucleotides. The central paradigm of molecular biology states that
parts of DNA, called genes, can be transcribed to RNA molecules. Dur-
ing the transcription, new RNA molecules are created. They consist of
four types of nucleotides A, C, G, U connected in a linear order. A nu-
cleotide sequence of RNA copies a gene sequence of DNA, with the only
exception: T nucleotide is substituted with U. As an example, here is
a sequence of RNA coding pre-mature miRNA hsa-let-7a-1 : “UGGGAU
GAGGUAGUAGGUUGUAUAGUUUUAGGGUCACACCCACCACCUGG
GAGAUAAUAUACAAUCUACUGUCUUUCCUA”. Dozens of thousands
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of genes serve as templates for the millions of RNA copies. During post-
transcription regulation, RNA molecules undergo essential transformation
called maturation. Mature mRNA (messenger RNA) molecules are trans-
ported from the cell nucleus to the cytoplasm, where they serve as templates
for protein coding.

In a healthy organism, a cell supports the necessary level of the transcrip-
tional activity of each gene. Transcription as well as post-transcriptional
regulation of genes is implemented through protein-DNA, protein-RNA and
RNA-DNA interactions with the presence of catalytic and signaling molecules.
Hundreds of thousands of types of proteins and millions of types of RNA
molecules interact with each other, implementing the program of cell life.

Spatial organization of RNA molecules implemented through the affinity
of A to U, C to G and U to G provides the secondary structure, or “shape”.
Hypothetically, one RNA molecule X of length L may have many secondary
structures S(X). Each secondary structure s ∈ S(X) can be described by
the symmetric bit matrix sL×L:

si,j = sj,i,
si,j = 0, i = j,

si,j = 1 if (X(i), X(j)) ∈ {(A,U), (U,A), (C,G), (G,C), (G,U), (U,G)},
1 ≤ i < j ≤ L,∑L

j=1 si,j = 1, 1 ≤ i ≤ L.

Chemical interactions between nucleotides and the tension of the geo-
metrical form of an RNA molecule can be characterized by the free energy
function. It is usually assumed that an RNA molecule chooses a secondary
structure with the minimum free energy (MFE) or the most likely structure
in the Boltzmann ensemble.

Parts of RNA molecules that may interact with proteins are called pro-
tein interaction motifs. It is assumed that the shape provides the analogue
part of a motif. The specific nucleotide content at the proper positions of
an RNA molecule provides the digital part of a motif. Well known exam-
ples of digital-analogue information coupling in protein-RNA interactions
(e.g. ribosomal complexes, LIN28-DICER [1], dsRNA-ADAR [2]) allow us
to assume protein-RNA interaction motifs to be a common feature of RNAs.

Knowledge about the RNA motifs structure will provide a better under-
standing of gene regulation mechanisms, design novel diagnostics tests and
medicines. In spite of recent progress in molecular biology, many mecha-
nisms of gene regulation are understood poorly. Direct experimental identi-
fication of protein-RNA interaction motifs is quite an expensive procedure.
Theoretical prediction of motifs faces combinatorial complexity problems.
There are plenty of computational tools and methods [3] aimed at motif
search, like MEME, PWM, RNAMOT, RNAForester [4-6] and others. In
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practice, the capabilities of the methods are limited by exponential com-
plexity or irrelevance of mathematical solution space to physical process.

In theory, the basic knowledge of chemical and physical characteristics of
nucleotides and amino-acids is sufficient to derive the properties of RNA and
protein polymers. In practice, the prediction of such characteristics as spa-
tial conformation, domain structure and affinity represent an NP-complete
problem. The computation of the physical properties of RNA and protein
molecules using modern computers may take days or years of computational
time (depending on the molecule length). Due to its complexity, the motif
search strategy does not usually require a full knowledge about the physical
properties of RNA or protein molecules. Only physical principles of the first
magnitude order (like the complementary law) in combination with indirect
characteristics (like environmental conditions) observed in the experiment
are utilized. Then the machine learning algorithms like SVM, Neural net-
works, Random forest [7-9] and others are used to recognize patterns in
sample molecules by comparing them with the control samples.

In [10], a method was presented for efficient solving the RNA-protein
motif search problem under certain assumptions. The secondary structure
of RNA is assumed to provide the analogue level of affinity to a specific
protein domain. The nucleotide content of RNA provides the digital-like
level of affinity. The research was based on the analysis of the sequences
of 2243 RNA molecules forming a complex with HuR (Human antigene R)
protein. HuR protein is the key post-transcriptional regulator that takes
part in RNA stabilization and transporting. It is involved in stress response
and inflammation. HuR dysfunction is associated with cancer [11]. With
the help of the microarray technology, RNA molecules interacting with HuR,
as well as the control RNAs not interacting with HuR, were found. Locally
stable secondary structures were found using the RNAFold [12] program in
the sliding window 75 nt

{s ∈ S(Xi[j, j + 74]), i = 1, . . . , 2243, j = 1, . . . , L(Xi)− 74|
FE(s) = minx∈S(Xi[j,j+74]){FE(x)}},

and filtered against duplicates, where FE is free energy function [12], L(Xi)
is the length of sequence Xi, and S(Xi[j, j + 74]) is all possible structures
of the subsequence of Xi RNA molecule.

Clustering of structures [13] revealed HuR interacting RNA molecules
were enriched with two hairpin structures of 66-75 nt length. Then a spe-
cially designed parallel version of the genetic algorithm SWORD (super-
word) was tuned and applied to find the specific nucleotide content enriching
or depleting the sequences of two hairpin structures.

The SWORD algorithm finds statistically over-represented and under-
represented groups of words in the primary sequences of RNA molecules
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Figure 1. HuR interaction RNA motif coupling secondary structure and primary
sequence content

folded in 2-hairpin structures [10]. The primary sequence of RNA is virtu-
ally split into 7 fragments according to the 2-hairpin structure (left stem,
loop, right stem, gap, left stem, loop, and right stem). Each fragment is
assumed to comprise a specific “word” recognized by HuR protein while in-
teracting with RNA. A group of 7 words that simultaneously appear in the
7 fragments of the primary sequence of RNA is termed as “super-word”.
Figure 1 displays two hairpin structures with statistically enriched (thick
letters) and depleted (thin letters) primary sequence content in 15-letter al-
phabet (Table 1). This motif was found by the SWORD algorithm [10] in
RNA molecules interacting with HuR protein.

However, the analogue part of a signal (shape) can potentially be pre-
sented by one hairpin with or without bulges (e.g. pre-miRNA), clover
(e.g. tRNA) or other shapes. In [10], the maximum length of each word
was restricted to six nucleotides. Even the application of these significant
restrictions allows us to narrow the search space to just nearly 1542 combi-
nations, where 42 stands for 7 words of maximum 6 letters each and 15 is
number of letters in alphabet. The optimized and enhanced SWORD tool
based on the genetic algorithm is presented below. The advantage of GPU
as in [14] was taken. The extended user interface allows an arbitrary shape
of RNA to be analyzed. These new features increase the applicability of the
original SWORD to different motif search problems.

2. Model

The experimental data is represented by two sets of sequences in the 4-
letter alphabet {A,C,G,U}. The first one is positive, i.e. its sequences are
interacting with the target protein. The second is negative or control, i.e.
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Table 1. UIPAC alphabet

Letter Value Letter Value
A Adenosine M A or C
C Cytosine S G or C
G Guanine W A or U
U Uracil B G or U or C
R G or A D G or A or U
Y U or C H A or C or U
K G or U V G or C or A

N A or C or G or U

sequences are not interacting with the protein. We will denote these two
sets as pos and con, respectively. The sequence α matches the sequence β
iff α is a subsequence of the sequence β. However, a 4-letter representation
is too strict to solve the problem.

The nature of protein-RNA interactions allows different variants and
combinations of nucleotides to interact with proteins. It is very unlikely to
find an exact sequence that matches the most positive sequences and does
not match the most control ones. So, we consider sequences in the 15-letter
IUPAC alphabet that includes all possible non-empty combinations besides
the concrete nucleotides (see Table 1). For example, R means that on a
given position there should be either G or A; D means either G, A, or U;
N means any nucleotide. A letter in the 15-letter alphabet matches all its
possible options, so such sequences could be considered as primitive regular
expressions (without repeats, i.e. with pre-determined lengths). From this
point on, the match relationship will be considered in a generalized form:
α (15-letter alphabet) matches β (4-letter alphabet) iff there is a subse-
quence β′ of β of the same length as α such that α[i] matches β′[i] for
any i = 1, .., L(α). Hereafter, the terms sequence and word will be used
interchangeably.

The problem could be formalized as F (α) → max, where F is a fitness-
function that could be defined in different ways. In this paper, the following
definition is considered:

F (α) =
Npos(α)

|pos|
− Ncon(α)

|con|
, (1)

where Npos(α) and Ncon(α) are numbers of sequences that α matches in
the positive and control set respectively; |pos| and |con| are cordialities of
sets.

This is the problem formalization for the simple motifs, where the sec-
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Figure 2. Primary and secondary structure of an RNA molecule

ondary structure of RNA is irrelevant. Figure 2 illustrates the possible
primary and secondary structures of RNA.

In this particular case, β1 should be complementary to the reversed β3,
and β5 should be complementary to the reversed β7. In other words, β1

and β3 as well as β5 and β7 form duplexes. Bulges (part of a sequence
without a complement in a duplex partner) inside duplexes are allowed. To
take into account the secondary structure, let us consider a “super-word”
instead of a simple word. The super-word α = α1α2 . . . αn is a sequence of
several words. The super-word α matches β iff αi matches βi, i = 1, . . . , n.

Thus, we have a discrete optimization problem with additional con-
straints. The constraints are the following: the structure of a super-word
is fixed by the user, i.e. there is a fixed number of parts (seven in case
of a two hairpin structure), and there are fixed constraints about comple-
mentary relationships between the words. The lengths of sub-words and
super-words are arbitrary except that each sub-word should have a non-zero
length. However, there could be additional constraints as a result of the
limitations of particular optimization methods.

3. Solver

To find the sub-optimal solution in the 15L combinatorial space, the popu-
lation-based algorithm family was considered. Here
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L =
n∑

i=1

max
j=1,...,|pos|

βi
j

is the sum of the maximum lengths of the RNA fragments parts of a motif,
and 15 is the number of letters in the alphabet (Table 1). In the case of
HuR, the RNA length of the motif L could be 75 (the length of the 2-hairpin
structure) [10]. The general idea implies all representatives of this family
support the population of solutions and evolve this population through the
algorithm steps. The two very important characteristics of this family are:

1. Natural by-data parallelism even if computation of a target function
could not be performed in a parallel way.

2. Relative resistance to the local extrema.

The population evolving laws vary for different methods and usually
relate to some kind of a biological or ethological metaphor. For example, the
particle swarm optimization (PSO) algorithm [15], one of the best known
algorithms of this family, is based on the behavior of a swarm of flying
insects. The Bees Algorithm [16] is based on the natural foraging behavior
of bees. The genetic algorithm [17,18] is based on natural organism selection
and evolution on the genetic level.

To solve the problem the genetic algorithm (GA) was chosen. The main
reasons are high customizability and, with proper expansion [19], the possi-
bility of working effectively on computing with loosely coupled components
like computer clusters and GPUs (see Island Expansion section below for
details).

In fact, the GA gives only a kind of a meta-structure of the optimization
algorithm, and many details could and must be customized regarding a par-
ticular problem. In general, the possible solution vector (or tuple, because
components could be of different types) is considered as the “genotype”, and
the target function called the fitness-function in case of the GA is consid-
ered as the level of fitness of the organism to the environment. In ecology,
better fitness means better survivability and more offsprings with similar
genotypes. The subsequent generation (the population state of the next al-
gorithm step) is more likely to contain organisms with better fitness. “More
likely” means that all the processes in computing the subsequent generation
are stochastic, and some organisms should be generated completely ran-
domly to make some “noise” in the population important for the resistance
to local extrema. To compute the next generation, the following techniques
could be generally implemented:

1. Mutate the best part of a population (regarding the fitness-function
value) to produce part of the next generation. Mutation is usually a
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user-defined random modification of solution vector components. The
probability of mutation greatly affects the convergence rate. In gen-
eral, a higher rate means a better convergence, but in some cases like
the stiff problems it could completely skip some extrema. So balancing
is required regarding a particular problem to be solved.

2. (Optional) Crossover of random organisms from the best part to pro-
duce part of the next generation. Crossover is a user-defined operator
of the type SP 2 → SP (where SP is solution space), but also de-
grees higher than 2 could be used. It is optional but is used in most
implementations because it helps to avoid local extrema.

3. (Optional) Preserve the elite organisms (the best of the best), i.e. move
them to the next generation without any changes. It guarantees that
the last generation will always contain the best solution found.

4. (Optional) Generate random organisms for the remaining part of the
next generation. It is optional and sometimes could be replaced with
higher mutation probabilities.

To use the genetic algorithm, the mutation and crossover operators must
be defined, in addition to the optimized function.The super-words are con-
sidered as organisms. The individual sub-words within a super-word are
mutated independently except for the ones participating in complementary
constraints. In RNA, the structures α1 and α3 as well as α5 and α7 are
mutated synchronously, so only five independent sub-words should be taken
into account. There are also limitations to the size of each sub-word. First,
each sub-word must have a non-zero size, which is an obvious natural limi-
tation. The maximum sub-word size is an artificial limitation, but it should
be set to run the genetic algorithm (and possibly any other optimization
method) predictably and effectively. We have used the limits of 6-8, which
looks fair enough considering the results obtained. Taking into account all
the constraints and limitations, a sub-word can have the following muta-
tions:

1. Random letter replacement in a random position (in the 15-letter al-
phabet).

2. Remove letter in the right-most or left-most position.

3. Add a random letter to the beginning or end of a sub-word.

4. Shift left or right (remove a letter on the one side and add random one
on the other side), which is technically a combination of 2) and 3).

Each mutation has its own probability that affects the algorithm convergence
rate.
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Crossover is crucial to avoid local maximums. The crossover opera-
tion for two organisms must be applied for the correspondent pairs of sub-
words individually (except for the ones participating in complementary con-
straints). To perform the crossover for two sub-words, they should be aligned
first (in case their lengths are different). To implement aligning we have used
the following encoding. Each position is represented by 4 bits, one for each
of the 4 basic letters {A,C,G,U}. So U will be represented by 0100, R by
1010, N by 1111, and so on. Let α be not longer than β. For β′, which
is a subsequence of β with the same length as α, the quality of alignment
is the number of bits with ’1’ value in BITAND(α, β′). The alignment
procedure is the following:

1. Find position of the alignment β′ in β with the best quality.

2. Build the extension αext of α such that the length of αext is the same
as of β, α is a subsequence of αext with the same position as β′ in β,
and all other symbols in αext are N.

For two words of the same length, the crossover operation is rather sim-
ple. For each position of the result γi, we take randomly either βi or α

ext
i .

The genetic algorithm step builds a subsequent generation considering
the previous one (the cardinality of population is constant). In our case, it
includes the following:

1. Order the organisms by their fitness-function value, determine the elite
and good organisms by two thresholds. Nelite organisms with the
best fitness-function are considered as elite, and Ngood ≥ Nelite are
considered as good (the elite organism is always a good one).

2. Move elite organisms to the next generation without changes.

3. Move good but not elite organisms to the next generation with possible
mutations.

4. Some organisms (their number is determined by an additional thresh-
old) of the remaining part of the population are computed as a result
of crossover between random pairs of good organisms.

5. The other organisms are computed as random super-words.

Unfortunately, there is no good convergence criterion, when an algorithm
should be stopped. It can be stopped after reaching a pre-determined num-
ber of generations, a certain value of the fitness-function, or even manually.

4. Island extension

In the previous paper [10], it was shown that the computation times nec-
essary to achieve satisfactory results are too long (hours to days) to search
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for the ways to improve the performance. A possible way is to use paral-
lel computing, which is very natural for the genetic algorithm. For most
operations, by-data parallelism can be used because each organism (or a
pair of them in case of crossover) can be processed independently. The only
exception is sorting a generation (generation sorting), but it is irrelevant
because the other parts are much more complex. Unfortunately, after each
stage, the synchronization of data between processes is required, and in
fact, only SMP-like systems can be used effectively without the algorithm
modification.

In [19], the island modification of the genetic algorithm is described,
which can be used effectively, for instance, with computer clusters. The
general idea is that several relatively independent populations (islands) are
being computed simultaneously (usually on different nodes of a cluster).
Some synchronizing occurs only in fixed time points, usually once per sev-
eral hundred generations. Islands exchange their best organisms with other
islands in synchronizing points, while evolving independently all the other
time.

In this paper, we used island modification to solve the problem with
the genetic algorithm on a GPU. The GPU architecture is closer to MPP-
systems than to SMP. There are several computing units (usually 10-20 or
more for expensive GPUs), each with several computing cores and its own
memory block. There can be shared memory for all the units, but it is much
slower. The genetic algorithm can be implemented much more effectively
on a GPU by computing a separate island on a separate computing unit.

5. Performance

In implementation OpenCL framework is used, mainly because it utilizes the
GPUs of different vendors and the same code can be run on CPU utilizing all
the available cores. For testing purposes, we have used GPU AMD Radeon
7870 and CPU AMD FX 8320, which is a rather common desktop machine.
Figure 3 shows the results of comparison of performance on GPU and CPU
depending on the population size. For larger populations, there is about ten
times difference. The oscillation-like effect on GPU curve can be probably
explained by the fact that it should work with the highest efficiency when
the population size is divisible by the computing cores of GPU. Otherwise,
some cores are not fully loaded.

6. Results and discussion

In [10], the super-word “DDH - WW - DHH - WWW - Y - WW - R” was
found in 5 hours on an 8-CPU computer cluster using only CPUs. The value
of the fitness-function was 0.45. The GPU-based algorithm was able to find
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Figure 3. Comparison of performance using GPU and CPU

the super-word “DWDN - DW - HBHN - DDDNDW - KNN - DW - VNN”
which delivers the value 0.489 to the fitness-function. On the same machines
and with the same initial data, it required just 30 minutes of computational
time. The latter motif exceeds the former within the current assumptions.
However, the quality of the motif should be assessed in additional biological
experiments [1], where HuR-RNA affinity will be measured after the per
nucleotide mutations of the motif. Previously, several methods and different
motifs of the HuR-RNA interaction have been published. In [20], a simple
motif AUUU[U]*A was found. It did not consider any secondary structure
of the HuR targets and its fitness-function (1) value measured in our data
was 0.443. Another method [3] was able to recognize a motif consisting of
one hairpin up to 17 bases in length with specific nucleotide content. This
method takes into account the secondary structure, but in spite of this fact,
it gives lower fitness function (1) value, that is 0.423. The result of the
methods comparison is presented in summary in Table 2. The SWORD
GPU algorithm provides the best result.

Further improvement of SWORD suggests the implementation of other
fitness-functions for optional selection by the user. One of such functions is
based on probability approach:

F (α) = − 1

n|pos|

|pos|∑
j=1|αmatchβj

n∑
i=1

log p(αimatchβi
j), (2)
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Table 2. Fitness-function (1) value for motifs found with different methods

SWORD GPU (current work) 0.489
SWORD CPU [10] 0.45
AUUU[U]*A motif [20] 0.443
One-hairpin motif [3] 0.423

where the probability p(αimatchβi
j) is computed with the dynamic pro-

gramming algorithm [21] extended for the 15-letter alphabet. This algo-
rithm considers the first order Markov chain over the nucleotide sequences
of pos or con sets. The fitness-function (2) can be defined without a con set,
which extends the applicability of the method.

However, there is an obvious limitation of SWORD usage. The method
requires a predicted secondary structure of RNA. Thus, it requires co-
operation with such programs as RNAFold, Sfold, RNAduplex [12] or oth-
ers. SWORD can be improved further through increasing its autonomy.
The modified SWORD will automatically split an RNA sequence being an-
alyzed into fragments according to pre-defined templates. Each fragment is
assumed to be part of the functional domain of RNA and will be subjected
to the search for a characteristic sub-word.

In its current modification, SWORD is a fast and high-quality software
tool with a command line user interface and customizable parameters. It
can be applied routinely for the whole genome search and classification of
the pre-miRNA molecules, for the prediction of transcription terminators
and search for motifs in any RNA molecules interacting with proteins. Ex-
ponentially growing size of experimental data makes SWORD a demandable
tool for knowledge discovery.
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