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An lnvestlgatlon of equlvalence notlons
on some subclasses of Petrl nets

I.V. Ta.ra'syuk '

In this paper a varlety of Pet.n net’ eqmvalences is exammed A correlatlon
of all the considered equivalences is established, and a la.tt.lce of lmphcatxons is
obtained. In addition, the. equivalences are treated for some subclasses of Petn
nets; sequential nets, T—nets and nets with strict la.bellmg

1. . Introduction'

In recent years, a. w1de range of semantic eqmva.lences were defined and mvestl- S
gated in concurrencytheory. In linear time semantics, where a process is_ fully
determined by the set of its possible (partial) runs, mt,erleavmg, step and pomset-
trace equivalences [3] are known. : :

In branching time semantics the information is preserved where two ¢ courses .
of actions diverge. Bisimulation is a fundamental behavioural equivalence in this
semantics. Interleaving [6], step [5], partial word [11], pomset [4] and process [1]
bisimulation equivalences were proposed in the literature. ' '

(Interleaving) ST-bisimulation equivalence [4] respects the duration of transition
occurrences. A definition of the equivalence was extended to partial words and
pomsets in [11].

(Pomset) hlstory preservmg ‘bisimulation equwalence which respects the “past”
of the processes, was first. defined in (8] under the name “b:smmlatloa equivalence
of behaviour structures”.

In this paper the above. mentioned definitions are aupplen_lented by partial word
history preserving and by process (ST- and history preserving) bisimulation equiv-
alences. The equivalences are considered in the framework of Petri nets with finite
processes. A correlation of all the equivalences is examined on usual Petri nets and
their subclasses: sequential nets, T-nets and strictly- labelled nets.

In Section 2 the basic definitions are given. Trace.equivalences are described
in Section 3. Bisimulation equivalences are presented. in Section 4. In Section 5
the theorem establishing a correlation of all the introduced equivalences is proved.
Section 6 is devoted to the examination of the equlvaiences on different net sub-
classes. The concluding Section 7 contains some ideas about further development
of the theme. Most of the proofs are omitted because of absence of space. The
early results can be found in [9].

*The work was supported in part by International Association for the Promotion of
Cooperation with Scientists from the Independent States of the Former Soviet Union
(INTAS), contract No. 1010-CT93-0048. '
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2. Basic definitions

2.1. Ml.lltisets

Let X be some set.. A mult:set M over X isa mapping M : X — N, where N is
a set of natural numbers. For z € X, M (a:) is a-multiplicity z in M. We write
z€ Mif M(z) > 0.

When Vz € X- M(z) < 1, M is a proper set. M is finite if M(z) = 0 for
all z € X, except maybe a finite number of them. Cardinality of multiset M is
defined in such a way: |M| = 2 zex M(z). From now on we will consider only
finite multisets. M(X) denotes the set. of all finite multisets over X.

Set-theoretic notions are extended. to finite multisets in the standard way. If

M, M' € M(X), we define M + M’ by (M 4+ M')(z) = M(z) + M'(z). We
write M C M', if ¥z € X M(z) < M'(z). When M’ C M, we define M — M’ by
(M- M’)(z) M (z)—M'(z). Notation M +z—y is used mstead of M+{z}—{y}.
We write symbol ﬂ for- empty multlsct

2.2. Marked nets

Let % = {a,b;...} be an a.lphabet of ‘action names (labels) A labelled net is a
quadruple N.= (PN,TN, Fn,lx), where:

e Py= {p,q,‘ Jisa sel; of bla.ces;
o Tn = {u,v,...}is a.set of transitions;
Fy : (Pnx Ty) U (TN % Py) = N.is the’ ﬂow relation with weights;

oely:Tn >%Uisa label_hng of transnslons_ w1th action names.

It is believed that Py N Ty = 0. :

Given a labelled net N and some transition 4w € Ty, the precondition and
postcondition u, written respectwely u and u* i ‘are the multisets defined in such
a way: (*u)(p) = Fx(p,u) and (u*)(p) = FN(u‘ p). Analogous definitions are
introduced for pla.ces (*p)(u) = Fn(u, p) and (p*)(u ) = Fn(p,u). A transition
“u is unstable if *u = . A labelled net is. stable if it has no unstable transitions.
Further we will deal only with stable labelled nets. A labelled net N is ordmary if
Vp € Py *p and p* are proper sets. "A labelled net N is finite if Py UTy is. Let
°N={pePn|*p=10)}isaset ofmmalplm:es of N-and N° = {p€ Py | p* = 0}
is a set of final places of N. :

Let N be a labelled net. A marking ol' N is a multiset M € M(PN) A marked
net is a tuple N = (PN,TN,FN,IN,MN) such that (Pn,Tn, Fn,ln) is a labelled
net and My € M(Py) is an initial’ ma.rkmg We write “net” instead of “marked
net”. Let M € M(PN) be a marking of a net. N. A transition u € Tl is firable in
Mif*u C M If u is firable'in M, firing it ylelcls anew marking M’ = M — *u+u®,
written M 5 M’. We write M = M’ if M 5 M’ for some u. A marking M’ of a
net N is reachable from marking M of the net, if:

1) M'=M,or

2) there exists a reachable from M marking M" of a net N, such that M" — M’.
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A marking M of a net N is reachable, if it is reachable from My. Mark(N, M)
denotes a set of all reachable from M markings of a net N, and Mark(N) denotes
a set of all reachable markings of a net N.

An action a € A is autoconcurrent in N if IM & Mark(N) 3t,u € Ty such that
In(u)=In(t) =aand *t+*uC M. A net N is autoconcurrency free if no action
is autoconcurrent in N.

2.3. Processes
A causal net is a labelled net C = (Pg,Tc, Fc,lc), where:

1) Vr € Pc |°r] <1 and |r*| < 1, ie., pla.ces are unbranched and C is an:
ordinary labelled net;

2) Fc is well-founded, i.e., there is no backwa.rd mﬁmte chain
(rrn ”n)(vn:rn—l) (rlr”l)(vhﬂ)) n FC

The fundamental property of causal nets is known: if C is a causal net, then tl;ére
exists a transition sequence °C = Lo =3 --. 23 L, = C° such that L; C P¢ (0<i<
n), Pc = UkoL; and T¢c = {v1,...,va}. Such a sequence is called a full ezecution
of C.

Given a net N and a causal net C. A mapping f : Pc UTc = Py UTy is an
embedding C into N, written f:C — N, if:

1) f(Pc) € M(Pn) and f(Tc) € M(Tn);
2) Vv e T lc(v) = IN(f(v));
3) Vv € Te *f(v) = f(*v) and f(v)* = f('v°)
Point 3 means that embeddings respect the ﬁow relatlon Consequently, ifoc 4
-3 C°isa full execution of C, then M = f(°C) "—(v—\) f(C°) =Misa

transition sequence in N, comespondmg to this. full execution, written M S M

Conversely, for any transition sequence M 23 ... %3 M’ 6f a net N there exists a

causal net C and an embedding f C —.N.such that M = f(°C), M’ = f(C°).
= f(u) (0< i< n)and °C % ... %3.C° is a full execution of C.

A firable in marking M process of a net N is a pair’ x = (C, f), where C is
a causal net and f : C = N is an embedding such that M = f(°C). A firable
in My process is a process of N. We write II(N, M) for a set of all firable in M
processes of N and TI(N) for a set of all processes of N. Processes and reachable
markings of a net ‘N are connected in the following way: Mark(N, M) = { f(c®) |

“w=(C, f) € I(N,M)}. Further we will dea.l only with finite processes, i.e., with
processes having finite causal nets.

If # € II(N, M), then firing of this process transforms a marking M into M’ =
M — f(°C) + f(C°) = f(C®), written M 5 M’. A causal net sets an ordering
on transitions (the causal dependence relation) <, defined in such a way: <¢c =
F} [roxTe, Where Fg‘ is a transitive closure of Fc. The initial process of a net
N is 7x = (Cn,fn) € II(N), where T, = 0. Let 7 = =(C.f), & = (C,f) €
H(N) T = (C f) € H(N f(Co)) = (PC,TC,FC.IC) C (PCHTCrFC')’C')
C = (Ps, Tg, Fy, la).
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We write 7 5 # 7, if: _

1) PCUPC-—-—P@,TCUTC TG, FcUFC_FC,FcUlC_lC,

2) fuf=". - '
In such a case % is an ext.eusxon of & by prweu r, and 7 is an ertending process
for r. We wnte T &, if —b . for some extendmg process .

Let 7 > % A process #isan extensmn of 7 by one action, if|Ts]|=1.In such

a case we write. m = ¥ or ¥ 3 %, 1fT¢‘= {v} and lc(u) = a, A process 7 is an
extension of 7 by multiset of actzom, "or. step, if <x=0. In such a case we write

1r—)-1ror1r4‘)1r 7= Véa.ndlﬁ.(T) A AGM(Q()

2.4. Mappmgs

Given nets N = (PN,Tn,FN,IN,MN) and N' = (PN: T, FNa Ini, Mp+). We call
B a mapping of N into N', written B : N = N',if 8 : Py UTy — Py: U Ty,
B(Pn) C Pn» and ﬂ(TN) C TN- We wnte (N ) = N, when ﬂ(PN) Py and
(TN) = TN!
A mapping B N —) N i 1s an’ taomorphasm between N and N, wrlt.ten B:N~
! if: ) : :

1) B is a bijection. a.nd ﬂ(N)
2) Yue Ty In(u) = lm{ﬁ(u))
3) Vu € Tw *B(u) = A(*u) and ﬁ(u)' ' ﬁ(u )--

Nets N and N’ are isomorphic, wntten N N’ ; lf there exlsts an isomorphism
B:N~N'. .
Given two. la.belled causal nets

(PC,TC,FCJC) and C' = (Pc' Tc' Fc' fc')
A mapping 8 : Tc — T is a. Iabel preservmg buect:on between Tc and Tg,
written §: Tg ~ Tc- if: T o .
1) B is a bijection and ﬂ(Tc) Tcr D
2} Yv e Te Ic(v) = Ic: (ﬂ(v))

We write T¢ = Tc:, if there exists a label—preservmg bijection 8 : Tc ~ Te.
A mapping 8 : Te = ch is a homomorph;sm between T and T¢:, written
B:Tc C Tes, if: : R T

l)ﬂ:Tc’#Tci; L
- 2) VW, w€Tc v=<cw = Bv) <c B(w).

We write T¢ C T¢r, if there exists a homomorphism £ : TC E Tc:.

A mapping 3 : Tc — T¢: is an isomorphism between Te and Tc+, written
B:Tc~=Tci,if f:Tc C Tgr and B~ : T C'Te. We write Te ~ Tc, if there
exists an isomorphism 8 : T¢ ~ Ter. ' .
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3. Trace equivalences

A sequential trace of a net N is a sequence a; ---a, € A* such that 7y 3 7, 3
. =3 m,, where m; € II(N) (1 < i < n) and 7N is an initial process of N.

SeqTraces(N) denotes a set of all sequential traces of N. Two nets N and N’ are
interleaving trace equivalent, written N =; N', if SeqTraces(N) = SeqTraces(N’)

A step trace of a.-net N is a sequence A, --- A, € (M(A))* sut.'h that my 4
m 3 ... %, where m € II(N) (0 € < n), and ny is an initial process of N.
StepTracs( ) denotes a set of all stép traces of N. Two nets N and N’ are step
trace equivalent, written N =, N‘, if StepTraces(N) StepTraces(N'). '

A pomset trace of a net N is a pomset p, an isomorphism class of T¢ for 7 =
(C,f) € II(N), where C = (P¢,Tc, Fc,lc). We write pC ¢, if Te C Tc: for Tc e
p and Tcr € p'. In such a case we say that pomset p is less sequential or more parallel
than p’. Let us denote a set of all pamset traces of N by Pomsets(N). Two nets
N and N' are partial word trace equivalent, written N = =pw. N’, if Pomsets(N) C
Pomsets(N’) and Pomsets(N') C Pomsets(N), i.e., for any p’ € Pornsets(N’ ) there
exists p € Pomsets(N) such that p C p’ a.nd v1ce versa. Two nets N and N’ are
pomset trace equivalent, written N =,om N’, i Pomsets(N) = Pomsets(N').

A process trace of a net N is an isomorphism class of C for v = (C, f) € II(N).
ProcessNets(N) denotes a set of all process traces of N. Two nets N and N’ are
process trace equivalent, written N =,, N, if ProcessNets(N) = ProcessNets(N').

4. Bisimulation equivalences

In this section we consider the definitions of different bisimulations. A notation
R : N ©, N' means that R is a bisimulation of a type between nets N and
N’. Nets N and N’ are called a-bisimulation equivalent, written N o, N', if
R : N &, N’ for some a-bisimulation R.

4.1. Simple bisimulations

Let R C TI(N) x II(N’). In the following definition # = (C, f), # = (C", f').
R is a a-bisimulation between N and N’, a € {interleaving, step, partial word,
pomset, process}, written R : N &, N’, a € {i, s, pw, pom, pr}, if:

1. (7N, 7n') ER;
2. (m,”)ER, * 5 &,
(a) 1T =1,ifa=1;
(b) <g=0,ifa=s;
then 3% : 7' & #, (%, %) € R and
(a) Tg C Tg, if a = pw;
(b) Tg =Tg,, if a € {i,s, pom};
(c) C~C" ifa=pr

3. As previous item but N and N’ are transposed.
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4.2. ST-bisimulations

A ST-process of a net N is a pair (re,mp) such that g, mp € (N), 7p X =g
‘and Yo, w € Tep v.<cp w = v € Tcp. In such a case mg is a process which
began to work, i.e., all actions of rg began working. A process mp corresponds to
the terminated part of 7, and my corresponds to the still working part. Clearly,
<cw = 0. ST —II(N) denotes a set of all ST-processes of N. (7, ) will
be an initial ST-process of N. Let (7, mp), (%E,%p) € ST — II(N). We write
(?I'E, ﬂp) - (i'rE, ﬁ"p), if rg — g and mp — p.

Let R C ST —II(N) x ST — II(N’) x B, where B = BI1B:Tc 2T, v =
(C,f) €I(N), o' = (C", f') €II(N')}. In the following definitions 7g = (CE, fg),
mp = (Cp, fp), 7 =(Cl,.fE). 7p = (Cp, fp), 7 = (C, f), = = (C", f").

R is a a-ST-bisimulation between N and N’, o € {interleaving, partial word,
pomset, process}, written R : N.9,¢1 N', a € {i,pw, pom,pr},if: -~ . . -

L ((nw,7n), (nnn o), 0) €R; o
2. ((WE,Tl'p), (ﬂ”E, Wi;),ﬁ) ER = B TCE ~~ TCE: and ,@(Tcp) = TC:P;
3. ((n, 7p), (5, 7p), ) € R, (75, 7p) = (p, 7p) = 3, (*p, 7)) :
(”’E’ FIP) - (ﬁ’Erﬁ'i’)! ﬁrTcE" ﬁ: ((ﬁ'En i'l'p), (;rlsa i}-’); ﬂ) € R, and
if 7p 5 &g, Tp 3 &y then:
(a) (Blrc)™: Te' C Tg, if a = pw;
(b) ‘B[TC: _TC ~Tc, if‘_] € {p_om,pr};
(c) C=C, ifa\r_z,pr;

4. As previous item but N and N’ are t'r-a,hsbo;sed. -

4.3. History preserving bisimulations

Let R C II(N) x I(N’) x B, where B= {3 |8 :Tc = Tov, v = (C, f) € II(N),
m = (C', f) € I(N')}. In the following definitions = = (C.f), # = (C,f),
= (C".f), ® =(C,f).

R is a a-history preserving bisimulation between N and N’, o € {partial word,
pomset, process}, written N &, N, a € {pw, pom, pr}, if:

1. (7w, 7N, B) E_'Rl;- R S

2. (w.rr’,ﬁ)e'l?,_é ﬁ:_Tc'mTC-; ' L

3. (mr'\B)eER, no 7= 33,7 : ' o w, BI’TC.: B, (#, ir’,ff) € R and

(a) B~1:Ts C T, if o = pw;
(b) §: Tg =~ T, if @ € {pom, pr};
(c) C~¢Cifa=npr;

4. As previous item but N and N’ are transposed.
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5. A comparison of the equivalences

In this section a theorem establishing a correlation of all introduced equivalences
is proved.

Theorem 1. Let ~€ {=, 8} anda,B € {i, s, pw, pom, pr, iST, pwST, pomST,
prST, pwh, pomh, prh}. For nets N and N', N ~q N' = N ~g N’ iff there exists
a directed path ~gq— -+ —+~p in @ graph in Figure 1.

t—')pwh -— t"pam}_s - ﬁprh

| | ¢

57 +—— SpusT+—— SpomsT +——prsT

! | ! ¢

ﬁ, -— ﬁpw 4——+ipom4——'— ﬂw

| 1 x 1

s +—— Zpw e—— Spom Spr

M - I3

1
Figure 1. Correlation of the equivalences

Proof.
< By definitions of the equivalences.
= It is sufficient to consider the following examples.

e In Figure 2.1: N &; N’ but N #, N’ since there exists a step trace {a,b} in
N which is not in N'.

e In Figure 2.2 N =pr N' but N ¢»; N’ since only in N an action a can
happen such that it is impossible to run b after it.

e In Figure 2.3: N ©,n N/ but N #pom N' since b can depend on a in N.

e In Figure 2.4: N ©,,mn N’ but N #,. N'since N is a causal net which is
not isomorphic to causal net N'.

e In Figure 2.5: N &;57 N' but N #pw N’ since a net N is corresponded by
a pomset such that there is not even less sequential pomset in N'.

o In Figure 3.1: N &, N’ but N ¢5;s7 N’ since an action a is able to begin
working in N’ so that no b can start later.

e In Figure 3.2: N @57 N but N $pu N since only in N’ actions a and
b can happen so that the next action, ¢, must depend on a. ]

6. Equivalences on different net subclasses

In the literature a several subclasses of nets were proposed by introduction some re-
strictions on the initial definition of nets, and merging of equivalences was obtained
on these types of nets. See for example [2, 7]. We will consider the introduced
equivalences on sequential nets, on T-nets and on nets with strict labelling.
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Figure 2. Examples of nets
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Figure 3. Examples of nets (continued)

A net N = (Pn,Tn,Fn,In,MN) is sequential if Vr = (C,f) € II(N),
Yo, w € Te (v <c w)V (w <c v), i.e., <c is a strict (total) ordering on causal net
transitions of any process m = (C, f) of the net N.

Proposition 1. For sequential nets N and N’,

1L 2N &; N & N Opomp N';
2. N=;N' & N=pom N'.

Theorem 2. Let ~€ {=, 0}, a,8 € {i, pr, prST, prh}. For sequential nets N and
N" N ~q N' = N ~g N’ iff there erists a directed path ~o— - .- —~p in graph
in Figure 4.

o, ﬂpr ﬁprST (__'}prh
= T ———— Epr

Figure 4. Equivalences on sequential nets

Proof. < By Theorem 1.
= It is sufficient to consider the following examples on sequential nets.

e In Figure 2.4: N 9; N’ but N #,, N'.
e In Figure 2.2: N =,, N’ but N ¢; N'.

¢ In Figure 5.1: N &, N’ but N $3,rs7 N’ since only in N’ we can begin
running a process with action a so that it may be extended by action b in
the only way (i.e., so that extended process be only one).
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e In Figure 5.2: N ©,,.5r N' but N #,., N’ since only in N’ it is possible
to run a process with sequential occuring actions a and b so that the next
action, ¢, may extend this process only in one way (i.e., causal net with
action ¢, extending a causal net corresponding to sequence ab, connects with
its subnet containing a, in the only way). o

ﬁprST

Aprn

Figure 5. Examples of sequential nets

A T-netis a net N = (Pn,Tn, Fn,In, MN) such that Vp € Py |*p| < 1 and
lp*| < 1.

Proposition 2. For autoconcurrency free T-nets N and N', N =; N' &
N @jqr N'.

No pomset equivalence is a consequence of partial word one, and no process
equivalence is a consequence of pomset one on T-nets without autoconcurrency. It
is demonstrated correspondently by Figure 6.2 where N &, N’ but N #,om N’
since only in N' an action b can depend on a and by Figure 2.4 where N &, N’
and N #,, N'. Let us note that for safe autoconcurrency free T-nets we can use
the results of [10] and establish the coincidence of interleaving and pomset trace
equivalences. '

A net N = (Pn,Tn, Fn,In, My) is a strictly labelled, if its labelling function
is Iy bijective, ie, Vi, u €Tn t #u = In(t) # In(u).
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Proposition 3. For strictly labelled nets N and N', N =, N' & N o, N,
a € {i,s, pw, pom, pr}. :

For strictly labelled nets we can not draw any arrow in a graph in Figure 1 from
interleaving to step, from partial word to pomset and from pomset to process equiv-
alences. In addition, in all semantics from interleaving to pomset the history pre-
serving bisimulation equivalences are strictly stronger than ST-bisimulation.ones.
It is proved by the following examples.

e In Figure 6.1: N &; N’ but N #, N’, since only in N actions a and b can
work concun_'ently.

 In Figure 6.2: N ©,,, N’ but N #pom N'.
o In Flgure 2.4: N Spomn N' but N #,r N'.

e In Figure 6.3: N Qpomst N' but N ¢4, N', since in N ’ t.he sequence ab
. can happen so that the next action, ¢, must depend on a.

' ,I-"igure-ﬁ. "Examples of étricf-ly labelled nets

7. Conclusmn

A group of the Petn net. eqmvalencm is mt.roduced in the pa.per A correlation
of these equwalences on nets.with finite processes without. A-actions is found. In
addition, it is considered which equivalences coincide on different subclasses of nets.

The development of the subject consists in further exploratlon of the introduced
equivalences on T-nets and strictly labelled nets.

The next direction of the development of this theme may be an exammat:on of
the proposed equivalences on the wider net class, exactly, on nets with \-actions.
Probably some equivalences will not be connected on such nets. In [11] the example
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of event structures with A-actions was considered. It is demonstrated the indepen-
dence of ST-bisimulation equivalences and h-bisimulation equivalence on such event
structures. _ :

Finally, it would be interesting to find out how ST- and history preserving
equivalences are connected with place bisimulation equivalences introduced in [1].

Acknowledgements. T 'would like to thank LB. Virbitskaite for setting the theme,
supervision in research work and for many helpful discussions which improved the
style and contents of the paper. '
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