Joint NCC & IIS Bull., Comp. Science, 7(1997), 57-84
© 1997 NCC Publisher

Equivalences for behavioural analysis
of multilevel systems*

Igor V. Tarasyuk

The paper is devoted to the investigation of behavioural equivalences of concur-
rent systems modelled by Petri nets. Back-forth and place bisimulation equivalences
known from the literature are supplemented with new ones, and their relationships
with basic behavioural equivalence relations are examined for the whole class of
Petri nets as well as for the subclass of sequential nets. In addition, the preserva-
tion of all the equivalence notions by refinements is treated.

1. Introduction

The notion of equivalence is central in any theory of systems. It allows us to
compare systems taking into account particular aspects of their behaviour.

Petri nets [21] became a popular formal model for design of concurrent
and distributed systems. One of the main advantages of Petri nets is their
ability for structural characterization of three fundamental features of con-
current computations: causality, nondeterminism and concurrency.

In recent years, a wide range of semantic equivalences was proposed in
concurrency theory. Some of them were either directly defined or transferred
to Petri nets from other formal models. The following basic notions of
equivalences for Petri nets are known from the literature (some of them
were introduced by the author in [26, 27, 28] to obtain the complete set of
relations in interleaving/true concurrency and linear time/branching time
semantics).

- o Trace equivalences (they respect only protocols of a net functioning):
interleaving (=;) [13], step (=;) [22], partial word (=,y) [12], pomset
(=pom) [24] and process (=) [26].

* Usual bisimulation equivalences (they respect branching structure of a

net functioning): interleaving (+»;) [20], step (+4) [16], partial word
(£pw) [29], pomset (£24,0m) [7] and process (<2pr) [4].

o ST-bisimulation equivalences (they respect the duration of transition
occurrences in a net functioning): interleaving (43;97) [11], partial
word (&,wsT) [29], pomset (£pomsT) [29] and process (£pest) [26].

*Supported by Volkswagen Stiftung under Grant I/70 564 and INTAS-RFBR. under
Grant 95-0378. ,

58 LV. Tarasyuk

¢ History preserving bisimulation equivalences (they respect the “paét”
or “history” of a net functioning): pomset (« pomh) [25] and process
(£2prm) [26].

e Conflict preserving equivalences (they completely respect conflicts in
a net): multievent structure (=mes) [27] and occurrence (Zec) [15].

e Isomorphism (=) [21] (i.e., coincidence of nets up to renaming their
places and transitions).

Two important groups of equivalence relations have been recently intro-
duced: back-forth and place bisimulation equivalences. Back-forth bisim-
ulation equivalences are based on the idea that bisimulation relation does
not only require systems to simulate each other behaviour in the forward
direction (as usually) but also when going back in history. They are closely
connected with equivalences of logics with past modalities.

These equivalence notions have been initially introduced in [14] in the
framework of transition systems. It has been shown that back-forth variant
(£4bir) of interleaving bisimulation equivalence coincides with ordinary ;.

In [8, 9, 10] the new variants of step (+4ef), partial word (4> © pwbpwt) and
pomset (£,ombpoms) back-forth bisimulation equivalences have been defined
in the framework of prime event structures and compared with usual, ST-
and history preserving bisimulation equivalences. It has been demonstrated
that among all back-forth bisimulation equivalences only £ pombpomf 1S Pre-
served by refinements (it coincides with £ pomh Which has such a property).

In [23] the new idea of differentiating the kinds of back and forth sim-
ulations has appeared (following this idea, it is possible, for example, to
define step back pomset forth bisimulation equivalence (_H_promf)) The set
of all possible back-forth equivalence notions was proposed in interleaving,
step, partial word and pomset semantics. Two new notions which do not
coincide with known ones have been proposed: step back partial word forth
(£sbpwr) and step back pomset forth (g,,0mr) bisimulation equivalences.
It has been proved that the former is not preserved by refinements, and the
question has been addressed to the latter.

Place bisimulation equivalences have been initially introduced in [1] on
the basis of definition from [17, 18, 19]. Place bisimulations are relations
over places instead of markings or processes. The relation on markings is
obtained using the “lifting” of relation on places. The main application of
place bisimulation equivalences is effective behaviour preserving reduction
technique for Petri nets based on them.

In [1, 2] interleaving place bisimulation equivalence (~;) has been pro-
posed. In these papers strict interleaving place bisimulation equivalence (=)
has been defined by imposing the additional requirement stating that corre-
sponding transitions of nets must be related by bisimulation. The question

Equivalences for behavioural analysis 59

of possibility introducing history preserving place bisimulation equivalence
has been addressed.

In [4, 5] step (~), partial word (~pw), pomset (~pom), process (~pr)
place bisimulation equivalences and their strict analogues (=, Rpws Rposis
~pr) have been proposed. The coincidence of ~i, ~s and ~p, has been
established. Also it has been shown that all strict bisimulation equivalences
coincide with ~pr- Therefore, we have only three different equivalences: ~j,
~pom and ~;. In addition, in these papers the polynomial algorithm of net
reduction has been proposed which preserves the behaviour of 3 net (i.e. the
initial and reduced nets are bisimulation equivalent). -

To choose the most appropriate behavioural viewpoint on systems to be
modelled, having a complete set of equivalence notions in all semantics and
understanding their interrelations are very important. This branch of re-
search is usually called comparative concurrency semantics. To clarify the
nature of equivalences and evaluate how they respect a concurrency, it is
actual to consider correlation of these notions on concurrency-free (sequen-
tial) nets. Treating equivalences for preservation by refinements allows one
to decide which of them may be used for top-down design.

The main contributions of this paper are the following.

Working in the framework of Petrj nets, we extend the set of back-forth
equivalences from [23] by that of induced by process semantics and obtain
two new notions which cannot be reduced to the known ones: step back pro-
cess forth («34,,¢) and pomset back process forth (£ pombprf) bisimulation
equivalences. .

We compare all back-forth and place equivalences with the set of basic
behavioural notions from 26, 27, 28] giving rise to better understanding of
the nature of new (and old) notions and complete the results of [10, 23, 4, 5].
In particular, we prove that ~pr Implies 3, and answer the question from
[1]: ~pr is strict enough to preserve the “histories” of a net functioning,
Hence, it is no sense to define history preserving place bisimulation equiva-
lence. Moreover, since ST- and history preserving bisimulation equivalences
are consequences of ~p,, the algorithm of net reduction from [4, 5] based
on this equivalence, preserves the timed traces [11] of the initial net (since
ST-bisimulation equivalences are real time consistent [11]) and “histories” of
its functionings (since history preserving bisimulation equivalences respect
the “past” of processes).

In [6], SM-refinement operator for Petri nets has been proposed which
“replaces” their transitions by SM-nets, a special subclass of state machine
nets. We treat all the considered equivalence notions for preservation by SM-
refinements and establish that among back-forth relations only +»

“Zpombpomf

and ¢,.4,.¢ are preserved by SM-refinements (they coincide with corre-

sponding history preserving ones for which this result holds). So, we obtain
the negative answer to the question from [23]: neither “sbpomf NOT even

60 LV. Tarasyuk

£ pombprf 18 preserved by refinements. We prove that ~; is the only place
bisimulation equivalence which is preserved by SM-refinements.

In addition, we investigate the interrelations of all the equivalence notions
. on sequential nets (subclass of Petri nets corresponding to transition systems
where neither transitions can be fired concurrently). The merging of most of
the equivalence relations in interleaving — pomset semantics is demonstrated.
We prove that on sequential nets back-forth equivalences coincide with usual
forth ones.

The rest of the paper is organized as follows. Basic definitions are in-
troduced in Section 2. In Section 3 back-forth bisimulation equivalences are
proposed and compared with basic equivalence relations. In Section 4 place
bisimulation equivalences are defined and their interrelations with equiva-
lence notions considered before are investigated. In Section 3 we establish
which equivalence relations are preserved by SM-refinements. Section 6 is
devoted to comparison of equivalences on sequential nets. Concluding Sec-
tion 7 contains a review of the main results obtained and some diractions of
further research.

2. Basic definitions

In this section we give some basic definitions used further.

2.1. Multisets
Multiset is an extension of set by letting it to contain several equal elements.

Definition 1. Let X be some set. A finite multiset M over X is a mapping
M : X — N (N is a set of natural numbers) s.t. {z € X . Miz; > 0} < oo.

M(X) denotes the set of all finite multisets over X. When 7z = XAM(z)
1, M is a proper set. Cardinality of multiset M is defined as follows: |M |
Yzex M(z). We write z € M if M(z) >0and M C M'.if vx = X M(z)
M'(z). We define (M + M')(z) = M(z) + M'(z) and (M — M')(z)
max{0, M (z) — M'(z)}.

AN A

2.2. Labelled nets

Labelled nets are Petri nets with transitions labelled by action names.
Let Act = {a,b,...} be a set of action names or labels.

Definition 2. A labelled net is a quadruple N = /Py.Tx. Fx.lv . where:

* Py ={p,q,...} is a set of places;

o Ty = {t,u,...} is a set of transitions;

Equivalences for behavioural analysis 61

® Fy : (Py x Ty) U (Tn x Py) — N is the flow relation with weights
(N denotes a set of natural numbers);

® Iy : Ty — Act is the labelling of transitions with action names.

Given labelled nets N = (PN,TN,FN,IN) and N’ = (PNr,TNf,FNf,INJ).
A mapping 8 : N — N’ is an isomorphism between N and N ', denoted by
B:N ~N' if:

1) @ is a bijection such that 3(Py) = Py and B(Tn) = Tyr;

2) Vp € Py Vt € Ty Fn(p,t) = Fi(B(p),4(t)) and
Fyn(t,p) = Fni(B(t), B(p));

3) Vit € T In(t) = In'(B(2)).

Two labelled nets N and N' are isomorphic, denoted by N ~ N’ ,if 38
N ~ N'.

Given a labelled net N and some transition ¢ € TN, the precondition and
postcondition t, denoted by °t and ¢*, respectively, are the multisets defined
as follows: (*t)(p) = Fn(p,t) and (t*)(p) = Fn(t,p). Analogous definitions
are introduced for places: (*p)(t) = Fn(t,p) and (p°)(t) = Frn(p,t). Let
°N = {p € Py | *p = 0} be a set of initial (input) places of N and N° =
{p € Py | p* = 0} be a set of final (output) places of N.

A labelled net N is acyclic, if there exist no transitions to,...,tn € TN
such that ¢ ;1 N*t; # 0 (1 <i < n)andty =+¢,. A labelled net N is ordinary
if Vp € Py *p and p® are proper sets (rather than multisets).

Let N = (Py,Tn, Fn,In) be acyclic ordinary labelled net and z,y €
Py UTp. Let us introduce the following notions.

° <Ny Yy & wFﬁy, where F; is a transitive closure of Fy (strict
causal dependence relation);

* Inz={y€ PvUTN |y ~<n z} (the set of strict predecessors of z);
A set T C Ty is left-closedin N, if V¢ € T (ly)N Ty C T.

2.3. Marked nets

A marked net is a labelled net with some “tokens” in its places, and these
places are considered to be “marked” ones. A behaviour of a marked net is
obtained by moving the tokens in accordance to the rules of a special “token
game”.

A marking of a labelled net N is a multiset M & M(Py).

Definition 3. A marked net (net) is a tuple N = (Pn,TN, Fn,ln, My),
where (Py, Ty, Fy,In) is a labelled net and My € M(Py) is the initial
marking.

62 LV. Tarasyuk

Let N = (PN,TN,FN,IN,MN> and N’ = (PNHTN‘,FN’,IN’:“IN'} be
marked nets. A mapping 3 : N — N' is an isomorphism between N and
N', denoted by B : N ~ N', if:

1))6 . (PN)TN:FNslN) = (PN"TN’}FN’,IN");

2) Vp € My My(p) = My (B(p))-
Two marked nets N and N' are isomorphic, denoted by N ~ N'. if 33 :
N~ N’ :

Let M € M(Py) be a marking of a net N. A transition t = Ty is
fireable in M if *t C M. If t is fireable in M, firing it yields a new marking

M = M—*t+t* denoted by M 5 M. A marking M of a net N is reachable

if M = My or there exists a reachable marking Mof Nst. M5 M for
some t € Tyy. Mark(N) denotes a set of all reachable markings of a net N.

2.4. Partially ordered sets

Partially ordered sets [24] are an important formalism, often used as a se-
mantical domain for concurrent systems. They clearly represemt causality
and concurrency which is interpreted as a causal independence.

Definition 4. A labelled partially ordered set (Iposet) is a triple
p = (X, <,l), where:
e X ={z,y,...} is a set of events;

e <C X x X is a strict partial order, the causal depeadence relation
over X;

e | : X — Act is a labelling function.
Let p = (X, <,1) and p' = (X', <, I') be lposets.
A mapping 3 : X — X' is a label-preserving bijection between p and p’,
denoted by B : p = g/, if:
1) (3 is a bijection;
2) vz € X l(z) =U'(B(x)).
We write p~ p' if 38: p~ p'.
A mapping 8 : X — X' is a homomorphism between p and g’. denoted
by B:pC /o, if:
1) B:p=pl;
2) Vz,ye X z <y = B(z) < By).

Equivalences for behavioural analysis 63

We write p C o, if 3: p C p'.

A mapping 8 : X — X' is an isomorphism between p and p, denoted
by B:p=pifB:pC p andB~!:p Cp Two Iposets p and p’ are
tsomorphic, denoted by p ~ p', if 36 : p ~ /.

Definition 5. Partially ordered multiset (pomset) is an isomorphism class
of lposets.

2.5. C-processes

C-processes [6] represent runs of concurrent systems and contain information
about causal dependencies of events in such runs.

Definition 6. A causal net is an acyclic ordinary labelled net C = (Pg, T,
Fe,le), s.t.:

1) ¥r € Pc |*r| <1 and |[r*| <1, i.e., places are unbranched;

2) |lc z| < o0, i.e., a set of causes is finite.

Let us note that on the basis of any causal net ¢’ = (Pc,Tc, Fe,lc) one
can define Iposet pc = (Tc, <y N(Te x T¢),lc).

The fundamental property of causal nets is [4]: if C is a causal net, then
there exists an occurrence sequence °C = Ly 3 ... U L, = C° such that
Li CPc (0<i<n), Po=U" L; and T = {v1,...,v,}. Such a sequence
is called a full execution of C.

Definition 7. Given a net N and a causal net C. A mapping ¢ : PoUT¢c —
Py UTpy is an embedding C into N, denoted by ¢ : C — N, if:

1) ¢(Pc) € M(Py) and ¢(Tc) € M(Ty), i.e., sorts are preserved;

2) Vv € Tc *p(v) = ¢(*v) and p(v)* = p(v*), ie., flow relation is re-
spected;

3) Vv € T¢ le(v) = In(p(v)), Le., labelling is preserved.

Since embeddings respect the flow relation, if °C' 3 ... "8 ©° is a full

execution of C, then M = ¢(°QC) 9@_1))

sequence in N.

v_(g) ©(C°) = M' is an occurrence

Definition 8. A fireable in marking M C-process (process) of a net N is a
pair m = (C,), where C is a causal net and ¢ : C — N is an embedding
such that M = ¢(°C). A fireable in My process is a process of N.

We write II(NV, M) for a set of all fireable in marking M processes of a net
N and II(N) for the set of all processes of a net N. The initial process of a

64 LV. Tarasyuk

net N is 7y = (Cn, ¢n) € II(N), such that T¢, = 0. If = € II(N, M), then
firing this process transforms a marking M into M" = M — ¢(°C) + ¢(C°) =
©(C°), denoted by M 5 M.

Let m = (C,¢), # = (C,$) € II(N), and # = (C,) € T(N, p(C°)).

A process 7 is an eztension of m by process 7, denoted by m 5 a, if
Tc C Ty is a left-closed set in C' and Tz =Tz \Tc.

A process 7 is an extension of a process 7 by one transition v € T,
denoted by 7 % 7, if 7 % and T = {v}.

A process T is an extension of a process 7 by a sequence of transitions
a=v1---vn€Té, denoted by 7 5 7, fdmeldN)(1<i<n)73m 3

v -~
.S T, =T

3. Back-forth bisimulation equivalences

In this section, in the framework of Petri nets, we supplement the defini-
tions of back-forth bisimulation equivalences [23] by new notions induced by
process semantics, and compare them with basic ones.

3.1. Definitions of back-forth bisimulation equivalences

The definitions of back-forth bisimulation equivalences are based on the
following notion of sequential run.

Definition 9. A sequential run of a net N is a pair (=, o), where:

e a process 7 € II(/V) contains the information about causal dependen-
cies of transitions which brought to this state;

e a sequence o € T such that 7y LA 7, contains the information about
the order in which the transitions which brought to this state occur.

Let us denote the set of all sequential runs of a net N by Runs(N).

The initial sequential run of a net N is a pair (xx,e), where £ is an
empty sequence.))

Let (m,0), (7,5) € Runs(N). We write (m,0) 5 (%,5), if 1 & 7, 36 €

Téw&ﬁand&:a&.

Definition 10. Let N and N’ be some nets. A relation R C Runs(N) x
Runs(N') is a x-back *x-forth bisimulation between N and N', x, 4k € {in-
terleaving, step, partial word, pomset, process}, denoted by R : N RV
*,%% € {i,s, pw,pom, pr}, if:

L ((mn,€), (mnr,€)) € R.

Equivalences for behavioural analysis 65

2. ((m0),(r',0")) € R

o (back)
(#,6) 5 (m,0),
(@) [Tzl =1,if =4
(b) <5=10,ifx=5;
7,6 : (#,6) 5 (0", ((7,6),(#,5)) € R and

& pgy if x = pw;
~ pgi» if * € {i,s, pom};

)

() [Tzl =1, if ox =1;

(b) <o=0, if 4k =5;

= 3(#,6'): (r,0") 5 (#,5"), ((7,6),(#,5")) € R and
(a) pai & pg if #x = pw;

(b) PG = Pan if %% € {i,s,pom};

(¢) C=~C", if »x = pr.

3. As item 2, but the roles of N and N’ are reversed.

Two nets N and N’ are *-back *x-forth bisimulation equivalent, x, % €
{interleaving, step, partial word, pomset, process}, denoted by Ny, N',
if 3R : N jpuue N', *,%x € {i, s, pw, pom, pr}.

3.2. Interrelations of back-forth bisimulation equivalences

In back-forth bisimulations, moving back from a state is possible only along
the history which brought to the state. Such a determinism implies merging
of some equivalences.

Proposition 1. Let x € {i,s, pw, pom, pr}. For nets N and N' the follow-
ing holds:

1) Nopubut V' € NS pompeN';

2) NowigN' & Nov g N

In Figure 1 dashed lines embrace coinciding back-forth
bisimulation equivalences.

Hence, interrelations of the remaining back-forth equivalences may be
represented by the graph in Figure 2.

66 LV. Tarasyuk

E iipombif Ei_-)—pombsf J%—pombpwfépombpomf;%tpombprf l:
o ! | Lo
1 1
1 1

 pwhif —— pwbsf ~—— 2 pwhpwf ~— 2 pwbpomf—— S pwbprf
Lo

.
| Srghif ~—— Dsbsf <—Ir-ﬁsbpwf ~—shpomf+— “sbprf
I
L

U I | i

Eibif —— Sibsf +~— ibpwf ~—Zibpomf+— Zibprf

Figure 1. Merging of back-forth bisimulation equivalences

ﬁprbprf

A
2 pombpomfe— £ pombprf

]
v

robsf <~—— sbpwf ~——sbpomf+— Zsbprf

! | , 1

Oibif +—— ibsf +— ibpwf ~— Tibpomf+— ibprf

Figure 2. Interrelations of back-forth bisimulation equivalences

Equivalences for behavioural analysis 67

~
=mes +—— =occ

i |

“pomh <:>-prh
AN
?—pombprf
e ~—— Srpwsre——5 pomST-———-—prST
Ersbsf —sbpwf —-sbpomf-—— ﬁshprf
/
O —— Dy — Tpw pom Epr

] |

s “pw - Epom =pr

Figure 3. Interrelations of back-forth bisimulation and basic equivalences

3.3. Interrelations of back-forth bisimulation and basic
equivalences

Let us consider how back-forth equivalences are connected with basic ones.

Proposition 2. Let x € {i,s,pw,pom,pr}, *x € {pom,pr}. For nets N
and N' the following holds:

1) NepgN' & Ne N

2) Nﬁ**bﬂ-fN’ A Nﬁ**hN';

3) Nﬁ**STN’ = Nﬁsb**fN,'

In the following, the symbol ‘_’ will denote the empty alternative.

Theorem 1. Let <, «»€ {=,e,~} and x,»x € {,, i, s, pw, pom, pr,
iST, pwST, pomST, prST, pomh, prh, mes, occ, sbsf, sbpwf, sbpomf, sbprf,
pombprf}. For nets N and N' the following holds: N <3, N' = N 4»,, N’

iff there ezists a directed path from <, to «».. in the graph presented in
Figure 3.

Proof. (<) By definitions of the equivalences.
(=) An absence of additional nontrivial arrows in the graph in Figure 3
is proved by the following examples.

68

LV. Tarasyuk

In Figure 4(a) N<;N', but N #; N’, since only in the net N’ actions
a and b cannot happen concurrently.

In Figure 4(c) N&jgpN', but N #,, N', since for the pomset corre-
sponding to the net NV there is no the same and less sequential pomset
in N'.

In Figure 4(b) N, N', but N #pp, N, since only in the net N’
an action b can depend on an action a.

In Figure 4(d) N =pes N', but N #,; N', since N' is a causal net
which is not isomorphic to the causal net N (because of additional
output place).

In Figure 4(e) N =, N', but N ;N', since only in the net N’ an
action a can happen so that an action b can not happen afterwards.
In Figure 5(a) N&,, N', but N4 g7 N’, since only in the net N’
an action a can start so that no action b can begin working until
finishing a.

In Figure 5(b) N, g7 N', but N¢ pomnN', since only in the net N’
an action b can happen after an action a so that an action ¢ must
depend on a.

In Figure 5(c) N, N', but N #pes N, since only the multievent

structure corresponding to the net N’ has two conflict actions a.

In Figure 5(d) N =, N', but N N', since unfireable transitions of
the nets N and N’ are labelled by different actions (a and b).

In Figure 4(c) Ng,eN', but N #, N

In Figure 6(a) N pueN', but N #p0m N, since only in the net N’
an action ¢ can depend on actions a and b.

In Figure 6(b) N<g,sN', but N¢bisTN', since only in the net N’ an
action a can start so that:

1) until finishing a, the sequence of actions bc cannot happen, and
2) immediately after finishing a an action ¢ cannot happen.

In Figure 6(c) N© pombpreN', but N s N’, since only in the net N’
the process with an action a can start so that it can be extended by
process with an action b in the only way (i.e. so that extended process
will be unique).

In Figure 4(b) Nt o7 N, but N4 3 N', since only in the net N’
the sequence of actions ab can happen so that b must depend on a.

In Figure 5(a) N, N', but N¢f g, N', since only in the net N’ action

a can happen so that action b must depend on a. O
O

Equivalences for behavioural analysis

(b)

(a)
Y EE (@O e/
SO

.‘:é sbsf .

Figure 4. Examples of basic equivalences

69

70 LV. Tarasyuk

st
. o o iﬁsbsf
6] (2]
) N (o) N (o)
n ﬁprST fa

ﬁé pomh

AP T R
b bj [b]
(€N : Sprh N @ N O N’

b S de A

Figure 5. Examples of basic equivalences (continued)

Equivalences for behavioural analysis 71

Figure 6. Examples of back-forth bisimulation equivalences

72 LV. Tarasyuk

4. Place bisimulation equivalences

In this section place bisimula.tior_l equivalences from [4] are compared with
back-forth bisimulation and basic equivalences.

4.1. Definitions of place bisimulation equivalences

Usual bisimulations may be defined on the basis of markings (instead of pro-
cesses) by replacing processes by corresponding markings in the definitions.

Definition 11. Let N and N’ be some nets. A relation R C Mark(N) x
Mark(N') is a *-bisimulation between N and N’ y * € {interleaving, step,
partial word, pomset, process}, denoted by R : No N, € {i,s, pw, pom,
pr}, if:

1. (MN,MNr) ER.
2. (M\M"YeR, M & W,

(a) [T = L ifx=i;
(b) —<6= @, if x= S;

= 3IM': M' 5 M, (M, ') € R and

C pg, if * = pw;
=~ pa, if x € {i,s, pom};

~

@:C’, if x = pr.
3. As item 2, but the roles of N and N’ are reversed.

Two nets N and N’ are x-bisimulation equivalent, x €{interleaving, step,
partial word, pomset, process}, denoted by No N, if

R : N N',* € {i,s, pw, pom, pr}.

Place bisimulations are relations between Places instead of markings. A
relation on markings is obtained with use of “lifting” of bisimulation relation
on places.

Let us note that in the definitions of bisimulations based on markings
any markings may be used, not reachable ones only. As mentioned in [4, 5]
this does not change bisimulation equivalences.

b

Definition 12. Let for nets N and N’ R C Py x Py be a relation between
their places. A lifting of R is a relation 7 € M(Py) x M(Pp:) defined as
follows:

Equivalences for behavioural analysis 73

H(p1,p1)s-- - (Pn,0R)} € M(R) :
M ={p,...pa}, M'={p},...0.}.

Definition 13. Let N and N’ be some nets. A relation R C Py x Py
is a x-place bisimulation between N and N', x €{interleaving, step, partial
word, pomset, process}, denoted by R : N ~, N', if R : No N/, x €
{i,s,pw, pom, pr}.

Two nets N and N’ are x-place bisimulation equivalent, x €{interleaving,
step, partial word, pomset, process}, denoted by N ~, N', if 3R : N ~,
N', x € {i,s, pw, pom, pr}.

(M,M")eR & {

Strict place bisimulation equivalences are defined using the additional
requirement stating that corresponding transitions of nets (as well as mark-
ings) must be related by R. This relation is defined on transitions as follows.

Definition 14. Let for nets N and N' t € Ty, t' € Ty. Then

(*t,*t) eR A
ttheR & { " t")ERA
In(t) =l (t').

Definition 15. Let N and N’ be some nets. A relation R C Py x Py is a
strict x-place bisimulation between N and N', x €{interleaving, step, partial
word, pomset, process}, denoted by R : N =, N', « € {i,s, pw, pom, pr}, if:

1. R: N N
2. In the definition of *-bisimulation in item 2 (and in item 3 symmet-

rically) the new requirement is added: Vv € T (¢(v), ¢'(8(v))) € R,
where:

(@) B:pg CE pg if x = pw;
(b) 6:115 ~ Pgn if « € {i,s, pom};
(¢) B:C~=C", if x=pr.

Two nets N and N' are strict x-place bisimulation equivalent, x € {inter-
leaving, step, partial word, pomset, process}, denoted by N ~, N', if IR :
N =, N’: * € {1’ 5, Pwspom;Pr}-

An important property of place bisimulations is additivity. Let for nets
N and N'R: N ~, N'. Then (M1, M]) € R and (M,, M}) € R implies
((My + M), (M) + M3)) € R. In particular, if we put n tokens in each of
the places p € Py and p’' € Py s.t. (p,p') € R, then the nets obtained
as a result of such a change of the initial markings, must be also place
bisimulation equivalent.

74 LV. Tarasyuk

! o e— g —— ’Q"-‘pw -1-——r"3pom-1—-— zpr

*r:::if:::I:::Zi::::::::i::ZZ:""i_"'? 1

Figure 7. Merging of place bisimulation equivalences
~i +——™~pom+—— ~pr

Figure 8. Interrelations of place bisimulation equivalences

4.2. Interrelations of place bisimulation equivalences

Let us consider interrelations of place bisimulation equivalences.

Proposition 3. [4, 5] For nets N and N’ the following holds:
1) N ~; N & N’pr N";
2) Nopy N' & Ny N' & N =, N'.

In Figure 7 dashed lines embrace coinciding place bisimulation equiva-
lences. :
Hence, interrelations of place bisimulation equivalences may be repre-
sented by the graph in Figure 8.

4.3. Interrelations of place bisimulation equivalences with
basic equivalences and back-forth bisimulatjon
equivalences

Let us consider interrelations of place bisimulation equivalences with basic
equivalences and back-forth bisimulation equivalences.

Proposition 4. For nets N and N' the following holds: N ~,. N' =
NeoowN'.

—Lpr

Theorem 2. Let <, «»€ {=0,~2} x4 € {- i, s, pw, pom, pr, iST,
pwST, pomST, prST, pomh, prh, mes, occ, sbsf, sbpwf, sbpomf, sbprf,
pombprf}. For nets N and N’ the following holds: N <+, N' = N «»,, N'

Equivalences for behavioural analysis 75

Emes - E0(:!'.‘. I —

1 1 |

ﬁpomh i “prh ——n ~pr
‘\\S\
ﬁporrll:nprf

i 1
ﬁiST - ﬁ]Z)WS".[""‘*—'—ﬁpm:]:[ST 4—ﬁprST

Erobst <~ ﬁprwf ~T—XZsbpomf<1— —ﬁﬁbprf
2 — S5 ﬁpw -~ 2 pom- i_.?.pr
~i *———"pom = y
| ‘
= oe— = =pw =pom +—— =pr

Figure 9. Interrelations of place bisimulation equivalences with basic equivalences
and back-forth bisimulation equivalences

iff there ezxists a directed path from >, to «%,, in the graph represented in
Figure 9.

Proof. (<) By definitions of the equivalences.

(=) An absence of additional nontrivial arrows in the graph in Figure 9
is proved by Theorem 1 and the following examples. Let us note that dashed
lines in Figure 10 connect places related by place bisimulation.

* In Figure 10(a) N ~; N’, but N #,0,, N', since only in the net N' an
action b can depend on a.

e In Figure 10(b) N ~pom N, but N #pr N', since only in the net N’
the transition with a label @ has two input (and two output) places.

e In Figure 10(c) N =, N, but N +£; N, since any place bisimulation
must relate input places of the nets N and N'. But if we put an
additional token in each of these places, then the action ¢ can happen
only in N'.

* In Figure 10(b) N ~pom N', but Nb ;s N', since only in the net N
an action a can start so that no b can begin working until finishing a.

e InFigure 5(c) N ~p N', but N # e N, only the multievent structure
corresponding to the net N', has two conflict actions a.

76 LV. Tarasyuk

Figure 10. Examples of place bisimulation equivalences

e In Figure 10(b) N ~pom N', but N<b ss¢N', since only in the net N’
an action a can happen so that b must depend on a.
O

5. Preservation of the equivalences
by refinements

Let us consider which equivalences may be used for top-down design.

Definition 16. An SM-netis a net D = (Pp,Tp, Fp,lp, Mp) such that:

1. 3pin, Pout € Pp such that pin # pout and °D = {p;n}, D° = {pout},
i.e., the net D has unique input and unique output places.

2. Mp = {pin} and VM € Mark(D) (pout € M = M = {p,us}), i.e., in
the beginning there is a unique token in p;,, and in the end there is a
unique token in pyy;

Equivalences for behavioural analysis 7

3. pj, and *p,y; are proper sets (nbt multisets), i.e. pip (Pout, respectively)
represents a set of all tokens consumed (produced respectively) for any
refined transition.

4. Vi € Tp [*t| = [t*| = 1, i.e., each transition has exactly one input place
and one output place.

SM-refinement operator “replaces” all transitions with a particular label
of a net by SM-net.

Definition 17. Let N = (Pn,Tn, Fn,ln, My) be some net, a € In(Ty)
and D = (Pp,Tp, Fp,lp, Mp) be an SM-net. An SM-refinement, denoted
by ref(N,a, D), is (up to isomorphism) a net N = (Px, T, Fiy Uy, M),
where:

Py = PyvU{(p,u) | p € Pp \ {Pin, Pout}, u € I5(a)};
Ty = (In \ 15" (@) U{(t,u) | t € Tp, u € I3 (a)};

(Fn(2,9), #,5€PyU (T \ I3 (a));

Fp(z,y), z=(z,u), §= (y,u), ue lﬁl(a);

* Fg(#,9) = Fn(3,u), §=(y,u), 5", ucizi(a), ypl;
Fn(u,9), Z=(z,u), §€*u, ucly'(a), z € *pous:
L 0, otherwise;

In(a), @eTn\Ily (a);
Ip(t), @=(t,u), teTp, uelyla);

o Iy(a) = {

Mn(p), pe€ Py;
0, otherwise.

Mz (p) = {

Some equivalence on nets is preserved by refinements, if equivalent nets
remain equivalent after applying any refinement operator to them.

Theorem 3. Let <€ {=,,~,~} and x € {-1,s, PW, pom, pr, iST, pwST,
pomST, prST, pomh, prh, mes, occ, sbsf » Sbpwf, sbpomf, sbprf, pombprf}.
For nets N = (PN,TN,FN,IN,MN), N' = (PNr,TNf,FNi,INI,MN:) such
that a € IN(TN) N I (TNr) and SM-net D = (PD,TD,FD,ID,MD) the fol-
lowing holds: N <3, N' = ref(N,a,D) ¢, ref(N',a, D) iff equivalence
4 18 in an oval in Figure 11.

78 LV. Tarasyuk

S — s Spw =pom { =pr)

Figure 11. Preservation of the equivalences by SM-refinements

6. Investigation of the equivalences on
sequential nets

Let us consider the influence of concurrency on interrelations of the equiva-
lences. ’

Definition 18. A net N = (Py,Tn, Fn,In,My) is sequential, if VM €
Mark(N)-3t,u € Tn : *t+ *u C M, i.e., neither transitions are concur-
rently enabled in any reachable marking.

Proposition 5. For sequential nets N and N' the following holds:
1) N =i N & N =pom -N’;
2) N__(—_)iN, =4 Nﬁpoth,;
3) NﬁprN, < NﬁpombprfN’;
4) N~ N' & N~pom N'.

In Figure 12 the dashed lines embrace the equivalences coinciding on
sequential nets.

s |

| I

Equivalences for behavioural analysis

] 1
£i5T +— L pwSTe——pomST+— 2prT

Figure 12. Merging of the equivalences on sequential nets

Figure 13. Interrelations of the equivalences on sequential nets

=mes +—— =occ +——
~J,

7prh — “pr

EprsT

79

80 LV. Tarasyuk

Theorem 4. Let ¢, e{=, o, ~,), *,%x € {_, i, pr, prST, prh, mes, occ}.
For sequential nets N and N' the following holds: N <3, N' = N s N
iff there ezists a directed path from <, to «»,, in the graph represented in
Figure 183.

Proof. (<) By Theorem 2.
(=) An absence of additional nontrivial arrows in the graph in Figure 13
is proved by the following examples on sequential nets.

* In Figure 4(d) N =y N', but N For N'.
* In Figure 4(e) N =,; N, but N<h;N'.

¢ In Figure 6(c) N, N', but N % prsTN', since only in the net N’ the
process with an action a can start so that it can be extended by an
action b in the only way (i.e., so that extended process will be unique).

e In Figure 14(a) N ©psTN', but Neg ,n N, since only in the net N’
there is a process with actions a and b s.t. it can be extended by the
process with an action ¢ in the only way (i.e., so that the connection of
the causal net with an action ¢ and a-containing subnet of the causal
net with actions a and b will be unique).

e In Figure 5(c) NoowN', but N Zp0 N,
* In Figure 5(d) N =,cc N/, but N 2 N,

¢ In Figure 14(b) N ~; N', but N #pr N', since the transition with a
label a has two input places only in the net N'.

* In Figure 10(c) N =,c N/, but N *;i N'.
* In Figure 5(c) N ~,; N', but N Fmes N'.

7. Conclusion |

In this paper, we examined a group of back-forth and place bisimulation
equivalences and supplemented it by new ones. We compared them with
basic ones on the whole class of Petrj nets as well as on their subclass
of sequential nets. All the considered equivalences have been treated for
preservation by SM-refinements to establish which of them may be used for
top-down design of concurrent systems.

Further research may consist in the investigation of analogues of the
considered equivalences on Petri nets with 7-actions (7-equivalences). Such
T-actions are used to abstract from internal, invisible to external observer
behaviour of systems to be modelled. In the framework of Petri nets with
T-actions interrelations of equivalences are drastically changed.

Equivalences for behavioural analysis

Figure 14. Examples of the equivalences on sequential nets

81

82 LV. Tarasyuk

For example, let us try to define T-equivalences in process semantics.
We abstract from 7-labelled transitions of C-nets by removing these transi-
tions and multiplication of their input and output places. Then all causal
dependencies of transitions with visible labels are preserved, and process
T-equivalences will imply corresponding pomset ones. But during such an
abstraction, the quantity of input and output places of some transitions
with visible labels may be changed. The consequence is, in particular, the
fact that history preserving 7-bisimulation equivalences do not imply usual
7-bisimulation ones.

Therefore, there is no necessity of introducing process r-equivalences.
By similar reasons, there is no sense to define strict place 7-bisimulation
equivalences. In addition, multievent structure 7-equivalence does not imply
even usual 7-bisimulation relations, but only 7-trace ones.

In the literature, a number of T-equivalences have been defined.

Some basic 7-equivalences have been considered on Petri nets and event
structures in [6, 22, 29]. The independence of ST- and history preserving
7-bisimulation equivalences has been shown.

In [14] interleaving back interleaving forth 7-bisimulation equivalence
has been defined on transition systems. Its coincidence with interleaving
branching 7-bisimulation equivalence has been proved. Similar result has
been obtained in [23], where pomset back pomset forth history preserving
T-bisimulation equivalence has been introduced, and its merging with new
notion of branching pomset history preserving r-bisimulation equivalence
has been established.

In [5, 3] interleaving place 7-bisimulation and 7p-bisimulation equiva-
lences have been introduced.

In future, we plan to define T-analogues of all the equivalence relations
considered in this paper and to exam them following the same pattern.

Acknowledgements. I would like to thank Dr. Irina B. Virbitskaite for many
helpful discussions. I am also grateful to Prof. Dr. Eike Best, head of the
Institute of Informatics, University of Hildesheim, where this paper has been
written.

References

(1] C. Autant, Z. Belmesk, Ph. Schnoebelen, Strong bisimularity on nets revisited,
Research Report 847-1, LIFIA-IMAG, Grenoble, France, March 1991.

[2] C. Autant, Z. Belmesk, Ph. Schnoebelen, Strong bisimularity on nets revisited.
Extended abstract, Lect. Notes in Comput. Sci., 506, June 1991, 295-312.

(3]

(4]

[5]

[6]

[7]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

(16]

[17]

18]

Equivalences for behavioural analysis 83

C. Autant, W. Pfister, Ph. Schnoebelen, Place bisimulations for the reduction
of labelled Petri nets with silent moves, Proceedings of International Confer-
ence on Computing and Information, 1994.

C. Autant, Ph. Schnoebelen, Place bisimulations in Petri nets, Lect. Notes in
Comput. Sci., 616, June 1992, 45-61.

C. Autant, Petri nets for the semantics and the implementation of parallel
processes, Ph.D. thesis, Institut National Polytechnique de Grenoble, May
1993 (in French).

E. Best, R. Devillers, A. Kiehn, L. Pomello, Concurrent bisimulations in Petri
nets, Acta Informatica, 28, 1991, 231-264.

G. Boudol, I. Castellani, On the semantics of concurrency: partial orders and
transition systems, Lect. Notes in Comput. Sci., 249, 1987, 123-137.

F. Cherief, Back and forth bisimulations on prime event structures, Lect. Notes
in Comput. Sci., 605, June 1992, 843-858.

F. Cherief, Contributions & la sémantique du parallélisme: bisimulations pour
le raflinement et le vrai parallélisme, Ph.D. thesis, Institut National Polytech-
nique de Grenoble, France, October 1992 (in French).

F. Cherief, Investigations of back and forth bisimulations on prime event struc-
tures, Computers and Artificial Intelligence,1 1, No. 5, 1992, 481-496.

R.J. van Glabbeek, F.W. Vaandrager, Petri net models for algebraic theories
of concurrency, Lect. Notes in Comput. Sci., 259, 1987, 224-242.

J.. Grabowski, On partial languages, Fundamenta Informaticae, IV, No.2,
1981, 428-498. :

C.A.R. Hoare, Communicating sequential processes, on the construction of
programs, (McKeag R.M., Macnaghten A.M., eds.) Cambridge University
Press, 1980, 229-254.

R. De Nicola, U. Montanari, F.W. Vaandrager, Back and forth bisimulations,
Lect. Notes in Comput. Sci., 458, 1990, 152-165.

M. Nielsen, G. Plotkin, G. Winskel, Petri nets, event structures and domains,
TCS, 13, 1981, 85-108.

M. Nielsen, P.S. Thiagarajan, Degrees of non-determinism and concurrency:
A Petri net view, Lect. Notes in Comput. Sci., 181, December 1984, 89-117.

E.-R. Olderog, Nets, terms and formulas, three views of concurrent processes
and their relationship, Habilitationsschrift, Christian-Albrechts Universitit,
Kiel, July 1989.

E.-R. Olderog, Strong bisimularity on nets: a new concept for comparing net
semantics, Lect. Notes in Comput. Sci., 354, 1989, 549-573.

84 LV. Tarasyuk

[19], E.-R. Olderog, Nets, terms and formulas, Cambridge Tracts in Theoretical
Computer Science 23, Cambridge University Press, 1991.

[20] D.M.R. Park, Concurrency and automata on infinite sequences, Lect. Notes in
Comput. Sci., 104, March 1981, 167-183.

[21] C.A. Petri, Kommunikation mit Automaten, Ph.D. thesis, Universitit Bonn,
Schriften des Instituts fiir Instrumentelle Mathematik, 1962 (in German).

[22] L. Pomello, Some equivalence notions for concurrent systems. An overview,
Lect. Notes in Comput. Sci., 222, 1986, 381-400.

(23] S. Pinchinat, Bisimulations for the semantics of reactive systems, Ph.D. thesis,
Institut National Polytechnique de Grenoble, January 1993 (in French).

[24] V.R. Pratt, On the composition of processes, Proceedings of 9-th POPL, 1982,
213-223.

[25] A. Rabinovitch, B.A. Trakhtenbrot, Behaviour structures and nets, Funda-
menta Informaticae, XI, 1988, 357-404.

[26] L.V. Tarasyuk, An investigation of equivalence notions on some subclasses of
Petri nets, Bulletin of the Novosibirsk Computing Center (Series: Computer
Science), Issue 3, Computing Center, Novosibirsk, 1995, 89-101.

[27) LV. Tarasyuk, Equivalence notions for design of concurrent systems using Petri
nets, Hildesheimer Informatik-Bericht 4/96, part 1, Institut fiir Informatik,
Universitdt Hildesheim, Hildesheim, Germany, January 1996, 19 P

(28] LV. Tarasyuk, Petri net equivalences for design of concurrent systems, Pro-
ceedings of Workshop “Concurrency, Specification and Programming - 96",
Informatik-Bericht 69, 190-204, Institut fiir Informatik, Humboldt-Universitit
zu Berlin, Berlin, Germany, 1996.

[29] W. Vogler, Bisimulation and action refinement, Lect. Notes in Comput. Sci.,
480, 1991, 309-321.

