
Bull. Nov. Comp.Center, Comp. Science, 30 (2010), 89–94
c© 2010 NCC Publisher

A parallel algorithm for solving the traveling
salesman problem by a recurrent neural network

M.S. Tarkov, G.A. Dugarov

Abstract. A parallel algorithm for solving the traveling salesman problem by the
recurrent Wang neural network in conjunction with the WTA (“Winner Takes All”)
principle is proposed. This algorithm is preferable when it is necessary to solve the
problem with sufficient accuracy in a lesser time.

1. Introduction

Conventional sequential computing technologies do not allow us to find a so-
lution of discrete-large scale optimization problems. The branch-and-bound
algorithm (the Little method) [1, 2] is one of the basic techniques to solve
them. Its tree-like structure suggests a parallel implementation because
computations in different branches can be independently realized. Never-
theless, the algorithm parallelization can be very complicated because of a
huge capacity of utilized memory and the necessity to balance a computing
load among processors [3]. On the other hand, the massive parallelism of
data processing on a neural network [4–12] allows one to consider it as a
high efficient and reliable tool for solving complicated optimization prob-
lems. Recurrent neural networks are most interesting for this application.

2. A neural network statement of the traveling salesman
problem

The traveling salesman problem (TSP) can be formulated as an optimization
problem

n∑
i=1

n∑
j=1

Cijxij → min, (1)

subject to
xij ∈ {0, 1}, xii = 0,
n∑
i=1

xij = 1, j = 1, 2, . . . , n,

n∑
j=1

xij = 1, i = 1, 2, . . . , n,

(2)

90 M.S. Tarkov, G.A. Dugarov

where Cij , i 6= j, is the cost of the assigning entry i to the position j, xij is
a decision variable: if the entry i is assigned to the position j then xij = 1,
otherwise xij = 0.

To solve this problem, J. Wang [10] proposed a recurrent neural network
which is described by the following differential equation:

∂uij(t)
∂t

= −η
(n∑
k=1

xik(t) +
n∑
l=1

xlj(t)− 2
)
− λCij exp

(
− t
τ

)
, (3)

where xij = f(uij(t)), f(u) = (1 + exp(−βu))−1. In this network, a matrix
of neurons of size n× n is used, and the neurons are communicated in rows
and columns.

A difference version of equation (3) is

ut+1
ij = utij −∆t

[
η

(n∑
k=1

xtik +
n∑
l=1

xtlj − 2
)
− λCij exp

(
− t
τ

)]
, (4)

where ∆t is a time step. The parameters ∆t, η, λ, τ , and β are empirically
chosen.

In [11], an algorithm using the WTA (“Winner takes all”) principle for
acceleration of solving equation (3) is proposed. The following algorithm
[12] is a simplified version of the algorithm [11]:

0. Create the decision matrix ‖x0
ij‖ of random variables x0

ij ∈ [0, 1].

1. Continue iterations (4) until

n∑
k=1

xik(t) +
n∑
l=1

xlj(t)− 2 ≤ δ, (5)

where δ is the accuracy of bounds (2).

2. Transform the decision matrix ‖xij‖:
2.1. i := istart.

2.2. Find a maximum entry xi,jmax in the row i, jmax is the column number
of the maximum entry.

2.3. Assign xi,jmax := 1. Make all other entries of the row i and the column
jmax equal to zero:

xij := 0, j 6= jmax, xk,jmax := 0, k 6= i.

Go to the row i := jmax .

Repeat Steps 2.2 and 2.3 until returning to the row istart.

A parallel algorithm for solving the traveling salesman problem. . . 91

3. Repeat Steps 1 and 2 while the return to the row istart was realized
earlier than n entries in the matrix ‖xij‖ obtained value 1 (i.e., the
constructed traveling salesman tour was shorter than n).

After the above algorithm execution, the 2-opt correction [13] is used to
minimize the algorithm error.

3. Experiments

In [12], it is proposed to penalize unwanted assignments. To diminish the
probability of an early return to the starting row istart, we assume

Cij =
{
p · lij , j = istart,

lij , j 6= istart,
, i 6= istart,

where lij is a distance between the towns i and j and p > 1 is the penalty
coefficient. According to [9]

λ =
2(1− α)η

lmin
n exp(− t

τ)
,

where lmin
n is the nth minimum value among the entries of the matrix ‖lij‖,

and the coefficient α is close to 1. To provide the algorithm efficiency, the
parameter values p ' 102 ÷ 103, α = 0.9, β = 0.01, η = 1, and τ = 1000
were empirically chosen.

The Wang network and the branch-and-bound algorithm were tested on
the TSP examples taken from the TSPLIB [14]. In Table 1, average errors
of the above-mentioned techniques are shown. The errors are evaluated as
coefficients εW = lW − lopt

lopt
for the Wang network and εL = lL−lopt

lopt
for the

Little method. Here lW and lL correspond to tour lengths and lopt is a
minimum tour length.

Table 1 shows that the Little method gives more accurate solutions than
the Wang network, but when the problem size n is increased, the difference is
reduced. In Table 2, the Wang network and the Little method are compared
by the time of solving the TSP examples. Here tW is the time of solving
with the Wang network, and tL is the time resulted from the Little method.

Table 1. TSP solution error, %

Problem size n

51 100 262

εW 3.84 13.18 11.44
εL 0.8 9.1 9.4

Table 2. TSP calculation time, s

Problem size n

51 100 262

tW 0.16 0.97 14.83
tL 0.65 7.61 501.66

92 M.S. Tarkov, G.A. Dugarov

These times are realized on a single core of the processor Intel Core 2 Quad
Q6600 2.4 Ghz. From Table 2, one can see that the Wang network solves
the TSP quicker than the Little method.

4. Parallelizing the solution of the TSP

A parallel solution of the TSP by the recurrent neural network is based on
distributing the rows of the neuron matrix among processors of a computer
cluster. The rows of the matrices ‖Cij‖ and ‖xij(0)‖ are distributed among
processors. Further, the Wang network equations are solved in parallel until
realizing the condition (5). After completion of the Wang network function-
ing, the matrix ‖xij‖ rows are gathered in the root processor of the cluster.
The WTA and the 2-opt algorithms are sequentially realized.

In parallel solving the TSP by the Little method, the master processor
assigns tasks to the slave processors. The master generates a set of tasks and
gathers the tour versions with the lowest estimations of length. If there is a
free slave, then the master sends a task with the lowest current estimation
to it. The slave splits the task obtained into two subtasks and computes the
lowest estimations for them. If the estimation of a certain subtask is more
or equal to the current record (a minimum estimation), then this subtask is
rejected. Otherwise, a subtask is solved, and another subtask is returned to
the master.

The parallel algorithms are realized on the C++ with the MPI library
on a cluster with two 4-core processors Intel Core 2 Quad Q6600 2.4 GHz
with RAM 4 Gb and interconnection network Gigabit Ethernet. The results
of testing are presented in the figure.

Speedup of solving the TSP on the cluster

5. Conclusion

A new approach to solve the TSP problem is considered. This approach
is based on application of the recurrent Wang network in conjunction with
the WTA (“Winner takes all”) and the 2-opt algorithms. This approach is

A parallel algorithm for solving the traveling salesman problem. . . 93

parallelized and realized on a multiprocessor cluster with the usage of the
MPI library.

The approach is tested on the TSP examples from the TSPLIB and
compared to a parallel algorithm based on a branch-and-bound approach
(the Little method).

The results of the experiment show that:

1. In theory, the branch-and-bound method (the Little method) is capa-
ble to find an optimal tour, but in the method implementation it is
necessary to save a great number of tour versions in a computer mem-
ory. It is not always possible because of a limited memory capacity
that decreases the solution accuracy.

2. The recurrent Wang network gives less accurate solutions than the
Little method, but the difference is essentially reduced with an increase
in the problem size.

3. The Wang network solves the problem much quicker than the Little
method.

4. For a huge TSP size, the Wang network is parallelized much better
than the Little method.

Thus, for a huge TSP size, the techniques based on the Wang recurrent
network are preferable if their accuracy is satisfactory. This requirement is
known as principle of rational strictness [15] and rejecting the necessity of
having an absolutely accurate problem solution. It is typical of the neural
net applications to data processing in spacecrafts when it is necessary to
solve a problem in a lesser time.

References

[1] Romanovsky I.V. Algorithms for Solving Extremal Problems. –– Moscow:
Nauka, 1977 (In Russian).

[2] Little J., Murty K., Sweeney D., Karel C. An algorithm for the traveling
salesman problem // Operations Research.–– 1963.–– Vol. 11. –– P. 972.

[3] Posypkin M.A., Sigal I.Kh., Galimjanova N.N. Parallel Algorithms for Dis-
crete Optimization Problems: Computational Models, Library, Experiment
Results. –– Moscow: Dorodnitsin’s Computing Center of RAS, 2006 (In Rus-
sian).

[4] Ossowsky S. Neural Networks for Data Processing.–– Moscow: Finansy i statis-
tika, 2002 (In Russian).

[5] Haykin S. Neural Networks. A Comprehensive Foundation. –– Prentice Hall,
1999.

94 M.S. Tarkov, G.A. Dugarov

[6] Tarkov M.S. Neurocomputer Systems. –– Moscow: INTUIT Binom. Labora-
torija Znanij. –– 2006 (In Russian).

[7] Melamed I.I. Neural networks and combinatorial optimization // Avtomatika
i telemekhanika. –– 1994. — No. 4. –– P. 3–40 (In Russian).

[8] Smith K.A. Neural networks for combinatorial optimization: a review of more
than a decade of research // INFORMS J. on Computing.–– 1999.–– Vol. 11.––
No. 1. –– P. 15–34.

[9] Feng G., Douligeris C., The convergence and parameter relationship for
discrete-time continuous-state Hopfield networks // Proc. Intern. Joint Con-
ference on Neural Networks. –– 2001.–– P. 376–381.

[10] Hung D.L., Wang J. Digital hardware realization of a recurrent neural network
for solving the assignment problem // Neurocomputing. –– 2003. –– Vol. 51. ––
P. 447–461.

[11] Siqueira P.H., Steiner M.T.A., Scheer S. A new approach to solve the traveling
salesman problem // Neurocomputing. –– 2007.–– Vol. 70. –– P. 1013–1021.

[12] Tarkov M.S. On construction of Hamilton cycles in graphs of distributed com-
puter systems by a recurrent neural network // Proc. Xth Russian Scientific
Conf. “Neuroinformatika-2008”, Moscow: Part 2. –– 2008. –– P. 76–85 (In Rus-
sian).

[13] Bianchi L., Knowles J., Bowler J. Local search for the probabilistic traveling
salesman problem: Correction to the 2-opt and 1-shift algorithms // Eur. J.
Oper. Res. –– 2005. –– Vol. 162. –– No. 1. –– P. 206–219.

[14] Reinelt G. TSPLIB–– a traveling salesman problem library // ORSA J. Com-
put. –– 1991. –– Vol. 3. –– No. 4. –– P. 376–384.

[15] Neurocomputers in Spacecraft Engineering / V.V. Efimov, ed. // Scientific
series “Neurocomputers and Their Application”. –– Vol. 17. –– Moscow: Ra-
diotekhnika, 2004 (In Russian).

