
Bull. Nov. Comp.Center, Comp. Science, 25 (2006), 69–74
c© 2006 NCC Publisher

Load balancing in a heterogeneous computer
system by self-organizing Kohonen network

Mikhail S. Tarkov, Yakov S. Bezrukov

Abstract. An effective algorithm is proposed for a balancing computation load in
a heterogeneous multicomputer system by the self-organizing neural Kohonen net-
work. The algorithm takes into consideration different performances of the system
processors.

1. Introduction

In the general case, a computer cluster is a set of computer units (CU) con-
nected by a network. Each unit has a processor, a memory, and possibly a
hard disk. All CUs can have different performances, communication possi-
bilities and operating systems. A structure of a computer system (CS) can
be arbitrary and depends upon several factors, such as hardware tools, a
goal for which the CS is created, and financial possibilities.

Unlike CS with a shared memory, the computer clusters have difficul-
ties with intercomputer communications because of a relatively low network
throughput. To minimize the idle time of all CUs and communications be-
tween processes, it is necessary to optimally load all CUs by computations.
In the general case, this problem is reduced to optimal mapping of a pro-
gram graph onto a graph of the computer system [1, 2]. Because of the
problem complexity (it is NP-complete), different heuristics are used to seek
for the optimal mapping. Currently, the popular ones are methods based on
analogies to physics and biology, for example, annealing simulation, genetic
algorithms, and neural networks [3]. It is interesting to use a self-organizing
Kohonen network [3, 4] for the solution of the mapping problem because of
a high ability to parallelize the network functioning.

2. The problem of computation load balancing

A goal of the optimal mapping of parallel program processes (branches)
onto processors is to minimize the program execution time. It is equivalent
to the idle time minimization for each processor, and simultaneously the
minimization of communications between processes placed onto different
processors [1, 2].

Let Gp(Vp, Ep) be a graph of a parallel program, where:

• Vp is a set of the program branches, |Vp| = n;

70 M.S. Tarkov, Ya.S. Bezrukov

• Ep is a set of logical (virtual) channels implementing communications
between branches;

• τp is a weight of a program branch, the weight τp is equal to the number
of operations in the branch p;

• vpq is a weight of an edge (p, q) ∈ Ep, the weight vpq being equal to
the number of information units transferred between the branches p
and q.

Let Gs(Vs, Es) be a graph of a computer system, where:

• Vs is a set of elementary computers (EC), |Vs| = m ≤ n;

• Es is a set of connections between ECs;

• ϑi is the i-th computer performance;

• δij is a time for transferring the information unit between the neighbor
computers i and j.

Let fm : Gp → Gs be a mapping of the program graph Gp(Vp, Ep) onto
the graph Gs(Vs, Es) of the computer system. A distance (the number of
edges of a shortest path) between nodes i = fm(p) and j = fm(q) in the
graph Gs we denote as dij . The quality of the mapping fm is evaluated by
the object function

Φ(fm) = αΦC(fm) + (1− α)ΦT(fm), (1)

where ΦC(fm) evaluates the balance of a computation load, ΦT(fm) evaluate
the complete time of intercomputer communications, and α ∈ (0, 1) denotes
a relative weight of ΦC(fm) in the object function.

For the mapping fm, a complete computation time of the i-th computer
is equal to

ti =
1
ϑi

∑
fm(p)=i

τp.

Then

ΦC(fm) =
m∑

i=1

(ti − tmin)2,

where tmin is a running time of the system computers for an ideal load
balancing. In [4], the value

t
(1)
min =

1
m

m∑
i=1

ti (2)

has been proposed as an estimate of tmin.
On the other hand, a minimal (ideal) execution time of a parallel program

is equal to the value

Load balancing in a heterogeneous computer system. . . 71

t
(2)
min =

∑m
i=1

∑
fm(p)=i τp∑m

i=1 ϑi
=

∑n
p=1 τp∑m
i=1 ϑi

(3)

which can be attained on a computer with the performance equal to the
total one for the CS without communication overhead.

Communication overhead is estimated by the function

ΦT(fm) =
∑
p6=q

vpq

dpq∑
k=1

δk,

where summation is realized for all pairs (p, q) of communicating branches
of a parallel program and for all edges in the shortest path between the
nodes i = fm(p) and j = fm(q) (δk is a weight of the k-th edge of the path,
k = 1, . . . , dpq).

3. The self-organizing neural Kohonen network

A self-organizing Kohonen network consists of one layer of neurons. The
number of inputs of each neuron is equal to the dimension L of an input
data space. The number of neurons is determined by the number of classes
in a set of objects processed by the network. The network is defined by the
weight matrix W , where each neuron corresponds to a row Wp and Wpl is a
weight of the l-th input of the p-th neuron, p = 1, . . . , n, l = 1, . . . , L.

The network training begins with a random definition of weights in the
matrix W and realized by the following iterative algorithm:

1. On the step t = 1, 2, . . . feed the vector xk, k = 1, . . . ,K, from the
training set to the network input. Calculate the distance d(xk,Wi) =
‖xk − Wi‖ between the input vector xk and the weight vector Wp,
p = 1, . . . , n, of each neuron.

2. Choose the neuron-winner Wwin with the weight vector nearest to the
input vector xk. Modify the weights of the winner and neurons from
its neighborhood by the formula W t+1

p = W t
p + η(xk − W t

p), where
η ∈ (0, 1) is a training coefficient.

3. Go to the following iteration (t← t + 1).

As the network training proceeds, a neighborhood radius for the winner
and the training step are reduced. As a training result, the neuron weight
vectors are shifted to the cluster centers of the training set [3, 4].

4. Load balancing by the Kohonen network

The Kohonen network neurons correspond to the parallel program branches.
The Kohonen network is imbedded into the topological space, where com-
puters are interpreted as regions. The neighboring regions correspond to the

72 M.S. Tarkov, Ya.S. Bezrukov

adjacent nodes of the CS graph, the processes being interpreted as points in
the space. A point neighborhood is introduced in accordance with the graph
Gp of the parallel program. A process is in the neighborhood with radius
r of another process, if the distance between them in the graph Gp is less
than r. As a result of training, processes, described by the neuron vectors,
are mapped onto the regions corresponding to the system computers.

Let us consider the computation load balancing by the Kohonen network
in a heterogeneous CS. The neurons are in correspondence with the branches
of the parallel program and are described by the vectors Ws, s ∈ Vp, in the
topological space.

The sequential mapping algorithm:

1. Let initially the branches of the parallel program be arbitrarily mapped
onto the computers of the system. For this distribution compute the
initial value of the object function Φt for this distribution.

2. Choose a computer randomly and calculate new values of the object
function for mapping each branch with its neighborhood onto this
computer. If there are new values of Φi, i = 1, . . . , n, less than Φt,
then choose a minimal value Φt = mini Φi and save the respective
mapping.

3. Repeat Step 2, while there is a possibility to diminish the object func-
tion.

A parallel version of the mapping algorithm is as follows:
Partition a set of computers into subsets, and find a new minimal value

of the object function for each subset independently. Then summarize the
results for all subsets.

5. Experiments

The experiments have been executed for the optimal mapping of typical pro-
gram graphs onto typical computer system graphs. The following mappings
were investigated:

• a line and a mesh onto a line;

• a ring and a torus onto a ring; and

• a line, a ring, a mesh, and a torus onto a complete graph.

As the mapping criterion, the object function

Φ =
m∑

i=1

(ti − tmin)2

has been used, where ti is a real processor load, and tmin is the processor
load for the balanced mapping of processes onto processors (here we set

Load balancing in a heterogeneous computer system. . . 73

Figure 1. Comparison of mapping ver-
sions with (T1 and T2) and without (M)
accounting for heterogeneity of a com-
puter system

Figure 2. Comparison of mapping ver-
sions with T1 and T2 estimates for a
minimal processing time

α = 1 for expression (1)). The values t
(1)
min from (2) and the proposed here

t
(2)
min from (3) are used as tmin.

The performance analysis of modern computers shows that their relative
performances can be approximately estimated as random integers uniformly
distributed on the segment [1, 40]. The relative weights of the program
branches in the experiments are distributed on the segment [1, 20].

Figures 1, 2 show examples of mean values of the function Φ in the exper-
iments for different versions of mapping a ring onto a complete graph with
m = 10 nodes. The curves T1 are calculated for the Wyler’s estimate (2)
and the curves T2 are calculated for the estimate (3). Figure 1 shows that a
consideration of the CS heterogeneity allows one to essentially diminish the
non-uniformity of a computation load (approximately, by 10 times!). Also,
the experiments show that estimate (3) provides a better mapping than es-
timate (2) by K. Wyler [4] (see Figure 2) and the mapping performance is
slightly dependent upon the choice of a program graph and a CS graph.

6. Conclusion

A new algorithm for mapping a parallel program graph onto a graph of
a heterogeneous computer system is proposed. The algorithm is based on
the self-organizing neural Kohonen network and can be easily parallelized.
The experiments show that the developed algorithm implements an effec-
tive mapping of typical program structures (a line, a ring, a mesh, and
a torus) onto different structures (a line, a ring, a mesh, a torus, and a
complete graph) of the heterogeneous computer system. A parallel version
of the mapping algorithm can be used for the dynamic load balancing in
heterogeneous computer systems.

74 M.S. Tarkov, Ya.S. Bezrukov

References

[1] Bokhari S.H. One the mapping problem // IEEE Trans. Comp.––1981.––Vol. C-
30, No. 3. –– P. 207–214.

[2] Tarkov M.S. Mapping parallel program structures onto structures of distributed
computer systems // Optoelectronics, Instrumentation and Data Processing.––
2003.–– Vol. 39, No. 3. –– P. 72–83.

[3] Osowski S. Neural Networks for Information Processing. –– Moscow: Finansi i
Statistika, 2002 (In Russian).

[4] Wyler K. Self-organizing mapping in a multiprocessor system // IAM-93-001.––
1993.

