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A new Monte Carlo method for
calculation of covari_ance function of
solution of biharmonic equation®

D.V. Tolstolytkin

The article is devoted to the new Monte Carlo method for the calculation of covariance
function of the solution of biharmonic equation when its right-hand side is a random
field. The comparison of this method with the randomization algorithm of the Monte
Carlo method (see {1]) is presented. The numerical results of the solution of the concrete
problem are given.

Consider the problem of the oscillation of the plate in the bounded
domain G C R? under the influence of the random field loading o = o(Z).
The solution of the boundary value problem

Alw(Z) = 0(Z), uly,=@(E), Aulyg=9(2) (1)

is also the random field. It needs to define its covariance function
v = E{u(Z)u(y)} at the points zo and yo. In the methods existed ear-
lier the product of solutions in two given points for different realizations
of the field o(Z) was averaged (so called randomization algorithms of the
Monte Carlo method (see [1])). The method given below enables us to use
the covariance function K'(Z, §) of the field o directly.

Multiply the initial equation by the same equation depending on the
other, variable y (A%u(§) = o(§)). We obtain the expression

AZu(z)A5u(g) = o(Z)o(y),

where A, is the Laplace operator, operating in variable Z.

Once the mathematical expectation from the both parts of the expres-
sion has been taken, we obtaine the equation in the unknown covariance
function

AZAZy(z, ) = K(Z,7).

Let us now rewrite it as a system of two equations
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Alw(z,9) = K(2,9), Alv(Z,7) = w(Z,7) (2)

The boundary conditions for this system are obtained in the following
way:
w(Z,9)| a6 = ATE{u(E) D)} ,eoe = PEVE{ALu(9)} = (Z)E{o(9)},
Arw(2, )|, o6 AeATE{w(E) )} eoe= V(B E{AJu(D)} = ¥(2)E{0(7)},
0(&, D)6 = EUE @, co0 = #BE{u(@),
Ay(E,9), o = Ay E{uE @)}, co6 = PO E{u(3)}. 3)

" To define the latter two conditions we are to solve the equations
AzE{u(‘i)} = E{O‘(.’E)}, E{“}laG = ¢(Z), AE{"}laa = ¥(Z).

We solve each of the equations of system (2) using “walk on spheres”
algorithm of the Monte Carlo method (see [1]).

Consider the second equation of the system. It is obvious that its
solution satisfies the following integral relations

v(Z, %) = ] v(:E,.'s‘)c:.‘.'s—2—2 j A,v(Z,3)ds +

S(fo.r) S(30.r)

2r 1

2_,2

'21—1/sz z (1n4(r/2)+1)w(5:,go+(zcos<p,zsincp))dgpdz,
0 0

Ayv(Z,i0) = / A,v(Z,3)ds —

S(507)

w T

2
5‘;//zln(r/z)w(i,go+(zcosgo,zsingp))d(pdz,
00 :

where S(#o,r) is arbitrary circle with the centre at the point # entirely
lying in G.
We obtain the system of integral equations

V=KV+F.

The random estimate of the solution is



A new Monte Carlo method for calculation of covariance function 105

N-1

£= ) QuF(#.)+ QNF(In), (4)

n=0

where {#,}]\_, is the “walk on spheres” Markov chain which terminates at
the random point §, in e-neighbourhood of the boundary, @, are matrix
weights \
QD=[(1) 2]’ Qn=Qn—l[; 7'1/4],

where r is the radius of the maximum inscribed circle with the centre at
the point #n—1, F(In) = F(#.), where §. is the boundary point nearest to
the point gy. This estimate is e-biased.

The integrals Fi(9,) are estimated by the Monte Carlo method using
one random point. As a density in the segment [0, 7] we choose the function
f = 4pIn(r/p)/r?, therefore the random estimate is

r2 — p*(In(r r?
R(n) = T D . (e g+ 40),

. (5)
F2(gﬂ) = “%w(ia?:’n‘l'ﬂ;’),

where p is the random variable, distributed with the density f, @ is the
unit isotropic vector.

Thus, to find the solution of the problem v(Zo, %), we need the values
of function w(Ze, Jin + p@), n = 0,..., N — 1. They are found from the first
equation of system (2) by means of the method under consideration, using
only one Markov chain {Z,,}M_, for every w.

For this the “walk on spheres” Markov chain is simulated starting from
the point Zo: {Zm}M_,. The random estimates for w(Zo,¥n + Pn@n) by
analogy with estimate (4) are

M-1

Cn = Z QmF(im) + QMF(iM)' (6)

m=0
Here the following random estimates for the components of the vector
Fi(Z,)
r2-p’(n(r/p)+1) T
4 - 41n(r/p)
K(Zm + p@,Tn + Pnn), (M

Fl(im, Un + pn‘:’n) =

2
. 1' e o _
F‘Z(im,gn + Pn‘:-’n) = _II‘ (z'm + p2,Yn + inn)
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are used, where p is the random variable distributed with the density f =

4pln(r/p)/r?, @ is the unit isotropic vector. Furthermore, we see from (6)

(7) that every (, can be calculated using only the Markov chain {Zm}M_,.
This algorithm is possible to realize in the following way:

1. The Markov chain {gjn}ﬂ "o and the random values p,, distributed
with the density f are simulated. Thus, points ¥, + Pniop are fixed.

2. The Markov chain {Z,,}M_, and values pm, distributed with the
density f are simulated.

3. The integrals F;(Z,,) are calculated according to (7).
4. The random estimates (, are found using (6).

5. The integrals F;(§») are calculated according to (5), where w(Zo, ¥+
Pniy) defines the non-biased estimate (. :

6. Solution of the initial problem is found from (4).

The efficiency of the given algorithm (A) was examined in comparison
with the algorithm B (see [1]) for numerical solutions of the problem of the
oscillation of the plate G = {z;,z2: 0 < z1,z2 < 1} simply supported at

the boundary and the random field o, having the spectral density p(A) =
a? —alAl

e .
2m

Here, taking into consideration the piecewise linear boundaries, the

boundary value problem is as follows:
A%u(%) = o(2), u|aG = AulaG =0.
System (2), (3) becomes
Alw(z,9) = K(2,9), Au(z,3) = w(Z,7),
w(Z,9)|,eo6 = Be(®:9)],co0 = ”(f’gnyeaa = Ayo(Z, 37)|yeaa =0.

The randomised spectral model (see [2])

M
o(z) = z p;n[fk sin(AxZ) + 1k cos(AxZ)] (8)
k=1.

was used in the algorithm B for simulating o, where £, n are independent
standard Gaussian variables, py = f:‘\k p(A)dA, where Ay, ..., Apr is some
arbitrary partition of the plane R?%, and Aq,..., A\p are distributed in these
parts in accordance with the densities pg(Z) = p(A)/px-

Let us prove that the variance of the algorithm A is less than the
variance of the algorithm B. In the second case the random estimate of the
solution is the product of two estimates '
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N-1 M-1
é;. = Z QnIna(in + ann)s E-y - Z QmIma’(i‘m + Pm‘:’m)’
n=0 m=0

where
Iu“(in + Pn‘-'-’n) = F(fn)s Ima(gm + Pma-’m) = F(?-/m)-

Their multiplication gives

N-1M-1

E-‘-‘ Z Z QnQmInIna(Zn + paion)o(fm + Pm@m )- (9)

n=0 m=0

Let M[( | z] be the conditional expectation of the random variable ¢
under the condition that the points %, + pn@n and §m + pmwm are fixed.
Therefore, we can use a well-known relation

D¢ = MDIC| 2]+ DM[C | ). (10)
For the algorithm A estimate (9) is as follows:

N-1M-1
Ge=D. Y QuQnlnInK(Zn + pa@n, m + Pmiom)-

n=0 m=0

It is evident that the first term of sum (10) becomes zero and therefore,
DC. = DML | 2] = DM(C | 2] < DC.

Thus, the variance of the algorithm A is less than the variance of the
algorithm B.

Table 1 gives the results of comparison of the algorithms A and B. The
covariance function v for the points z = (1/2,1/2) and y = ¢1/2 + d,1/2)
was estimated. The calculations were performed for ¢ = 0.01, parameter
a = 1, a number of samples N = 3000. When o is simulated according to
(8), the simplest case of M = 1 is used. Then A = R2.

From this table it is seen that the computational cost of the algorithm
A is 1.5 + 3 times less.

The method under consideration leads to the substantial efficiency of
the calculations for those random field, whose simulation has the great
computational cost.

As an example, the comparison of the results of the calculations of
covariance functions at the points r = (0.5,0.5) and y = (0.5,0.4) with
the help of the algorithms A and B in parameter a = 0.1, ¢ = 0.01 and
N = 10000 is presented (see Table 2).
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Table 1

A B
v-10"%1p, %| s |v-107°|p, %| s

0.0 1.37 3.5 |0.18 1.26 4.3 |0.26
0.1 1.32 4.8 1039 1.25 6.0 | 0.58
0.2 1.04 3.6 022 1.16 6.2 | 0.63
0.3 0.87 5.5 |0.51 0.82 7.2 |0.83
0.4 0.39 5.7 |0.52 0.38 11.2 | 1.95

d

p is a relative standard deviation error, s is the
computational cost.

Table 2
Algerithm [ M | v 10°¢ | p, % s
1 ]0.89 21 6.6
2 {1.013 17 5.4
B 4 | 1.09 13.3 | 4.3
6 | 1.22 12.22 | 4.5
8 | 1.055 11.18 | 4.5
A 1.05 2.4 0.086

M is a number of terms in formula (8).
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