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A 3D numerical model for the Earth’s mantle
convection∗

S.A. Tychkov, V.V. Chervov, G.G. Chernykh

Abstract. By now a substantial body of literature has evolved which deals with
the numerical simulation of the 3D convective currents in the Earth’s mantle (see,
e.g., [1–4] and references therein). A crucial point is to estimate the reliability
of numerical experimental results because the similarity principle fails when the
dynamical processes that occur in the Earth’s interior under the known physical
parameters of the Earth’s matter are simulated on the laboratory scale. Paper [4] is
especially important for testing numerical models, because it contains results of the
3D simulation of convective currents in the mantle obtained by different authors
dealing with model problems.

In solving the 3D problems of hydrodynamics, the variables vorticity and the
vector potential appeared to be very useful [5]. Analysis of the known publications
shows that these variables receive little attention in the numerical simulation of
convective processes in the Earth’s mantle. The present paper is an attempt to
construct and test a numerical model of convective processes in the Earth’s mantle
using the above variables and the method of fractional steps [6].

1. Mathematical formulation and numerical solution of the
problem

To describe currents in the upper mantle of the Earth, a well-known math-
ematical model is used including the non-dimensionalized equations [7]:
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Here u, v, w are the velocity vector components, p is pressure, T is tempera-
ture, Q is a source of heat release, Ra is the Rayleigh number, η is a dynamic
viscosity.

The system of equations (1)–(5) is arranged so that at the initial time t =
t0 the initial conditions are given for the temperature alone: T (x, y, z, t0) =
T0(x, y, z). The boundary conditions at the sides are the conditions of sym-
metry, while at the bottom and at the top, the conditions of adhesion and
fixed temperatures are set.

To construct a numerical model, the new dependent variables are used:
the vorticity vector ~ω = ∇ × ~V and the vector potential ~ψ: ~V = ∇ × ~ψ.
The initial and the boundary conditions are formulated in terms of the new
desired functions.

The finite difference algorithm of the problem solution is based on the
method of fractional steps [6]. At each temporary layer (until reaching the
steady-state mode), the calculation algorithm includes the following steps:

1. Given the known temperature distribution, vorticity, vector potential,
the velocity components are calculated until the convergence of itera-
tion processes is attained;

2. The temperature field is calculated.

The numerical model was tested solving the problem from [4]. The so-
lution was sought for in a unit cube. The scale factor under the viscosity is
η0 = 1.2 · 1024, the Rayleigh number is Ra = 2 · 104.

The following parameters were calculated: the root-mean-square velocity
Vrms, the Nusselt number Nu, the vertical component of the velocity w and
the temperature T at angular points of the mean section of a convective
layer; the heat flux ϑ = −∂T/∂z at angular points of the upper cube surface;

the integral parameter calculated from the formula τ(x, z) =
∫ Y

0

∂T

∂z
dy along

the line parallel to the axis Y originated at the points (0, 0.25), (0.5, 0.25),
(1, 0.25) of the frontal XZ-plane; the mean temperature Tm =

∫∫
Sz

T dx dy,

calculated at the horizontal sections Sz at depths z = 0.75 and z = 0.5; the
vertical component of the vorticity vector Ω at the point (0.75, 0.25, 0.75).
The dimension values (in the SI system), which were used in [4] and in this
paper, were taken as follows:

d = 2700000 m, ∆T = 3700 ◦C, χ = 10−6 m2/s, α = 10−5 ◦C−1,

ρ = 3300 kg/m3, gz = 10 m/s2, η0 = 1024 Pa · s.

The initial temperature distributions were taken as follows:

T (x, y, z, t0) = T0(x, y, z) = (1− z) + 0.2
(
cos

πx

X
+ cos

πy

Y

)
sinπz.
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Parameter
Christensen’s
data on grid
32× 32× 64

Authors’ results on grids

12× 12× 12 24× 24× 24 48× 48× 48

Nu 3.03927 3.245 3.0397 3.040
Vrms 35.132 37.97 35.360 35.07

W (1, 1, 0.5) −58.23 −60.68 −58.262 −58.42
T (1, 1, 0.5) 0.23925 0.2326 0.2377 0.2393

ϑ(1, 1) 0.7684 0.80172 0.7804 0.7726
τ(1, 0.25) −0.1388 −0.06761 −0.1341 −0.140
Tm(0.50) 0.58158 0.5844 0.5792 0.5815

ωz(0.75, 0.25, 0.75) −11.125 −11.03 −11.203 −11.35
Computation time, s — 65 119 4811

The results calculated for the variable from [4], the viscosity η = η(T )
were compared with Christensen’s data as the most complete of those avail-
able in [4] and reported in the table.

A well-known efficient approach to solving problems of mathematical
physics is the method of successive grids [8]. The results of its use in the
present paper are illustrated in the table.

The direct computation on 48 × 48 × 48 grid took 660 minutes using a
PC with the Athlon 1000 processor. Thus, the time gain in computation on
a grid succession is more than 8-fold.

A considerable gain in the computation time can also be reached using
extrapolation according to Richardson [9].

In the process of calculation, additional control is given to the law of
heat conservation as consequence to equations (1)–(5), initial and boundary
conditions. The above results of numerical experiments indicate to a high
efficiency and competitiveness of the devised numerical model. In more
detail, some aspects of the development of the numerical model are given in
[10, 11].

2. Modeling of the thermal convection under heterogeneous
continental lithosphere

The problem of investigation of the thermal convective flows in the upper
mantle below ancient continental platform will be examined as an example
for the modeling of the real mantle processes. Thickened up to 200 km
lithosphere is a particular quality of the platform, whereas the surrounding
lithosphere is marked only with 120 km thickness according to geophysical
data.

The Rayleigh number which determines the convective mode was chosen
as Ra = 3.04 · 105 that corresponds to our knowledge about the conditions
in the Earth’s interior. The main model parameters were taken as follows:
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d = 700000 m, ∆T = 1800 ◦C, χ = 10−6 m2/s,

α = 10−5 ◦C−1, ρ = 3300 kg/m3, gz = 10 m/s2, η0 = 3 · 1021 Pa · s.

The small-scale thermal convection at the 200–350 km depth “asteno-
spheric” level that was found below the thickened lithosphere is one of the
principal results of the 3D modeling of the thermal convection in the upper
mantle. The result confirms an assumption made in [12] in the 2D nu-
merical experiments on the simulation of the thermal convection below the
heterogeneous thickness lithosphere. The small-scale thermal convection is
concentrated in the astenosphere as elongated sells with the horizontal size
500 km. This mode has developed at the periphery of the thickened litho-
sphere (Figure 1).

The small-scale convection has a geological sense associated with the su-
perplume problem on the continents. The superplume conception is now

Figure 1. The horizontal cross-section of the temperature field at a depth of
220 km of the thermal convection model in the upper mantle beneath the continental
lithosphere with a thickened platform marked with the thick line
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widely used as a possible mantle mechanism for the most large-scale geo-
logical phenomena as a break-up of the supercontinents or the flood basalt
flows [13]. In this paper, we consider the second phenomenon only. The
permo-triasic magmatism occurred in the north part of Asia about 240–250
Myear ago. A huge flow of the flood basalt covered the west part of the
Siberian platform, the West Siberian plate, the Karsk sea on the north and
were found in Altai and in the south of Mongolia. Our modeling shows
that the ascending convective flow under the thickened lithosphere is the
most stable mode of the upper mantle thermal convection. It is possible
to assume that the temperature of the ascending mantle flow was higher
than usual in the large-scale flood basalt flows. Increasing of temperature
to 200–400 ◦C, could be caused by appearance of the lower mantle super-
plume at the bottom of the upper mantle. The presence of the lower mantle
material in Siberian lavas was confirmed by geochemical and isotopic data
[14]. So, most likely that the main volume of the flood basalts was related
to the central ascending mantle convective flow under the Siberian platform.
At the same time, there were local magmatic events at the periphery of the
platform. In the south there was marked granite and bimodal magmatism in
Altai, the east Tuva, Baikal, Mongolia and China. The flood basalts of this
age were found in the West Siberian platform in the west and on Taimyr, to
the north of the Siberian platform (Figure 2). Such a periphery magmatism

Figure 2. Areals of the permo-triassic magmatism in Asia [13]: 1) trapps of the
Siberian platform, 2) fold belts, 3) granite and bimodal magmatism at the periphery
of the platform, 4) the centers of the local upper mantle plumes
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was born by a small-scale thermal convection when the upper mantle was
thermally stimulated by the lower mantle superplume. Usually a small-scale
flow brings a hot material with temperature 1300–1400 ◦C to the base of the
lithosphere, but in the presence of the superplume this material would be
higher at 100–200 ◦C. So, there were conditions for the partial decompressing
melting at the periphery of the platform, where thickness of the lithosphere
was about 120 km. Such a melting forms sources for periphery magmatism
during the flood basalts events.
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