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Numerical simulation of a special class
of non-homogeneous Gaussian fields*

0O.S. Ukhinova

We consider an algorithm for the stochastic simulation of the Gaussian three-
dimensional fields with a discrete argument and with regard the dependence of
horizontal correlation functions on the vertical coordinate. The area for uses for
the algorithm in question for a specific class of correlation functions of the horizontal
fields is investigated. Some examples of application of the algorithm for simulation
of the three-dimensional air temperature in the atmosphere fields are given with
regard for the real dependence of the horizontal correlations on altitude.

In this paper, some questions associated with the construction of algo-
rithms for stochastic simulation of complexes of hydrometeorological fields
are considered. These algorithms are intended for the solution of problems
of the variational agreement of hydrothermodynamics and probability nu-
merical models of atmospheric processes [1]. In the numerical simulation
of the Gaussian fields with a discrete argument on finite difference grids,
used for the construction of numerical hydrothermodynamic models, one of
the main problem is the representation of a covariance matrix (or a covari-
ance function) of the field. Since the dimension of a covariance matrix for
such fields is extremely great, its complete representation on the basis of the
available real information is practically impossible. Therefore, in the solu-
tion of practical problems of statistical meteorology [1, 2], one limits himself
to the representation of a simplified covariance matrix. For example, for
geopotential fields the representation of a correlation matrix as direct prod-
uct of the vertical and the horizontal correlation matrices is acceptable (the
covariance matrix turns, as a result of multiplication of values of the field,
to the appropriate climatic standard deviations). Horizontally, the property
of homogeneity and isotropy is valid for these fields with a sufficient degree
of accuracy. In this case, the structure of a field depends on height weakly.
Therefore, the algorithm for simulation of a field is reduced to one of the
most well-known “algorithms on rows and columns” [1, 3]. Contrary to
geopotential, the horizontal correlations of the temperature field essentially
depend on height (or in the isobaric system of coordinates on the constant
pressure level). In the present paper, a modification of this algorithm in-
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tended for the simulation of fields in which the horizontal correlations vary
from level to level is considered.

1. For simplicity, let us consider the vertical section of a field {¢ } at fixed
j and further use the notation {¢’},p=1,...,m,i=1,...,n.

The method for the simulation of multidimensional ﬁelds (1, 3] applied
in this paper is reduced to the following transformations. Let us have the
Gaussian field {¢7} with M¢P = 0, M(¢P)? = 1, and M&f{g =0, if p # q,
and M¢EPES = r(p) if p = q. Here 'ir'(p ) is an entry of a correlation matrix, or
the correlation function rg) = r(P)(|_7 —i)) =r®)(k),k=0,...,n—1.

- Based on this field we build the field {}} in which for any i = 1,...,n
the following transformation is applied

n,i £,i
n; &
.z =A ‘ ) (1)
e &
where
ai 0 0
a2 a2 0
A=

0

Alm Q@2m --- OGmm

is the lower triangular matrix of m dimension such that AAT = R,, where
R, is a correlation matrix of the vertical section of the field {rf'}. In this
case, the correlation of the field {nf} at levels p (p =1,...,m) is equal to

anr,p = plr(l) +a (2) +awrg) —'yU .

Thus, the correlations of the field {¢/'} are connected to correlations of the
field {n} by the relations

(1) (1)

7:3 = a11r1
2 1 2 :
%(3) = 021"'( Ny 022?'( ) )
1 2
‘an) = a‘fnlrt(j) +ﬂ$nz7'fg) oot O gn)
If rtﬂ) = r‘@ = ... = rg“), we have a standard method “on rows and

columns” [1, 3]. Note that similar relations take place for correlation func-
tions. Also, let us write down (2) in the matrix transformation form:
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Yij = Bfij,
40 o) a3, 0 0
ij ij 2 2
. ; . . aio 0.22 . 0
WS o= i B
(m) (m) ) '
Tij "ij ol a3, L.

The matrix B has the following properties:

(i1) 37, aZ =1, i.e., the matrix B is a stochastic one;

(12) MAi(B) = a}; =1, Bé = \(B)&, \(B) = a2 < 1,i=1,...,m, where
A(B) is an eigenvalue of the matrix B, and & = (1,...,1)T is the
eigenvector corresponding to A;(B).

Thus, if we transform the field {¢'} with per-row correlation matrices
RlP) = (rgJ )) to the field {n{} with the help of (1), then the correlation

matrices of its rows ['P) = ('yg’ )) are defined by relations (2).

When modeling the stochastic fields with a given correlation structure,
the inverse problem is solved: let I'(1), r®, ... 1rm are given correlation
matrices of rows of the field {#}. What should be the correlation matrices
of rows of the field {¢'}, that after transformation (1) will help to obtain a
field {nf'} with these required correlation matrices?

Let %i; = j; = ('}’:_.,-(1) yen- ,'y;j(m))T be given correlations. Then the cor-

responding correlations 7;; are determined by the equation
7 =C%j  C=(ej) =B, (3)

With regard for (i1), (i2), and (3), we write out the basic properties of the
matrix C:

(j1) since Ai(C) = X(B™1) = 1/Ai(B), Amax(B) = A1(B) = 1 and the
corresponding eigenvector consists of units, then Amin(C) = A1 (C) = 1
and from C¢ = € it follows that c,; + Cp2+ .ot cpp =1,

(j2) since cpp = Ay(C) > 1, other ¢;; may be of different signs, hence the
matrix C' is not stochastic, and not in all the cases the quantities
rij make sense of the correlation coefficients forming a non-negatively
determined correlation matrix.

2. In the given paragraph, a special class of the correlation matrices ~P) =

(’Yi(; )), p =1,...,m, will be considered as well as the conditions, at which

the above-considered method has the solution.
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Let _
'Y(P) = (1 —&p)7 + €p0, p=1,....m, (4)

where -y and -y are any fixed correlation matrices. Then with regard for (3),
the corresponding r(*) are determined by the equations

r1 = ¢11(1 — 1)y + cuieros

@ = [ea1(1 — €1) + ca2(1 — &2)]y + (2161 + c2262) 70,

......

rm = Li:; emi(l — e,-)]'y ot (g} Gmiﬁi)’Yo-

For the matrices 7(*) have sense of correlation matrices, it is necessary that
r() be positive definite, i.e., A(r(?) > 0.
From (4, p. 143] it follows that

A(r®) > (1 — 2)A() + Amin(i0), i=1,...,m, ()

where z; = ¢;j161 + ... + cii€i, 1 = 1,...,m, or, in the matrix form, £ = C¢.
Let us consider two cases: ‘

I. Let z; > 0. Then, with regard for (5), to fulfil the condition A(r(¥) > 0,
it is sufficient that the following inequality hold:

2i(A(7) — Amin(70)) < A(7)-
Depending on a sign of A(Y) — Amin(70), We have:
e if A(7) > Amin(70), then

A(y)
A(Y) = Amin(70)

e if A(Y) = Amin(70), then the inequality is always fulfilled.
o if A7) < Amin(70), then

z; <

(6)

A(y)
A(7) =3 Amin('m) .

In this case W%\%);Fm < 0, but we assume that z; > 0, hence the
lower bound of z; is equal to zero.

T; >

I Let z; < 0. Then with regard for (5) for perfdrmance of the condition
)\(r(‘)) > 0, it is sufficient that the following inequality be valid:

zi(A(Y) — Amax(70)) < A(7)-
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o if A(Y) > Amin(70), then

A(v)
’\(’Y) - Amax('.m) )

In this case m%ﬁmj > 0, but we assume that z; < 0, hence the
upper bound z; is equal to zero.

o if A(7) = Amax(70), then the inequality is always fulfilled.
¢ if A(7) < Amax(70), then

z; <

A7)
z; > .
A(Y) = Amax(70)

Since the function f(z) = ;% (for a > 0) decreases, in inequalities (6),
(7) it is necessary to replace the quantities A(y) by Amax(y) and Amin(7Y),
respectively.

Combining cases I and II, we obtain the final inequalities for x; = ¢;161 +
ce-toeyE,t=1,000,me

(7)

Amin(7) Amax(7)

<ecper+ .. ot eE <
Amin(Y) — Amax(70) cine1 i Amax(7) = Amin(70)

. (8)
Thus, since Amax(Y) = 1, Amin(70) < 1, then

Amax(7) > 1 Amin(7)
Amax(Y) = Amin(70) , Amin(Y) — Amax(70)

<0.

Hence, choosing z; € [0,1] we provide the condition ¢; € [0,1]. It follows
from £ = C~'& = B and from the fact that the matrix B is stochastic.
If we choose z; < 0 or =; > 1, then it is possible to obtain the conditions
€; < 0 or g; > 1. But in this case it is necessary in addition to verify the
condition of the diagonal predominance of the matrix r(%).

3. The practical realization of the algorithm is reduced to approximation
of real correlation functions at isobaric levels by functions of the form (4),
where v and 7 are any correlation functions. In this case, the solution is
found with an arbitrary matrix R,. But ¢; are not arbitrary. The area
of changes of these parameters is determined by the system of inequalities
(8). Therefore another approximate method for the simulation of the tem-
perature fields with real correlation functions presented in Figure 1 (9,10),
borrowed from work [2], was applied. From the given correlation functions
@ (p), ¥ (p), ..., 7™M (p) the functions r*P(p), 3 (p), ..., r*(™)(p)
were calculated with the help of (3) (for calculation of the corresponding
entries of the matrix C, as R, is a real correlation matrix of the vertical
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profiles of a temperature field for the mid-latitudes from [2] was taken). It
has turned out that any of these functions is not correlation. Therefore they
were approximated by the corresponding correlation functions from the set

r(p) = e,
r(p) = e~ Jo(Bp), (9)
r(p) = e %" (A+BJo(Bp)), A+B=1,

and, in addition, for each of the functions r*(*)(p) a suitable correlation
function from this set was selected, and the corresponding parameters were
chosen so that this function in the best way (in the root-mean square sense)
approximated r*(¥)(p) at discrete values p of the given interval.

R(r)w
0.54

0.0+

—0.54

-1.0 T T T T
1 6 11 16 21 e

Figure 1. Correlation functions of two-dimensional temperature field
at different levels: 1 - 100, 2 — 200, 3 - 300, 4 — 400, 5 — 500, 6 — 700, 7 —
850, 8 — 1000 mb are calculated with the help of modeling realizations,
and 9, 10 are the corresponding real correlation functions

Then, the three-dimensional field was simulated according to transforma-
tion (1) in which {¢7'} is a two-dimensional homogeneous isotropic Gaussian
field. With the help of modeling realizations the correlation functions of the
two-dimensional fields at each isobaric level are estimated. The results are
given in Figure 1 (functions 1-8). As it was noted above, in the same figure
the real functions 9 and 10 from [2] are presented. '

. In conclusion, we consider an example, in which the correlation functions
4® i=1,...,m (m = 8), are given. Let us consider correlation functions
of the two kinds:

AV =1 -e)y+ern, 7P =01-e)y+em, .

where v and <y, are any correlation functions, and for n < m at levels
i1, 12, ..., in they are equal to 4(!), and at other levels they are equal (2
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(let in our concrete case, y(!) correspond to levels 1, 2, 8, and (%) correspond
to levels 3-T7).
For simplicity, we solve the system of inequalities 0 < z; < 1 for i =

1,...,m, where & = (z1,...,2,)T = C¢, and £ = (5(1),...,15_(’"))T. Taking
into account the fact that (%) = g1 fork =1,...,n and e0) = ¢, (in our
case e = e = ¢® = ¢, and e®) = ... = ¢(M) = €2) and reducing similar

components, we obtain the following system of inequalities

OS(ZCjik)ﬁ-f-(l—ZCﬁk)Ele , J=1,...,m.

i <J 1% <j

For an arbitrary matrix R, this system of inequalities can be written down
in the following form

aj(e2) <e1<bje2), j=1,...,m.
Thus, for any €, € [0,1] we obtain the inequality

maxa;j(e2) < €1 < minb;(ez),
J J

which determines the area D of permissible values £; and 5. In Figure 2,
this area is given for a real correlation matrix R, from work [2].
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Figure 2. The area D of permissible values of the parameters £; and e»
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