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Dissipativity of generalized
Maxwell-Leontovich operator

M.V. Urev

This paper completes the analysis of the Maxwell operator with impedance
boundary conditions for arbitrary time dependence.

Let £ be a finite, simply connected domain of the three-dimensional
Euclidean space R®, whose boundary S is sufficiently smooth. Let T' > 0
and Qr = Q2 x (0,T), St = § x (0,T); n is the inward unit normal to §.

We define L*(2) = (L?(12))? as the space of square integrable fields over
Q and

H'(Q) = (HY(Q))® = {u € L}(Q) : Vu € L}(N)}.

Let L?(2) and H(f2) be the usual Hilbert spaces equipped with the natural
scalar products (-,+)z2(q) and (-,") g1(q), respectively.
We define the following subspaces of L*(f):

J(Q) is the closure of the set J(Q) of smooth solenoidal vector-functions
in L?(Q);

Jo(f2) is the closure in L*(Q) of a set of smooth solenoidal vector-functions
satisfying the condition u,|s = 0;

G(Q) is a closure in L%(Q) of the lineal G(f2) of gradients of continuously
differentiable in {2 harmonic function.

Introduce the following functional spaces:
HQ) = L3(Q) x LX(Q),  H(Qr) = L*((0,T); H(D)),
H(Qr) = L*(R; H()).
Let us also introduce the following subspaces of H(Qr):

J(Qr) = J(Qr) x J(Qr),  TolQr) = Jo(Qr) x Jo(Qr),
G(Qr) = G(Qr) x G(Q7),

where J(Q71), Jo(QT), and G(Qr) are the subspaces of L?(Qr) which ele-
ments for almost all t € (0,7T') are in the subspaces J(2), Jo(02), and G(Q2)
respectively.

For the space J(Qr), the following Weyl's decomposition into direct
sum orthogonal to H(Qr) holds:
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T(Qr) = T0(Qr) ® 6(Qx).

We define Maxwell's operator A : J(Qr) = J(Qr) with a new imped-
ance boundary condition. The operator A is determined on the set D(.A):

u = {uy,uz} € J(Qr) x J(Qr), where u; and u, satisfy the following
boundary condition:

(u1 —CD§, us xn)xn =0 on S. (1)

The boundary condition (1) can be written in the equivalent form

1
(uz + =15, u1 X n) xn=0 on Sp, (2)

o

where we use the following notations: for 0 < a <1

t f(§)d¢

D800 = s 5 s o 500 o

In [1], an impedance boundary condition for the Maxwell equations
is constructed for a domain of vacuum bounded by a highly conductive
medium. The mentioned condition is a partial case of the boundary con-
dition (1) when o = 0.5 and C = /u/(470), where y is the magnetic
permeability of the boundary §; o is the conductivity of S. This boundary
condition provides an approximation of the same order of accuracy as the
classical Leontovich condition and extends the latter to the case of arbitrary
time dependence.

For u = {u1,us} € D(A), define the operator A(u) = {rot u, — rot u; }.

It is possible to prove (see [2]) that D(A) is a dense set in J(Qr).
In [2], it was shown that the conjugate operator A" is determined on the
set D(A*): v = {vy,v3} € J(QT) x J(Qr), where v; and v, satisfy the
boundary condition

1
(vg—EI%_vl xn) xn=0 on Sy

and, for v = {v;,v3} € D(A*), A*v = —{rot vz, —rot v;}. Here

(IT_f)(t 1-\( )f (E""t)l a’

Note that D(A*) is a dense set in J(Q7). Then we can close the operator
Ain J(Qr).

Definition. Denote the closure of the operator A in the space J (Qr) by
A and call this operator as the generalized Maxwell-Leontovich operator.
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Lemma. For any function f € L2(0,T) the following inequalities take
place:

f (T8O f () dt > o, (3)
[ @ p@swa = o @

Proof. The operator I§, is bounded as operator from L4(0, T) to Ly(0,T).
The set C§°(0,T) is dense in Ly(0,T'). Thus, it is sufficient to prove inequal-
ity (3) for the functions belonging to C§°(0, T).

Let us take f € C§°(0,T). Using the equality

[ =2 [e-orreu

and the following expansion
o0
(&%=t at ", 0<e<t,
k=0

where gp = —1,a1 =, ap = a(l—a) x ... x (k=1 — a)/k!, k> 2, we
obtain

@hh) = [ U HOF0

- OlafoT[ t f(%‘ffa]ft)dt

- —clgak [[[ ere ] ersea
- o

—Clj; t“f’(t)dtkgoak+

Cy g kay, [0 ’ [ fo “e11() dé] t* £ (t) dt,

where C; = (al'(a))™!
The first term in the right-hand side is equal to zero because

iak-_-(l—l)“:o.

k=0

The second term can be written in the form

o0
C1 Y kayly. (5)
k=1
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Let us show that I > 0 for k£ > 1. Really,

I e amk T i
b= /n Uo IO dg]t f(t)dt = fo Vi () (812 gt
= %T"‘“‘"’kwi(T) - #[:'f’z(ma“% dt > 0.

Here vk (t) = [3 %1 f(£) d¢, and the inequality holds due to the fact that
¥k(t) is equal to zero in a neighbourhood of zero. Further, the following
inequality takes place

C lTu+1
kag|Ii| < .
aklZel < a+r1 *
By virtue of this inequality, series (5) converges. Inequality (4) can be proved
in a similar way. O

Remark. Inequalities (3) and (4) are valid for the function f(t) taking
values in a Hilbert space X. It means that we can change L,(0,T) for
L3((0,T); X) in the lemma.

Theorem. The generalise Mazwell-Leontovich operator A is a dissipative
operator in the space J(Qr).

Proof. To prove the theorem, we must obtain the following inequalities:
T
f (Au,u)o(t)dt <0 Vu € D(A), (6)
0
T -
f (A, v)(t)dt <0 Vo € D(A"), )
0

where (-, )o is the scalar product in H(f).
If w = {u1,uz} € D(A), then using the Green formula we obtain

T T
fo (Au, w)o(t) dt = fo ({rot us, — rot s}, fus, us})o(t) dt

T
=ffnxu2-u1d8dt.
0Js

The boundary condition (2) can be written as

wrr(x, €) dE
(t—gia’

where C; = (CT'(a))”!. Using this form of the boundary condition, we
obtain

}
n(@) x wy(,t) = —Cy fo (2,t) € Sp,
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f (Au, wo(t) dt = ~C1 [ J [/ "“("’e)‘i)j‘t] cuy(z,t)dtdS.  (8)

It follows from the lemma that for any = € S

L[t wir(=, €)dé
/; [‘/.0 m -ul(:n,t)dtZO. (9)

From equation (8) and inequality (9) it follows that inequality (6) is valid
for any u € D(A). Let u = {u1,u2} € D(A). Then there exists a sequence
{u™} C D(A) such that v* — u» in H#(Qr) and Au" - Au in H(Qr).
Thus,

T _ _ T
fu (Au, ujo(t)dt = lim /ﬂ (Au”, u™)o(t) dt < 0.
Inequality (7) can be proved in a similar way. i

Dissipativity of the generalized Maxwell-Leontovich operator for ¢t €
(=00, +00), ie., for J(Qr), is proved in [3]. For the classical Maxwell-
Leontovich operator the proof is given in [4].
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