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Fast coding-decoding algorithm
in fractal image compression
via spherical ranges classification*

N.A. Vaganova, V.A. Vasilenko

The paper deals with the new classification of the ranges in image based on
simple geometrical consideration. This approach leads to the fast algorithms for
the training of fractal bases and fast coding-decoding processes in the image com-
pression. Some numerical examples are also presented.

1. Introduction

One of the simplest algorithms oriented to the image compression is the
use of the fractal bases. Formally, the fractal base is the fixed array of the
- simplest graphical or digital elements (fractals) which are able to code (with
the acceptable loss of accuracy) the ranges of the real image. In this approx-
imation, it is possible to execute the following simple operations with the
fractals: scaling, orthogonal transformations (rotations, reflections), sum-
ming with the constant (changing of the brightness), multiplying to the
constant (contrasting). After these coding of the ranges of the initial image,
we need to store (instead of range) only the number of fractal in the base and
parameters of its transformation. The volume of this information is usually
less than initial one. In the decoding process, we have to replace the range
by the transformed fractal from the base. This is the general computational
scheme.

Let us note the main problems arising in the construction of the fractal
image compression algorithm. 1) How to assemble the fractal base? Would
we desire to organize the universal fractal base for the effective coding of all
images from the different applications? How to restrict the volume of the
universal fractal base? Maybe, the creation (teaching) of the base, oriented
to the concrete application is a more reasonable approach. 2) The main and
the most important part for assembling the fractal base is the problem of
range classification. Together with the fast and reasonable forming of the
classes, we need to organize the fast search of the “middle” point (cluster
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center or gravity center) in the class, and we would like to refuse from
the exhausting search. From this point of view we need to provide the
convexity (at any sense) of every class. We will construct the classification
algorithm for the fast assembling of the fractal base and for the fast code-
decode processing. Let us note that the classifications suggested in [1-8] do
not provide the convexity of the classes.

2. Spherical classification of the half-tone ranges

Let us consider the pixel range of the size N x N pixels, N = 2" n > 2
with the values of intensity at every point, divide it into four equal ranges of
the size 2"~1 x 2"~1 and calculate the mean val-
ues f1, f2, f3, f4 of intensity at every small
square (Figure 1).

fa fs Let us execute the followin_g transformations
with the 4D-vector f: add to J the constant vec-
tor A = Aé, & = (1,1,1,1), A € R! to provide
the condition 31, (fi + A\) = 0; after that we
h fa execute the Euclidian normalization of the vec-
tor £ = (&, 2, €3, ), &= fi+ A i= 14,
and obtain the vector 7 = (z1, 22,23, 24) with

: 4 -1
Figure 1 the components T = :E«;( > wﬁ) ‘

k=1
Finally,

{z1+:cg+a:3+a=4=0
212+ 22 4232 22 =1

(1)

The set determined by (1) in R* is the intersection of unit 4D-sphere 5,
with the hyperplane containing the origin. Hence, this set is also unit 3D-
sphere S5 lying in the hyperplane (Figure 2). Let us introduce the following
transformation of variables:

1
61 = 5(31 — T3+ T3 — :E4),

f2= ';"(% ~ T2 — T3 + x4),
(2)

1
€ = 5(31 +z2 — 23 — z4),

1
€4 = 5(11 +tZ2+x3+24) =0.

It is clear that the variable €4 = 0 vanishes at 3D-sphere S3 and the
variables &, &, £3 become its directing cosines, £;2 + ¢,2 + &2 =1.
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Figure 2 Figure 3

Thus every N x N-range corresponds to the point at the unit 3D-sphere.
Moreover, this point is invariant with respect to adding of the constant
(brightness), to the multiplying to the constant (contrasting), and, also to
the size of the range (scaling). The signs of the directing cosines show
in what of eight octants of the 3D-sphere our point is lying. To reduce the
fractal base which we want to construct and to provide partially the rotation-
reflection operations with the fractal we restrict the consideration to the
positive octant {1, {2, {3 > 0 by changing of all signs to plus (but the initial
information about the signs of cosines is necessary for the decoding process
as we will see below). We restrict ourself by eight rotations-reflections which
map the square to itself. Now it is very easy to organize the fast and effective
classification of the ranges using their spherical characteristics. Let us divide
the interval [0, 1], where the modulus of the first directing cosine is varying
with the uniform mesh 0 < E{o) < E{l) <...< E{S) . We say the range
belongs to the class K; if

Gela 49 (3)

Every class K; corresponds with the “latitude stripe” on the 3D-sphere.
Every stripe K; can be divided with the subclasses K;;, j = 1,...,m;,
submitted to the inequalities

9N < g <€D, (4)

In accordance with the “longitude” we ought to regulate the number of the
mesh points in every stripe to provide the approximately equal squares of
the arising spherical rectangulars.

The mesh steps with respect to £ and £; depend on the volume N
(number of fractal) of the fractal base we want to organize.
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Let us consider the class K;;. It is generated by the convex restrictions
(4), (5). If we define the convex combination with two ranges of the equal
size from K;j, it is easy to understand that this combination is also lying
in the class K;;. Thus, every class generated by spherical classification is

convex and form the convex cone in the space of vectors of the dimension
N x N.

We discuss now the “teaching” (assembling) of the fractal base, coding
and decoding processes.

3. Teaching of the fractal base

Let us fix the size of teaching ranges. Structurally the process for the forming
of the fractal base (FB) can be described with four consequent executions
(Figure 4):

1) organization of the source of typical ranges,

2) classification of the ranges,

3) determination of the class centers (fractals),

4) fulfillment of FB with the fast search tools.

Source . Averaging
of ranges Classificator program @

Figure 4. Teaching mode

As example, the source of ranges can be organized with the typical pic-
tures (one or few) in the following way: take all ranges of the given size from
the picture. After that we send this range flow to classification. In every
arising class, its gravity center B®) for the ranges R (as for N x N vectors)
can be currently calculated by the recurrent formula

n 1
B = 8 + —R. (5)

After that we need to normalize ﬁgﬂl to the unit sphere. This vector (as
N x N-range) become k-th fractal. Because of convexity, the fractal also
belongs to the same class.
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4. Coding process

If we want to code picture, let us divide it into elementary ranges {R;} M,

with the same size as the size of fractals {C;}.; in FB (with the overlappmg
or not). Send every range R; = {r‘g’)}‘:l to classification and find the
numbers i, j of the class. Keep the signs of directing cosines ¢;, 3, €3
to clarify what kind rot of eight rotations (reflections) we need to do with
the fractal. After that let us approximate the range by optimal choice of
additional brlghtness o and contrast h by the minimizing of the mesh L,-

norm I, I? = 2 (O'C(J )4 h—rl ))2. It leads to 2 x 2-linear algebraic system
=1

with the solutlon

N2 Z C(J) (J) Z C(J‘) E ,_,.(J)

i=1 i=1 i=1
a NE, . NZ .
e El(cg”) B (Elc") (6)

1 (N N?
h:fv_f Zr?)—aZcP} ,
i=1 i=1

N 2 N? o\2

here C; = {cm},_l The case N2 }° (cga)) = (Z c,-) is not realized on
i=1 i=1

practice, since according to norm condition C; we have -

1 ¥
> Z N e
i=1

To reduce the volume of the final code array (Figure 5) we usually do
the quantization (by any way) of the real number o and h to store few bits

only.

Approx-| p | Codes
imation | ppt | Array

Classificator

Figure 5. Coding mode
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5. Decoding process

The decoding is the simplest block among the described ones (Figure 6).
During the scanning of the code array we have the complete information on
the position of the range in the initial image, on the number of fractal which
we need to transform with the known parameters rot, o, h (see Figure 6).

Codes Screen |
Array decoder

Figure 6. Decoding mode

If we have the overlapping of the ranges in coding process we need to
average the corresponding transformed fractals.

6. Numerical experiments

Example 1. The coding the X-ray image by fractal base constructed on
Akkem mountain lake (Altay).

We have selected two principally different images: the digitized pho-
tography of the well-known Russian Akkem mountain lake (Figure 7) and
medical X-ray, we call “Xray” (Figure 8). The base consisting of 256 fractals
was built on image Akkem. In fractal base construction, we took 16 nodes
uniform mesh with respect to £; and, applying our classification, every class
was divided by nonuniform mesh with respect to §2. We use the 8 x 8 dimen-
sion for every fractal. This base was applied for coding the “Xray”. Here
we used 7 and 5 bits for keeping parameters o and h, respectively.

For experimental clarity, the teaching mode of base for this image was
turn off. As the result of the coding the compression ratio was 51 times while
JPEG technology provided only 29 with the quality coefficient ¢ = 75%.
Note that coding time was about 1 sec while standard algorithm of fractal
image compression provides about 90 sec.

Example 2. Artificial fractal base.

The coding parameters were selected as in Example 1. For the compres-
sion of “Xray” the artificial base was applied, containing also 256 fractals
of the size 8 x 8. The results of “Xray” reconstruction with this base were
approximately the same (Figures 9, 10) as in Example 1. Coding time and
compression ratio were also the same for both experiments.

We believe, that the artificial base building as described above will de-
code images of all sorts in acceptable quality.
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Figure 7. Original “Akkem” image used for fractal base construction

Figure 8. Original medical image “Xray”
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Figure 9. Reconstructed image with artificial base

Figure 10. Reconstructed image with Akkem’s base
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7. Conclusion and future work

Spherical classification combined with fractal image compression algorithm
provides a sighificant speedup of encoding time. Please, pay your attention
that the coding process can be combined with the teaching mode to improve
current fractal base. We have described here the experiments in which we
used the ranges of fixed dimension. In future, we are going to combine this
classification with the well-known quadtree algorithm to improve the quality
of decoded image using different sizes of ranges. The problem of artifacts
which always arises in fractal tools is also the subject of future studies.
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