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Quasi-polynomial finite elements in
elliptic boundary value problems with
small parameter

V.A. Vasilenko

The uniform error estimates with respect to a small parameter are obtained here for
the finite element approximation of the elliptic boundary value problem with a small
parameter. The space of trial functions is the space of special L-splines with the basis of
local functions.

1. General formulation

Let H be the Hilbert space and f : H — R! be linear bounded functional
over H. Let us consider the family of the symmetric positive definite
bilinear forms a, : H x H — R! depending on the real parameter o,
0<a<l,

Vu,ve€ H aq(u,v) = aq(v,u),

aﬂ("?”) 2 7(“)("’! "')Ha - (1)

where 7(a) > 0 and is independent of u € H. We need to find the elements
uo € H which provide the condition

Vve H ag(va,v)= f(v). (2)

In accordance with the Rietz algorithm we consider in H the family of
N-dimensional subspaces HY, 0 < a < 1. The approximate solutions ul
of problems (2) can be found from the following condition

Vog € HY aa(ul,vf) = f(o7).

Our aim is the construction of the family of subspaces HN to provide the
uniform (with respect to a) convergence of the Rietz algorithm when N
tends to infinity. '
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2. a,-splines

Let us consider in H the finite set of the linear bounded functionals k;H —
R! which are linear independent. We call Y € H the a,-splines if for some
real values r1,73,...,7x the element o is the solution of the following
variational problem

N _ H
o, = arg min  a,(v,v
« gueK,‘?" a( ’ )’ (3)

‘K’{V={U€H!ki(0)=7‘i, i=1,2,...,N}

Since the bilinear form a, is coercitive (see (1)), problem (3) is always
uniquely solvable [1, 2]. If the element u € H exists such that r; = k;(u),
then we say spline oY interpolates v € H. In this case we denote the
resolvent operator for problem (3) by SY, i.e. 0¥ = §¥u. Then the space
of a,-splines HY is SN H. '

What is the structure of a,-splines like? To clarify it we consider
the auxiliary problems which look like (2) and can be formulated in the
following form: find the elements k¥ € H from the condition

Vve H au(k¥,v)=ki(v),

for i = 1,2,...,N. Then the set K can be described by the following
formula :

KN ={ve H:a (k¥ v)=1r;, i=12,...,N}.
Taking into account the fact that a,(v,v)!/? is the norm in H which is
reproduced by the scalar product a,(u,v), we obtain that the solution o
of problem (3) is the normal spline [ ] and can be always represented in
the form '

N
o) =) ATKE,
i=1

where A{ are real coefficients which satisfy the linear algebraic system

N .

D aa(KE kN =15, j=1,2,...,N. (4)
i=1 : '

i r; = kj(u), j = 1,2,...,N, u € H, then the operator SY : H — H
is the orthogonal projector of H on to the linear span of the elements
k¥, kS, ..., k% is the scalar product a,(u,v), because system (4) is the
condition of minimum for the quadratic functional

N N
o (u =D Ok, u- Z; ,\gk,?)
=

=1
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with respect to the variables A7, A3,..., A%
Let us introduce an operator R, : H — H by the equality

Vve H ay(Ra,u,v)=(u,v)q. (5)

Then we have
ki = Rok;y, 1=1,2,...,N

and for the solution u, of the initial problem (2) we obtain u, = Ry f. If
KN is the linear span of the elements kl,kz, ....,ky and Ky : H — En is
the operator defined by formula

Knu = [kx(u), ka(w), - .., kn ()],
then the adjoint operator K : Ey — H acts according to the rule
N
KA =) Aiki, A=[A,A,...,2n]

=1

and the operator SV of the spline interpolation with a,-splines can be
written in the following form

SN = Ry K¥(KNRoK}) ' Kn.

In accordance to the Rietz algorithm we find the approximate solution
ul) of problem (2) in the space of a,-splines:

VoeH aq(ul),SNv) = f(5Nv).

It is clear that the resolvent operator RY of this problem can be written
in the following form

= BYf = RuKj(KNR.K¥) ' KN R f,

and RY = SYR,. It means that the Rietz solution ul is an-spline which
interpolates the exact solution u,. Hence

a(Raf — RY f,Rof — RV f)
ta(Rof — SN Rof, Raf — SN Rof)
= a1(Bif,Raf = SYRaf) — 0(SY Raf, Raf — SN R. ).
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It is evident that
aa(SY Raf, Raf = SY Raf)

N
= aa()_ APk, Rof — S) Raf)

1=1
N
> 2#(ki, Raf - S3 Raf)m =0,

=1

because SNV R, f interpolates R, f. In the particular case o = 1 we have
ay(SY R1f, Raf ~ S Raf) = 0.
Thus,
ao(Raf = RY f,Raf = R f) = ax(Raf — Y f, Raf = R{ f).

Denote %Y = Rof — RY f. Then

“a(d’g’ (I’V)

N
ai(Raf, ¥} - al(g Al Riki, 9l

N (6)
(f = }_:1 Mkis ¥ )n.

Assume now that the Hilbert space H is continuously embedded to the
Hilbert space H and the constant C' > 0 exists (independent of a) such
that

VueH (u,u)y < Can(u,u). (7
Let us introduce the operator L : H — Y by the identity

Vve H (Lu,v)y = (u,v)n.

Theorem. If the elements f and k;, 1 = 1,2,..., N belong to the domain of
definition of the operator L and condition (7) takes place, then for the Rietz
approzimation using a,-splines as the trial functions the following uniform
with respect to a € (0, 1] error estimate is valid

N
ao(Rof — RY f,Raf — RY f) < CIIL(F =) Mk} (8)

i=1
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Proof. Using (6) we have

N
aa('pg.s ¢£) = (L(f = Z )‘:]kl)i '/’N) '
i=1 Y
N |
< NLG=Y0 AR -y
i=1 Y
N
< B =Y Mk - CYan(pl w2,
i=1 Y
Reducing the factor aa(¥Y, ¥Y)1/? we obtain (8). m]

3. aq-splines in a simple problem with a small
parameter

Let H be the Sobolev space W}(0,1) of the quadratic integrable functions
and their 1-st derivatives with zero Dirichlet conditions at the end points
of the interval (0,1). We introduce the family of belinear form

1
ao(u,v) = / (eu'v' + wv)dz, a€(0,1].
0

Let us divide the interval [0,1] by the uniform mesh of points
zi=ixXh, h=1/N, i=0,1,...,N,

and define linear bounded in H functionals k; by the formula

i

k.-(u):/ wz)dz, i=1,2,....N.

Ti-1

In accordance with the previous consideration every as-spline which is the
solution of the problem

Oy = arg min a,(u, u),
ueKh

K* = fue W3(0,1) : ki(w) =i, i=1,2,...,N)

2
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is the linear combination of the elements k € H, where k{* is the solution
of the projective problem

VoeWi(0,1) an(k®,v) = ki(v).
In other words, k' is the solution of the following boundary value problem
— (k) + k¢ =z, kZ(0)=kf(1) =0, (9)

where z; is equal to the one inside the interval (z;-1,2;) and is equal to
zero ontside of it. Since the Green function of problem (9) is known

cashf;shl—;i, z<§,
cosh1=Zsh £ z>¢,

a?t

Galz,8) = {

where ¢, = 1/(a sh 1/a) and the functions k¥ can be founded in the
explicit form.

Aish z/a, z < Ti-,
ki(z)=({ Bishz/a+Cish(1-2z)/a, zio1 <z <z,
Dish(1-2)/a, z > .

Here A,-,B.—,C,-,D.- are certain constants. Thus, every a,-spline ¢, can be
described by the following conditions:

a) In every subinterval A; = [z;_;,z;] the spline o, can be written in the
following way

Tala; = A} + AjelE=5i-1) 4 giflzi=z)
where 8 = 1/a and A}, A}, A% are constants,
b) o, € CY(0,1),
c) a(0) = 04(1) = 0.

It is easy to construct the local basis functions in the space of a,-splines,
which play the role of the finite elements. We consider a four-point pattern
of the mesh z;_; < ; < zi41 < %i42 and construct local basis a,-spline
concentrated on the interval [z;_;,2;42]. Denote by o; its quasi-polynomial
representation on the interval [z;_;, z;] and require the conditions

0i(zi-1) =0, 0i(zi-1) =0, ai(z;)=1.
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This brings about the following algebraic system

A AL+ ALePh = 0,
Al - AbePh = 0,
Ab+Aiet + 4y = 1,
with the solution
i 2ePh i ePh i 1
Ap = _(eﬂh _ 1)2’ Ap = (eBh _ 1)2’ Ay = (eﬁh _ 1)2‘

For 0;41(z) we require conditions

oip(zi) =1, o (2) =0i(z:), oipa(zip) =1,

resulting in the system

AT+ AT A =,
. ) Bh 1L 1
i+1 w16 _ € +1
AT - AT e = BT
AG + AR+ A = 1,
with the solution
. h h 2
Al = AR = e’h 4+ 1 , AR =14 fﬁ_+1
(efh —1)2 efh — 1

Similarly, on the interval [z;41,2;42] we have

oiza(ziz1) =1, 0i49(Zig2) =0, 0ipa(2ig2) = 0,
and

AGF? = 2 P S e (10)
(efh — 1)2 (efh - 1)2 (efh —1)2
The basis function is constructed.

The basis functions near the bnundary points z = 0, z = 1 can be
constructed using the boundary condition. Let us consider, for example,
the end interval [0,2h]. On the interval [h,2h] basic function is already
constructed by (10). On the interval [0,h] the function is constructed
according to the rule

01(0)=0, oi(h)=1, oj(h)=a}(h),
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v Y
1 % ! 7 f
ol 2 2 T B -
Figure 1 Figure 2 Figure 8
i.e.,
AL+ AL+ Al = 0,
Bh
h _ gl e+l
Al -4y = “Ah_1’
A+ AlePh + A} = 1.
Thus,
ePh 4 4ePh 4 2 ) Pk +2 1 efh +3

Ap = (eFh —1)2 1=—(eﬁh_1)2’ A2=_(eﬁh_1)2'

In Figures 1 - 3 one can see the basic functions near boundary points
of the interval (0,1) (see Figures 1, 3) and inside of it (see Figure 2).

Let us find now the corresponding finite element matrix. Under the
natural numeration of the basis functions ¢1,2,...,¢n this matrix has 5
diagonals. It is easy to calculate its elements kij = aa(i, ;) because

aa(‘Pia ‘PJ) = (La"pi’ LPj)Lg,

where L,u = —a?u” + u; the function L.¢; is local piecewise constant,
which is concentrated on the interval [z;_1, %i42], and its values Aﬁ on the
subintervals [zx—1,Zk], k = 1,...,1+ 2 are already known. Then

Ty Tit1 Tiy2
aolpir i) == Ay | wi+ A5 / @; + ASF? / 9
Ti—1 Ty Tit1

Near the end points z = 0, = 1, some natural transformations take place
and, finally, we have

.. _ 4 4 2 _ 4 3
ki = o [h(c* +4c® + 1) —alc’ + ¢° — e - 1)],

1=2,3,...,N -1,
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2
kijz1 = c—1f [—4he(c? 4 1) + a(c? — 1)(e? + 4c + 1))],
i1=3,4,...,N -2,
2
kiita = (c— 1y [2622h ac(c -1)],
it =4,5,...,N -3,
1
k1, = Eoif [R((c* + 4c + 2)* + 4c?)
- a(2c: +9¢2 +11¢2 = 12¢ - 10)],
k2 = C:-:ll_)“" [—2he(3¢*2 + 4c + 4)
+ a(c®2 - 1)(c* + 8¢+ 2)),
9
k13 = =10 [2¢%h — ac(c® - 1)),
where ¢ = ef*, 8 = 1/a.

fa<l,h > a, then e®* > 1 and the following asymptotic equalities
take place which are readily used in practice

ki;i =2 4h —4a, kijp1 =20, ki = —2ae"‘/°’,
k],l > h-— 20!, k1‘2 o o, k1'3 >~ —-206')‘/01.
In the case a <€ h the finite element matrix is strongly diagonally domi-

nating and can be efficiently reverted. The right-hand side of this system
consists of the elements

Ti41 Ti42
gi = AO/ fd::!:ﬂi--AH'l / fa!s::+A‘+2 / fdz.
Ti-1 £ Tig1

4. Splines and spectrum equivalent operators

Let us consider in H an other family of symmetric positive defined belinear
forms @, : HxH — R', which also depends on the real parameter a € (0, 1],
and assume that this family is connected with the initial family (1 - 2) by
the relation of equivalence, namely, two constants C; > 0, C3 > 0 exist and

independent of o such that
Vue H Caa(u,u) < ao(u,u) < Colalu,u). (11)

If we introduce, like in (5), the resolvent operator R, : H — H by the
identity
Vve H ay(Rou,v)=(u,v)n,



106 V.A. Vasilenko

then inequality (11).can be written in the following form
—=- - -1
Cl(Ralu,u)H < (R3'u, ) € Co( Ry u, u)H-
Taking into account the symmetry of the operators Ry and R, we obtain

Cl(R;llzu,Ea_lnu)H s (R;lu,u),q S Cz(ﬁ;ﬂzﬂ,ﬁ_lﬁ’u)g.
1/

Denote by v = R, 24. Then we have

VoeH Ci(v,v)n < (RYR;EY v, 0)n < Ca(v,v)n.

1/

Thus the operator R 2R;1ﬁy %is spectral equivalent to the unit operator.

o
Let us consider N-dimensional space T{_g of @,-splines and find an

approximate solution @}y € T from the condition

vol eHy  aa(il, 7)) = f(T): (12)
It is clear that the resolvent operator Ef : H — Ff of problem (12) can
be written in the form

@V = RN = RoKy(KNBaRS R Ky) ' KENRoSf.
Denote M, = R RZ'. Then
RN = R.M:KN(KENMoRaMLKN) ™ KnMaRo

similar to the operator

RY = R, K}(KnNRKN) ' KNRa,

which realizes the orthogonal projection of the element R, f = uq onto the
aq-splines HY = R,Kn (K is the linear span of the elements kq,...,kn)
in the scalar product a,(u,v); the operator RN realizes the orthogonal

projection of the same element to the subspace Fﬁf =R M;KNn = R.Kn.
Let k € Ky, then

ta(Bok, Rak) = (k, Bok)it = Ta(Rak, Bak) > cl 0o (Bak, Rak).
2

Tf we denote ||u/lo = @a(u,u)!/?, then we have

1 ] I Batlla
cos® > — T e
~ ey || Ratt||a

ue€H
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where cos @ is the cosine of the angle between the vectors R,k and R, k.
It is easy to see that

. ”.Rau”cx . = -1 ] au(ﬁaR"lv,v)
A= = - - f a
B Realle = bl MRaRaolle = fnf —r8—
_ i BEBaRSWwv) . (RaV'RaRIMw,w)g
vEH Rlv;v)g weH (w, w)yg
> Ch.

Thus, cos® > C1/C; independent of @ > 0. It means that the angle
between the subspaces HY and HY is bounded by the constant Qg < 1
uniformly with respect to a. Finally, for the Rietz approximation, using @,-
splines instead of a,-splines as the trial functions, the same uniform (with
respect to a) error estimate (8) takes place, but with the other constant
C >0
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