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Two-phase compressible flow in
a rectangular channel∗

G.S. Vasiliev

Abstract. The paper investigates a mathematical model of a two-phase medium
under the assumption that the phases are in equilibrium with respect to pressure
and temperature. Dissipative effects are determined by interfacial friction. In the
one-dimensional case, a group analysis of the dissipative system of equations for a
two-phase medium is carried out. In the two-dimensional case, the system is solved
numerically by the third-order TVD Runge-Kutta method. A problem of two-phase
medium motion in a channel in a gravitational field is solved.

Keywords: heterophase medium, group analysis, TVD Runge-Kutta method,
channel flow.

Introduction

Modeling the evolution of natural systems, such as magmatic and fluid-
magmatic systems, is possible due to general non-stationary nonlinear mod-
els that describe the dynamics of heat and mass transfer of heterophase
multicomponent media over a wide range of time and space scales. The
choice of the physical model parameters corresponding to a real system
is an urgent task that requires an analytical and numerical study of the
equations taken for the mathematical model. This article provides an ana-
lytical and numerical analysis of the equations for two-phase medium flow
obtained by a phenomenological method that ensures their thermodynamic
correctness. The symmetry properties of the equations are studied by the
group analysis method, which, in turn, is based on the study of differen-
tial equations invariance for one of the parameters from the Lie groups of
point transformations [1–6]. Group analysis can unify the analytic methods
for constructing explicit solutions of differential equations, especially for the
case of nonlinear partial differential equations. Nonlinear systems of equa-
tions for two-velocity medium mechanics (without temperature effects) was
studied in [7] on the basis of group analysis method. This article considers a
complete system of equations, including the energy conservation law along
with a more general equation of state [8]. The compressible two-phase media
flow problem in this work has been solved numerically. The choice of the
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third-order TVD Runge-Kutta method is determined by a need in consid-
ering the acoustic phenomena at the background of media fluid motion.

1. System of dissipative equations for a two-phase medium

A system of equations with two-velocity hydrodynamics approach with ac-
count for phase equilibrium and dissipation (caused only by the force of
interfacial friction [8]) takes the form:

∂

∂t
ρ1 + div(ρ1u1) = 0,

∂

∂t
ρ2 + div(ρ2u2) = 0, (1.1)

∂

∂t
u1 + (u1,∇)u1 +

1

ρ
∇p+

ρ2
2ρ
∇w2 + b

ρ2
ρ1

w = 0, (1.2)

∂

∂t
u2 + (u2,∇)u2 +

1

ρ
∇p− ρ1

2ρ
∇w2 − bw = 0, (1.3)

∂

∂t
E + div

(
(p+ E)

(ρ1
ρ
u1 +

ρ2
ρ
u2

)
+
ρ1ρ2
ρ

u1w
2

)
= 0, (1.4)

where

E = E0+ρ1(u2,w)+
1

2
ρu22, p = p(ρ, w2, E0), w = u1−u2, ρ = ρ1+ρ2.

The equation of state for a composite two-velocity medium is taken as

en(ρn) = p0n
1

ρ20n
(ρn − ρ0n)− 1

2knρ30n
(ρn − ρ0n)2,

and the pressure in each phase is determined by the formula

pn(ρn) = p0n +
1

kn

(ρn − ρ0n
ρ0n

)
,

where ρ0n is the phase density under normal conditions, p0n = pn(ρ0n, 0) is
the pressure under normal conditions, and kn is the bulk modulus.

2. Invariant solutions in one-dimensional case

The group properties of the equations of two-velocity hydrodynamics are
studied for 1D systems according to the following algorithm [1–6]: specifying
the form of the infinitesimal operator allowed by the system; construction of
the first continuation of the infinitesimal operator; action by the continued
operator on each equation of the system; transition to a differential manifold;
fulfillment of the splitting of the invariance conditions; solving the defining
equations system; finding the optimal systems of subalgebras; normalizing
the optimal systems of subalgebras; construction of invariant and partially
invariant submodels of the system; and, finally, finding the invariant and
partially invariant solutions.
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Let us introduce the notation

ϕ = ρ1, ψ = ρ2, u = u1, v = u2, ω = w2.

Let us express the derivative of function p(ρ, ω,E0) with respect to x
through the functions of its arguments, and reduce system (1.1)–(1.4) to
one-dimensional case in the form

ϕt + ϕxu+ uxϕ = 0, ψt + ψxv + vxψ = 0, (2.1)

ut + uux + ρ−1
(
pρ(ϕx + ψx) + (2pω + ψ)wwx + pE0E0x

)
+ ϕ−1bψw = 0,

(2.2)

vt + vvx + ρ−1
(
pρ(ϕx + ψx) + wwx(2pω − ϕ) + pE0E0x

)
− bw = 0. (2.3)

E0t + ρ−1jE0x + bϕω + ρ−2
(
ψw(p+ E0)− ψ2w3

)
ϕx −

ρ−2
(
ϕw(p+ E0) + ϕ2w3

)
ψx + ρ−1

(
ϕ(p+ E0) + ϕ2ω + 3ϕψω

)
ux +

ρ−1(ψ(p+ E0)− 2ϕψω)vx = 0. (2.4)

The infinitesimal operator admitted by system (2.1)–(2.4) has the form

X = τ
∂

∂t
+ ξ

∂

∂x
+ α

∂

∂ϕ
+ β

∂

∂ψ
+ δ

∂

∂u
+ γ

∂

∂v
+ κ

∂

∂E0
, (2.5)

where the functions τ , ξ, α, β, δ, γ, κ depend on the variables t, x, ϕ, ψ, u,
v, E0.

Let us construct the first continuation of the operator X

X̄ = X + Φt ∂

∂ϕt
+ Φx ∂

∂ϕx
+ Ψt ∂

∂ψt
+ Ψx ∂

∂ψx
+

U t
∂

∂ut
+ Ux

∂

∂ux
+ V t ∂

∂vt
+ V x ∂

∂vx
+ Et

∂

∂E0t
+ Ex

∂

∂E0x
,

where the coefficients Φt, Φx, Ψt, Ψx, U t, Ux, V t, V x, Et, Ex depend on
t, x, ϕ, ψ, u, v, E0, ϕt, ϕx, ψt, ψx, ut, ux, vt, vx, E0t, E0x. Let us act as
an operator X̄ on equations (2.1)–(2.3), considering the latter as differential
manifolds in independent variables t, x, ϕ, ψ, u, v, E0, ϕt, ϕx, ψt, ψx, ut,
ux, vt, vx, E0t, E0x:

Φt + δϕx + Φxu+ αux + Uxϕ = 0, (2.6)

Ψt + γψx + Ψxv + βvx + V xψ = 0, (2.7)
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U t + δux + Uxu− ρ−2(pρ(ϕx + ψx) + 2pωw(ux − vx) + pE0E0x)(α+ β) +

ρ−1(pρρ(ϕx + ψx) + 2pωρw(ux − vx) + pρE0E0x)(α+ β) +

ρ−1(2pρωw(ϕx + ψx) + 4pωωw
2(ux − vx) + 2pωE0wE0x)(δ − γ) +

ρ−1(pρE0(ϕx + ψx) + 2pωE0w(ux − vx) + pE0E0E0x)κ+

2ρ−1pωw(Ux − V x)− ρ−2ψw(ux − vx)(α+ β) + ρ−1w(ux − vx)β +

ρ−1(ψ(ux − vx)(δ − γ) + pρ(Φ
x + Ψx) + ψw(Ux − V x) + pE0E

x) +

2ρ−1pω(ux − vx)(δ − γ) + ϕ−1bwβ − ϕ−2ψbwα+ ϕ−1ψb(δ − γ) = 0, (2.8)

V t + γvx + V xv − ρ−2(pρ(ϕx + ψx) + 2pωw(ux − vx) + pE0E0x)(α+ β) +

ρ−1(pρρ(ϕx + ψx) + 2pωρw(ux − vx) + pρE0E0x)(α+ β) +

ρ−1(2pρωw(ϕx + ψx) + 4pωωw
2(ux − vx) + 2pωE0wE0x)(δ − γ) +

ρ−1(pρE0(ϕx + ψx) + 2pωE0w(ux − vx) + pE0E0Ex)κ+

2ρ−1pωw(Ux − V x) + ρ−2ϕw(ux − vx)(α+ β)− ρ−1w(ux − vx)α−
ρ−1(ϕ(ux − vx)(δ − γ)− pρ(Φx + Ψx) + ϕw(Ux − V x)− pE0E

x) +

2ρ−1pω(ux − vx)(δ − γ)− b(δ − γ) = 0. (2.9)

After substituting the continuation formulas and replacing the time deriva-
tives with derivatives in respect of the remaining quantities into equations
(2.6), (2.7), we obtain the equations that are nonhomogeneous quadratic
forms for free variables ϕx, ψx, ux, vx, E0x. Having performed the splitting
of the invariance conditions, assuming that pρ 6= 0, we obtain the condition
that τ = τ(t, x), ξ = ξ(t, x). Performing a similar procedure for equations
(2.8), (2.9), considering the function p and its derivatives as additional free
variables, provided that u 6= v, we arrive at the following solution of the
system of constitutive relations:

τ = const, ξ = ξ(t), α = β = κ = 0, ξt = δ = γ = const.

Equation (2.5), after substituting the continuation formulas and chang-
ing the time derivatives, does not entail additional conditions on the coeffi-
cients of infinitesimal operator and reduces to a trivial equality. Thus, we
have a solution:

τ = A, ξ = Ct+B, δ = γ = C.

By choosing one of the constants (A,B,C) from of the solution for a
system defining equations and take it equal to one, then the rest constants
are taken zero, we obtain the basis for the kernel of the main Lie algebra for
equations (2.1)–(2.4):
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X1 =
∂

∂x
, X2 =

∂

∂t
, X3 = t

∂

∂x
+

∂

∂u1
+

∂

∂u2
.

The assumption that the function is not constant is not essential. All groups
generated by operators under this assumption are also admissible.

The optimal systems Θs for Lie algebra L3 are presented in the following
table:

r i Basis Normalizer

1

2

3

1
2
3

1
2

1

X1

X2 + cX3

X3

〈X1, X3〉
〈X1, X2 + cX3〉

〈X1, X2, X3〉

〈X1, X2, X3〉
〈X1, X2 + cX3〉; 〈X1, X2, X3〉 (c = 1)
〈X1, X3〉

〈X1, X2, X3〉
〈X1, X2, X3〉

= 〈X1, X2, X3〉

Let us find the invariant solutions for all non-similar subgroups whose
algebras are included in optimal systems.

Submodel 1.1. The operator X1 =
∂

∂x
has invariants

J1 = t, J2 = ρ1, J3 = ρ2, J4 = u1, J5 = u2, J6 = E0.

The invariant solution is sought in the form

ρ1 = ρ1(t), ρ2 = ρ2(t), u1 = u1(t), u2 = u2(t), E0 = E0(t).

Substituting the desired functions into equations (2.1)–(2.4) will give the
following

∂

∂t
ρ1 = 0,

∂

∂t
ρ2 = 0, (2.10)

∂

∂t
u1 + b

ρ2
ρ1

(u1 − u2) = 0,
∂

∂t
u2 − b(u1 − u2) = 0, (2.11)

∂

∂t

(
E0 + ρ1u2(u1 − u2) +

1

2
ρu22

)
= 0.

From equations (2.10) we have ρ1 = c1, ρ2 = c2.
Multiplying the first equality from (2.11) by

ρ1
ρ2

and adding the second

one, we obtain

∂

∂t

(
u2 +

c1
c2
u1

)
= 0, hence u2 +

c1
c2
u1 = c3.

Then, substituting u2 = −c1
c2
u1 + c3 into the difference of the first and the

second equalities from (2.11), we derive
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∂

∂t
u1 + b

c1 + c2
c1

u1 = b
c2c3
c1

.

Therefore,

u1 = c4 exp
(
−bc1 + c2

c1
t
)

+
c2c3
c1 + c2

.

Thus, we arrive at invariant solution

ρ1 = c1, ρ2 = c2,

u1 = c4 exp
(
−bc1 + c2

c1
t
)

+
c2c3
c1 + c2

,

u2 = −c1c4
c2

exp
(
−bc1 + c2

c1
t
)

+
c2c3
c1 + c2

,

E0 = c5 − c1u2(u1 − u2)−
1

2
(c1 + c2)u

2
2.

Submodel 1.2a. The operator X2 =
∂

∂t
has invariants

J1 = x, J2 = ρ1, J3 = ρ2, J4 = u1, J5 = u2, J6 = E0.

The solution is sought in the form

ρ1 = ρ1(x), ρ2 = ρ2(x), u1 = u1(x), u2 = u2(x), E0 = E0(x).

After substituting the required functions into equations (2.1), we obtain,
∂ρ1u1

∂x
= 0,

∂ρ2u2

∂x
= 0, therefore, ρ1u1 = c1, ρ2u2 = c2. Then equations

(2.2)–(2.4) take the form

u1
∂u1
∂x

= −1

ρ

∂p

∂x
− ρ2

2ρ

∂

∂x
(u1 − u2)2 − b

ρ2
ρ1

(u1 − u2),

u2
∂u2
∂x

= −1

ρ

∂p

∂x
+
ρ1
2ρ

∂

∂x
(u1 − u2)2 + b(u1 − u2),

∂

∂x

(p+ E

ρ
(ρ1u1 + ρ2u2) +

ρ1ρ2
ρ

u1(u1 − u2)2
)

= 0.

The invariant solutions depend on the specification of the function p.

Submodel 1.2b. The operator X2 + cX3 =
∂

∂t
+ ct

∂

∂x
+ c

∂

∂u1
+ c

∂

∂u2
has

invariants

J1 =
ct2

2
− x, J2 = ρ1, J3 = ρ2, J4 = u1 − ct, J5 = u2 − ct, J6 = E0.

The solution is sought in the form
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ρ1 = ρ1(y), ρ2 = ρ2(y), u1 = u1(y)+ct, u2 = u2(y)+ct, E0 = E0(y),

where y =
1

2
ct2 − x.

Substituting the desired functions into equations (2.1) we obtain

−∂ρ1u1
∂y

= 0, −∂ρ2u2
∂y

= 0.

Therefore, ρ1u1 = c1, ρ2u2 = c2. Then equations (2.2)–(2.4) take the form

c− u1
∂u1
∂y

=
1

ρ

∂p

∂y
+
ρ2
2ρ

∂

∂y
(u1 − u2)2 − b

ρ2
ρ1

(u1 − u2),

c− u2
∂u2
∂y

=
1

ρ

∂p

∂y
− ρ1

2ρ

∂

∂y
(u1 − u2)2 + b(u1 − u2),

∂

∂y

(p+ E

ρ
(ρ1u1 + ρ2u2) +

ρ1ρ2
ρ

u1(u1 − u2)2
)

= 0.

The invariant solutions depend on the specification of the function p.

Submodel 1.3. The operator X3 = t
∂

∂x
+

∂

∂u1
+

∂

∂u2
has invariants

J1 = t, J2 = ρ1, J3 = ρ2, J4 = u1 −
x

t
, J5 = u2 −

x

t
, J6 = E0.

The solution is sought in the form

ρ1 = ρ1(t), ρ2 = ρ2(t), u1 = u1(t) +
x

t
, u2 = u2(t) +

x

t
, E0 = E0(t).

Substituting the desired functions into equations (2.1)–(2.4) will give the
following

∂ρ1
∂t

+
ρ1
t

= 0,
∂ρ2
∂t

+
ρ2
t

= 0, (2.12)

∂

∂t
u1 +

u1
t

+ b
ρ2
ρ1

(u1 − u2) = 0,
∂

∂t
u2 +

u2
t
− b(u1 − u2) = 0, (2.13)

∂

∂t
E0 +

1

t

(
p+ E0 + ρ1(1 + tb)(u1 − u2)2

)
= 0.

From equations (2.12) we have ρ1 = c1/t, ρ2 = c2/t. Transforming equations
(2.13) the same way as for (2.11), we obtain

∂

∂t

(
u2 +

c1
c2
u1

)
+

1

t

(
u2 +

c1
c2
u1

)
= 0,

∂

∂t
u1 +

(1

t
+ b

c1 + c2
c1

)
u1 = b

c2c3
c1t

.
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The following expressions will be the solution of these equations

u2 +
c1
c2
u1 =

c3
t
, u1 =

c4
t

exp
(
−bc1 + c2

c1
t
)

+
c2c3

(c1 + c2)t
.

Thus, we arrive at the solution

ρ1 =
c1
t
, ρ2 =

c2
t
,

u1 =
c4
t

exp
(
−bc1 + c2

c1
t
)

+
c2c3

(c1 + c2)t
+
x

t
,

u2 = −c1c4
c2t

exp
(
−bc1 + c2

c1
t
)

+
c2c3

(c1 + c2)t
+
x

t
,

∂

∂t
E0 +

1

t

(
p+ E0 +

c1
t

(1 + tb)(u1 − u2)2
)

= 0.

The invariant solutions depend on the specification of the function p.

Submodel 2.1. The operator 〈X1, X3〉 has invariants

J1 = t, J2 = ρ1, J3 = ρ2, J4 = u1 − u2, J5 = E0.

Integer subgroup characteristics have the following values: r∗(ξ) = 1, r∗ = 2,
t∗ = 5, σ∗ = 1, µ∗ = 4. Let us find the corresponding partially invariant
solutions. As the rank of a partially invariant solution, one can take any
integer that ρ∗ that satisfies the inequalities σ∗ ≤ ρ∗ < min(n, t∗), in this
case ρ∗ = σ∗ = 1.

Thus, a regular partially invariant solution is sought in the form

ρ1 = ρ1(t), ρ2 = ρ2(t), u1 = u2 + ϕ(t), E0 = E0(t).

The defect δ of this solution is equal to 1. Substituting the presented func-
tions into the system of equations (2.1)–(2.4), we obtain

∂ρ1
∂t

+ ρ1
∂u2
∂x

= 0,
∂ρ2
∂t

+ ρ2
∂u2
∂x

= 0, (2.14)

∂u2
∂t

+
∂ϕ

∂t
+ u2

∂u2
∂x

+ ϕ
∂u2
∂x

+ b
ρ2
ρ1
ϕ = 0, (2.15)

∂u2
∂t

+ u2
∂u2
∂x
− bϕ = 0, (2.16)

∂E0

∂t
+ (p+ E0 + ρ1ϕ

2)
∂u2
∂x

+ bρ1ϕ
2 = 0.

Subtracting the first equation from (2.14) multiplied by ρ1 from the second
one multiplied by ρ2, we receive

∂

∂t

(ρ2
ρ1

)
= 0, hence ρ2 = c1ρ1.
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Therefore,

u2x = −ρ
′
1

ρ1
, u2 = −ρ

′
1

ρ1
x+ c2(t),

where prime denotes the derivative with respect to t.
Using the definition of the partial density for two-velocity medium com-

ponents ρi = αiρ
ph
i (where αi and ρphi are the volume concentrations and

physical densities of the components), after simple transformations we arrive
at the equation (

1− c1ρ1(t)

ρph2

)(∂u2
∂t

+ u2
∂u2
∂x

)
−

ρ1(t)

ρph2

( ∂
∂t

(u2 + ϕ(t)) + (u2 + ϕ(t))
∂u2
∂x

)
= bϕ(t). (2.17)

Differentiate this expression with respect to x and take into account that
u2xx = 0: (

1− (c1 + 1)ρ1(t)

ρph2

)(∂u2t
∂x

+
(∂u2
∂x

)2)
= 0.

Two cases are possible.

In the first case we have ρ1(t) =
ρph2
c1 + 1

and ρ2(t) =
c1ρ

ph
2

c1 + 1
. Provided that

ρph2 = const, we obtain u2 = u2(t). Then the equations (2.15) and (2.16)
take the form

∂

∂t
ϕ(t) + b(c1 + 1)ϕ(t) = 0,

∂

∂t
u2 = bϕ(t).

Hence we have ϕ(t) = c3 exp(−b(c1 + 1)t). Thus, we obtain the solution

ρ1 =
ρph2
c1 + 1

, ρ2 =
c1ρ

ph
2

c1 + 1
,

u1 =
c1c3
c1 + 1

exp(−b(c1 + 1)t), u2 = − c3
c1 + 1

exp(−b(c1 + 1)t),

E0 =
ρph2
2

( c3
c1 + 1

)2
exp(−b(c1 + 1)t) + c4.

In the second case ∂txu2 +
( ∂
∂x
u2
)2

= 0. Let us denote ψ(t) =
∂

∂x
u2 =

−ρ
′
1(t)

ρ1(t)
, then we have the equation

∂

∂t
ψ(t) +ψ2(t) = 0. Its solution is ψ(t) =

1
t+c5

, what entails −ρ
′
1(t)

ρ1(t)
=

1

t+ c5
and ρ1(t) =

c6
t+ c5

, u2 =
x

t+ c5
+ c2(t).

From (2.16) it follows that ϕ(t) =
1

b

( ∂
∂t
c2(t) +

c2(t)

t+ c5

)
. From (2.15):

∂

∂t
ϕ(t) +

(
b(1 + c1) +

1

t+ c5

)
ϕ(t) = 0.
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Then

ϕ(t) =
c6

t+ c5
exp(−b(c1 + 1)t),

∂

∂t
c2(t) +

c2(t)

t+ c5
=

bc6
t+ c5

exp(−b(c1 + 1)t)

and
c2(t) =

c7
t+ c5

− c6
(c1 + 1)(t+ c5)

exp(−b(c1 + 1)t).

Thus, we obtain the solution

ρ1(t) =
c6

t+ c5
, ρ2(t) =

c1c6
t+ c5

,

u1 =
x

t+ c5
+

c1c6
(c1 + 1)(t+ c5)

exp(−b(c1 + 1)t) +
c7

t+ c5
,

u2 =
x

t+ c5
− c6

(c1 + 1)(t+ c5)
exp(−b(c1 + 1)t) +

c7
t+ c5

,

∂

∂t
E0 + (p+ E0(t) + ρ1(t)ϕ

2(t))
1

t+ c5
+ bρ1(t)ϕ

2(t) = 0.

The invariant solutions depend on the specification of the function p.

Submodel 2.2a. Operator 〈X1, X2〉 has invariants

J1 = ρ1, J2 = ρ2, J3 = u1, J4 = u2, J5 = E0.

The solution is sought in the form

ρ1 = c1, ρ2 = c2, u1 = c3, u2 = c4, E0 = c5.

Substituting these solutions into the system gives the solution

ρ1 = c1, ρ2 = c2, u1 = u2 = c3, E0 = c5.

Submodel 2.2b. The operator 〈X1, X2 + cX3〉 has invariants

J1 = ρ1, J2 = ρ2, J3 = u1 − ct, J4 = u2 − ct, J5 = E0.

The solution is sought in the form

ρ1 = c1, ρ2 = c2, u1 = c3 + ct, u2 = c4 + ct, E0 = c5.

Substituting these solutions into equations (2.1) will not give anything.
Substituting the required functions into equations (2.2)–(2.4) gives:

c = −bc2
c1

(c3 − c4), c = b(c3 − c4), bc1(c3 − c4) = 0.

The last relation implies c3 = c4, and hence c = 0. Thus, there are no
invariant solutions for this operator.
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Submodel 3.1. For the operator 〈X1, X2, X3〉, the invariants are the func-
tions

J1 = ρ1, J2 = ρ2, J3 = u1 − u2, J4 = E0.

In this case, there are no invariant solutions. Meanwhile, for the subalgebra
〈X1, X2, X3〉 we have the following values r∗(ξ) = 2, r∗ = 3, t∗ = 4, σ∗ = 0,
µ∗ = 4. For these values, it is possible to consider the case of existence the
irregular partially invariant solution of the simple-wave type. Let us take
the function u1 as a parameter. Then we have a representation for invariant
functions

J1 = ρ1(u1), J2 = ρ2(u1), J3 = u2(u1), J4 = E0(u1).

In this case, the non-invariant function u1 is assumed to depend on all
independent variables u1 = u1(t, x). The defect δ of this solution is equal
to 1. Substituting the desired functions into the system of equations (2.1)–
(2.4), we obtain

ρ′1u1t + (ρ1 + u1ρ
′
1)u1x = 0, ρ′2u1t + (ρ2u

′
2 + u2ρ

′
2)u1x = 0,

u1t + u1u1x = − 1

ρ

(
pρ(ρ

′
1 + ρ′2) + 2pωw(1− u′2) + pE0E

′
0

)
u1x −

ρ2w

ρ
(1− u′2)u1x − b

ρ2
ρ1
w,

u′2u1t + u2u
′
2u1x = − 1

ρ

(
pρ(ρ

′
1 + ρ′2) + 2pωw(1− u′2) + pE0E

′
0

)
u1x +

ρ1w

ρ
(1− u′2)u1x + bw,

E′0u1t + ρ−1jE′0u1x + bρ1ω + ρ−2(ρ2w(p+ E0)− ρ22w3)ρ′1u1x −
ρ−2(ρ1w(p+ E0) + ρ21w

3)ρ′2u1x +

ρ−1(ρ1(p+ E0) + ρ21ω + 3ρ1ρ2ω)u1x +

ρ−1(ρ2(p+ E0)− 2ρ1ρ2ω)u′2u1x = 0,

where the prime denotes the derivative with respect to u1. Partially invari-
ant solutions depend on the specification of the function p.

3. Numerical solution of the dissipative system of equations
for a two-phase medium in the two-dimensional case

The mathematical model of two-velocity medium motion in a gravitational
field (for isentropic case) has the form

∂ρ1
∂t

+ div(ρ1u1) = 0,
∂ρ2
∂t

+ div(ρ2u2) = 0, (3.1)
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∂

∂t
(ρ1u1,i + ρ2u2,i) +

∂

∂xj
(ρ1u1,iu1,j + ρ2u2,iu2,j + pδij) = ρgi, (3.2)

∂

∂t
(u1,i − u2,i) + u1,j

∂u1,i
∂xj

− u2,j
∂u2,i
∂xj

+
1

2

∂

∂xi
(u1,j − u2,j)2 +

b
ρ

ρ1
(u1,i − u2,i) = 0, (3.3)

where gi is the gravitational acceleration, b = η/ρk is the friction coefficient,
η is the viscosity of the dispersed phase, and k is the permeability.

The numerical implementation of the system of equations (3.1)–(3.3) in
the two-dimensional case is based on the following computational algorithm.
We consider a finite-volume discretization of the equation system (3.1)–(3.3)
for a spatial cell making a uniform grid in a rectangular coordinate system:

dUi,j
dt

+
Fi+1/2,j − Fi−1/2,j

∆x
+
Gi,j+1/2 −Gi,j−1/2

∆y
= Q(xi, yj , Ui,j). (3.4)

Solution for (3.4) reduces to integrating a system of ordinary differential
equations if the values of the fluxes and at the boundaries between cells are
known. For the numerical integration of this equation, the Runge–Kutta
method of the third order is used [11]

U (0) = Un,

U (i) = U (i−1) +
1

2
∆tL(U (i−1)), i = 1, . . . ,m− 1,

U (m) =
m−2∑
k=0

αm,kU
(k) + αm,m−1

(
U (m−1) +

1

2
∆tL(U (m−1))

)
,

Un+1 = U (m),

where

L(U) = −
Fi+1/2,j − Fi−1/2,j

∆x
−
Gi,j+1/2 −Gi,j−1/2

∆y
+ Q(xi, yj , Ui,j),

m = 4, and the coefficients αm,k are chosen as follows: α4,0 = 0, α4,1 = 2/3,
α4,2 = 0, α4,3 = 1/3. Here Un and Un+1 are the values of the solution at
the nth and (n+ 1)th time layers.

The third-order Runge–Kutta method used in numerical integration be-
longs to the class of temporal SSP discretization, which makes it possible
to maintain monotonicity and increase the order of approximation of cir-
cuits in time. In this case, the spatial derivatives contained in the vector of
the right parts Q(xi, yj , Ui,j) are approximated by operators of the central
finite difference. The flux values at the cell boundaries are calculated by
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the GFORCE method [12] with the fluxes calculated as a combination of
Lax–Friedrichs and two-step Lax–Wendroff fluxes:

FGF
i+1/2 = θFLW

i+1/2 + (1− θ)FLF
i+1/2, 0 ≤ θ ≤ 1,

FLF
i+1/2 =

1

2
(F (Uni ) + F (Uni+1))−

1

2

∆x

∆t
(Uni+1 − Uni ), (3.5)

FLW
i+1/2 = F (ULW

i+1/2), (3.6)

ULW
i+1/2 =

1

2
(Uni + Uni+1)−

1

2

∆t

∆x
(F (Uni+1)− F (Uni )).

The time step is calculated according to the formula

∆t = KCFL min
i

∆x

Cmax
i

,

where KCFL is the Courant number and Cmax
i is the maximum speed of

sound.
We will use the GFORCE method in conjunction with TVD reconstruc-

tion with a minmod type limiter [13]. Then flows (3.5) and (3.6) will be
calculated as follows

FLF
i+1/2 =

1

2
(F (UnL) + F (UnR))− 1

2

∆x

∆t
(UnR − UnL),

FLW
i+1/2 = F (ULW

i+1/2), ULW
i+1/2 =

1

2
(UnL + UnR)− 1

2

∆t

∆x
(F (UnR)− F (UnL)),

where

UL = Uni −
1

2
σi, UR = UnR +

1

2
σi,

σi =

{
max(0,min(∆i−1/2,∆i+1/2)), ∆i+1/2 ≥ 0,

min(0,max(∆i−1/2,∆i+1/2)), ∆i+1/2 < 0,

∆i−1/2 = Uni − Uni−1, ∆i+1/2 = Uni+1 − Uni .

The TVD scheme is based on the principle of non-increase in the total
variation of the solution, where a higher order of the numerical scheme is
achieved using the polynomial reconstructions of quantities and the use of
limiter functions (limiters). The TVD scheme is a high-precision method for
hydrodynamic problems with discontinuous solutions, which is a nonlinear
scheme that can ensure the solution monotonicity. At the boundary points
of the enumeration domain, one-dimensional problems for boundary discon-
tinuity decay are solved. The systems of equations describing the decay of
the discontinuity along the corresponding coordinate axes are obtained as a
result of linearization of the model equations and neglecting the dissipative
terms (they violate self-similarity of solution).
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The computational algorithm is implemented as a set of C++ programs
using the Microsoft Visual Studio integrated software development envi-
ronment. In addition to standard libraries, the Armadillo linear algebra
library [14, 15] is used: the functions of the library are calculating the eigen-
values and corresponding eigenvectors of a dense general (non-symmetric,
non-Hermitian) square matrix. In order to minimize the machine round-
ing errors, numerical solution calculations are performed in dimensionless
variables.

As a model system, we considered the motion of a heterophase melt in
a magma channel during its intrusion into a permeable zone of the crust.
A non-uniform distribution of the solid phase is set at the inlet boundary.
On the left boundary, the longitudinal components of the phase velocities
are set (equal or different). The right border is considered open. On the
lateral boundaries, either no-slip conditions or slip conditions are assigned.
The phase density distributions in a vertically oriented channel are shown
in Figures 1, 2. The distribution of the total density and the content of
dispersed particles in an inclined channel are shown in Figures 3 and 4. The
phase density distributions in the inclined channel are shown in Figure 5.

a b

Figure 1. Evolution of the solid phase density for a heterophase medium in a
vertical channel with gravity field under the condition of (a) slipping, (b) sticking
at the side boundaries at different times
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a b

Figure 2. Evolution of the liquid phase density for a heterophase medium in a
vertical channel with gravity under the condition of (a) slipping, (b) sticking at the
side boundaries at different times

a b

Figure 3. Density evolution during the flow of a heterophase medium in an inclined
channel in a gravitational field under the condition of (a) slip, (b) sticking at the
lateral boundaries at different times
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a b

Figure 4. Evolution of the solids content in the flow during intrusion of a het-
erophase medium with (a) high content, (b) low content of the solid phase into an
inclined channel with an inhomogeneous initial distribution of solids

a b

Figure 5. Evolution of the densities of (a) solid phase, (b) liquid phase during
the flow of a heterophase medium in an inclined channel in a gravitational field at
different times
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Conclusion

The paper considers a dissipative system of equations for the dynamics of
a two-phase medium. The study of symmetries was carried out for a one-
dimensional system of equations where dissipation due to interfacial friction
was considered. The core basis of the main Lie algebra, the optimal systems
of subalgebras are found, and all invariant and partially invariant submodels
are written out. A trivial invariant solution, invariant solutions of three
submodels of rank 1, a regular partially invariant solution of a submodel of
rank 2, an irregular partially invariant solution of the simple wave type of a
submodel of rank 3 are demonstrated. The flux values at the cell boundaries
are calculated by the GFORCE method, where the fluxes are calculated as
a combination of Lax–Friedrichs and two-step Lax–Wendroff fluxes. The
problem of two-phase medium motion in a channel with gravity is solved for
various boundary conditions with an inhomogeneous initial distribution of
the dispersed phase.
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