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Modelling the semantics of
coloured dataflow networks*

[.B. Virbitskaite and A.V. Votintseva

1. Introduction

Dataflow networks are a well-known mathematical tool extensively used for
modelling and analyzing concurrent computing systems and their software.
A few formal dataflow models reported in the literature may be amalga-
mated in two groups-static and dynamic. Static models (4] allow at most
one token on an arc. This assumption severely limits the amount of con-
currency that is possible. Dynamic models are free from this restriction by
program code copying [11] and token colouring [2, 12].

There exist various approaches to represent the behaviour of dataflow
networks in terms of different notions allowing concurrency to be naturally
expressed. Modelling the operational semantics of static dataflow networks
by terms of the process algebra ACP was presented in (3]. Modularity and
Kahn’s principle were investigated in [9, 10] for dataflow networks whose
semantics was represented by pomsets and trace languages. A fully abstract
trace-model for dataflow networks was given in [5).

Our aim here is to develop a number of behaviour notions (firing se-
quences, trace languages, dependence graphs and event structures) for colo-
ured dataflow networks and establish formal relationships between these
notions. The paper is organized as follows. In Section 2, we introduce the
notion of a coloured (dataflow) network and define its semantics in terms
of firing sequences. In Section 3, the trace semantics of a coloured network
is given. In Section 4, to each firing sequence we associate a dependence
graph that is an other representation of the semantics of a coloured net-
work. There it is further established that for a coloured network its trace
language agrees in a strong way with the set of its dependence graphs. In
Section 5, the basic notions and observations concerning event structures
are presented. There it is further shown how to get the event structure
semantics of a coloured network from its dependence graphs. The section
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concludes with the comparison of the mentioned a.bove semantics. In final
section some concludmg remarks are given.

2. Coloured dataﬂow networks %

A coloured (dataflow) network is cha.ra.ctenzed by nodes, arcs and a distribu-
tion of coloured tokens. The nodes consist of links and actors. There are two
kinds of link nodes (data and control links) and four kinds of actor nodes
(operators, decxders, gates and colour actors). The arcs connecting links
with actors and actors with links are called data and control arcs according
to the type of link. Tokens flowing through arcs carry values between nodes
of the network. We distinguish data tokens (carrying arbitrary values from
the domain of an interpretation for a network) and control tokens (carrying
truth values (true, false)). Moreover, each token has some colour. For

" more information about informal descnptnon of coloured networks see [13].

Now we formally define coloured networks. Some explanations given
below are a part of the forrna.l definition. It is recommended to read these
expla,natlons in parallel wmh the main deﬁmtlon :

Definition. 2 1. A coloumd network is a quadruple N = (N E T,C),
where ‘ _

(1) N is a set of nodes consastmg of a subset L .of links and a subset A of
actors. The links are of two types: data lmks (LP) and control links

(LR) The actors are of the following types: operators (AF), deciders
(AR), gates (A%) and colour actors (AC = NewU Next U Old).

(i) EC(Ax(L Uw)) U ((L Uw) x A) (w ¢ N) is a set of arcs consisting
of a subset ED of data arcs and a subset E® of control arcs: w ¢ N.

(iii) ‘T is a set of tokens cons:stmg of a subset TD of data tokens and a
~ subset TR of control tokens.

(iv) C:T.— Tisa colour func_tlo_n.

(i), (ii): the nodes and arcs are represented by two sets N and E which
have to be finite and disjoint. The arcs are of two types data arcs (EP)
and control arcs (E®).. The set of nodes consists of two disjoint subsets L
(links) and A (actors). Figure la) shows the types of links. At least one

- data (control) arc must terminate oni -and at least one data (control) arc

must originate-at each data (control) link. ‘The types of a.ctors are shown in
Figure 1b).

1. Operator f € AF. An opera.t'_of has a,_ﬁ ordered set of input data arcs
and a single output data arc.



An event structure model for coloured dataflow computing 103
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2. Decider r € AR, A decider ha_é an ordered set of input data arcs and
a single output control arc. ' S

Figure 1
~

3. Gate g € AC. A gate has one input data arc and one input control
arc and two output data arcs, labelled by ‘+’- and ‘~’-signs.

4. Colour actors: new ¢ New, nezt € Nest, old ¢ Old, allowing loop
computations to be modelled. A colour actor has a single input data
arc and a single output data arc.

For a node n € N, let in(n) and out(n) denote the set of its input arcs and
the set of its output arcs, respectively. Let In = {wn)eE|lwgN&ne
A} (the set of input arcs of ) and Out = {(nw)eE|wgN &n e A}
(the set of output arcs of A).

(iii): the tokens are defined by two disjoint subsets 70 (data tokens)
and TR (control tokens). )
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(iv): the colour function C maps T on a finite non-empty set . of colours.
Each colour is a triple ¢ = (z,y, z), where c.z is the name of the loop, c.y is
the number of the loop iteration, and c.z is the context that may be itself a
colour. (If a token occurs outside a loop, its colour is (0,0, z) with c.z € N,
where N is the set of natural numbers.)

Figure 2 is an example of a coloured network.

h

fa

Figure 2

Let n,n’' € N. Then *n = {n’| n’ E n} (the set of input elements of n)
and n* ={n'| n E n'} (the set of output elements of n). :
- A coloured network A is an uninterpreted model. Specifying an inter-
pretation for A/ provides a complete representation of computation.
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Definition 2.2. Let AV be a coloured network. Then an interpretation |
for A is defined as follows:

(i) A domain D of values,

ii) an assignment of a total function @ : D9 — D to each operator
g
f € A, where ¢ =|in(f) |,

(iii) an assignment of a total predicate = : D? —y {true, false} to each
decider r € AR, where ¢ =|in(r) |.

Introduce the value function V that assigns a value V(t) e D (V(¢t) €
{true, false}, respectively) to each token ¢t € TP (t € TR, respectively). We
use a pair (N, ) to denote the interpreted coloured network. Let I denote
the set of all possible interpretations of AV.

A state in (N,]) is a function S defined from A into 2T such that the
tokens must have a type identical to the type of the arc. By S(NV,I) we
denote the set of all statesin (A, I),and let S = U(S(WV, I) | I €1). A state
S in (N, 1) is input (Siy), iff (Ve € In V¢, ¢/ € S(e) . C(t) #C(t") & (Ve €
(E\In) .S(e) = 0). From now on let S and §’ range over S(N, I).

The firing rule associated with a node n € N is defined as follows:
There is a colour ¢ = (z,y, z) € T such that :

(i) An actor node (link node) n is enabled with a colour ¢ in a state S if
there is a token with a colour ¢ on each (at least one) input arc of n.

(ii) ‘A node n enabled with a-colour c in a state S may be choosen to fire
with a colour c yielding a new state S’ specified as follows:

(a) One token with a colour ¢ is removed from each (at most one)
input arc of an actor node (link node) n.

(b) The tokens are added to the output arcs of n in the following
way:

2.1. For a data (control) link node n, one data (control) token
with a colour ¢ and a value v = V(t) is-added to each output
arc of n, where t is the data (control) token removed from
the input arc of n.

2.2. For an operator (decider) node n, one data (control) token
with a colour ¢ and-a value v = eV(t),...,V(ty) (v =
'Q')(V(tl),..., )

V(t;))) is added to the output arc of n, where t,,...,t, are
the data tokens removed from the input arcs of n and ¢ =|
in(n) [.

2.3. For a gate node n, one data token with a colour ¢ and a value
v=V(t;) is added to the ‘+’-port if V(t3) = true or to the
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‘~_port if V (t;) = false, where t; and t; are respectively the
data and control tokens removed from the input ports of n.
2.4. For a colour actor node n, one data token with a colour
¢ = U(c) and a value v = V(t) is added to the output port
of n, where ¢ is the data token removed from the input port

of n and
(new,0,¢c), if n € New,
U(c) (c.z,cy+1,c.2), if n € Nezt,

¢z, if n € Old.

A firing with a colour ¢ of a node n is a triple S (g S’ such that a transition
from the state S to the state S’ is consistent with the firing rule of n.

We can now introduce the first and the most pnmntwe semantic repre-
sentation of a coloured network. A firing sequence in (M, 1) is a string p
over alphabet (N X E) defined as:

(i) p=A and S;, -—_> Sm,

(i) Suppose ' is a firing sequence in (N, I), Sip 2+ S and § 3 &, then
p=p'(n,c) and S "— ? (n’c) S’

Let R(N,I) denote the set of all firing sequences in (N, I) and let
R = U(RW, ) | I € I). We will say that a firing sequence p in (N, I) is
safe iff V(n,c), (v, ) €p.(n,n' € A& n Nn" #£0) = c#C. ,

We are ready to begin our study of different semantic representations of
a. coloured network. For the sake of convenience we fix a coloured network
= (N,E,T,C) and .work with it throughout what follows. We shall
assume that A is behaviourally 3afe In other words, we shall assume, VI €
I1Vp € R(WV,I) . pis safe.
Clearly, firing sequences hide mforma.tlon concerning concurrency and
nondeterministic choices (conflicts). We will now see how the theory of
trace langu.ges can be applied to extract such information.

o. The trace semantics of N

The theory of trace languages was proposed to model the nonsequential
hehaviour of distributed programs. The interested reader is referred to [1, 6]
for details. Here we shall straight away apply the notions of this formalism
«n coloured networks. Before doing so, we need to introduce some additional
notations.

Through the rest of this section we set R == (N x £) and R' = ((AF U
A™) x ¥). For p € R, o, will denote the pr03ectlon of p onto R, i.e., a string
over Rri R' defined as:
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(i) Tp = A,

. op(n,c), if (n,c) € R,
(ii) Op(n,c) = :

Tp, otherwise.

For two actor nodes n,n’, we will write n < n’, iff there exists { € ‘L such
that (n € 1) & (n' € I*). We use n <3 n’ to denote the following fact:
ne+mn & ... & ny, < n', where n,n’ € 4, ny,...,nm € A\ (AF U
AR) and m > 0. ' Tl L

By D C R’ x R’ we denote the dependence relation associated with A/,
D ={((n,c), (',) | (n S n'Vn' ) & (c = ¢)}. Define T = R?\ D,
T will be called the independence relation associated with . Obviously, -
Z C R' x R' is a reflexive and symmetric relation.- Then we have a natural
way of partitioning R’ using the least congruence relation generated by 7 via
equations of the form (n, c)(n’,c') = (n/, ) (n, c), where ((n,c), (n, d)el..

Define ~ C (RN R')* as follows: = ' e

Op~T &L 30,02 € R*3n,n' e ID| o0,=0,(n,c)(n,c)a,, &:.
e Op! = 0Op, (h” ) (n, €)o,,.

Then ~ = (~)* is the eqhivalénée'félatioﬁ"wg want and for pER, [0, %

{op | €ER& 0, ~op}.

Let T %' {lop] | 0 € R}'."Now we need to introduce aﬁo’rdétin‘g' relatioﬁ'_ S

over T. C C T x T is given by: -~
tCt €5V, €t,0, €t' . g, € Prefix(o,).

Here Prefix(y) denotes the set of prefixes of the string . It is easy to check
that (T,C) is a poset. Figure 3 shows an initial portion of the poset of
traces associated with the coloured network shown in Figure 2. o
To see the information concerning nondeterministic choice we define a
‘compatibility’ relation over T as follows. Let ¢,# € T. Then

ttt S 3 eT g t'C .
tyt S (e 4 o).

In the example shown in Figure 3 (r, c1)(f2,c0) ¥ (r,e1)(f1,¢1), since the
choice of (f;,¢o) in the firing sequence (new, co) (Iy,¢1) (r,¢1) (I2,¢1) (g, ¢1)
(l4,¢1) (old,c1) (lg,co) (f2,c0) is oposed to the choice of (fi,€1). in the
firing sequence (new, co) (ly,¢;) (r.e1) (I2,¢1) (g,¢1) (I3,e1) (f1,c1). Here
co = (0,0,0). ¢; = (new, 0. co).
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{F, c1) Gl ye)r, c2)

(ne)(fae)  (me(fue)
(,.‘ Ci) /
A
. Flgure 3

4. The dependence graphs of N

_Now we wish to find a next semantic representatzon of a coloured network.
This representation will be in terms of dependence graphs (d-graphs) which
are a variant of a traditional semantic notion - data dependence graphs [4].
We build up the d-graphs of a coloured netw0rk inductively with the help
of its firing sequences. As we will see, this method of constructing d-graphs
will be very helpful for getting the desu'ed results. -

To each firing sequence p we will associate a d-graph G, = (V,, E,) as
follows. : : ‘

Deﬁn_itidn 4.1. Let p € R. Then G;: (V,, E,) is given by:
p=A. Then—GA '=(9 0), and KA=0

p#A. Let p = p(n,c) a,nd assume that- Gy = (V, ,E ) and K, are de-
fined. Then G, = (V,, E,) with

"‘/_ | f/ U {_(ﬂ, C)},_ : if ne AF'U-AR$
p V;: otherwise,

5 { Ey U (Kp(n, ) x {(n;c)}, if n € AF U AF,
p=. : o .
Ep’1 otherwise,
K, is defined by: _
Y (n',¢) €V Ky((n',¢)) = K ((n', )

and
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{(n,e)}, if n € AF U AR,
Kp((n,€)) = SU(K 4((n, ¢)) | out(n') Nin(n) # 0 & ¢’ is as below),

otherwise,
, U-'(c), if n'e AC,
¢ = .
c, otherwise.

Let G = {G, | p € R} denote the set of finite d-graphs of . Figure 4
shows the d-graph associated with the firing sequence (new, co) (Iy,21) (r, 1)
(l2,e1) (g9,¢1) (I3,e1) (fi,e1) (layer) (next,cy) (I1,¢2) (ryca) (I, co) (9,¢2)
(I3, €2) (fi,e2) (L4, c2) (next, ) (L, ea) (r,es) (I2,¢3) (g, e3) (Is, c3) (old, c3)
(%, c0) (f2,c0), where ¢g = (0,0,0), ¢; = (new,0,¢p), cz = (new, 1, co),
c3 = (new, 2, ¢co) (see the coloured network in Figure 2). '

(fiyer) = (fr,e2) = (f2,c0) — (r,e1) — (r,03) — (r,c3)

Figure 4

In order to establish a relationship between the traces and the d-graphs
of a coloured network it is necessary to define an ordering relation over G,
Let C'C G x G be defined as: '

Gp = .(Vp, Ep) g’ Gpr = (f/pt_, -Epl) & ?p g I?pl and Ep g Ep:.

Clearly, C’ is a partial ordering relation.

PfopOsitior_l 4.2._(T, C) and (G, C’) are isomorphic posets. In fact,
h: T — G given byVp e R . h([o,]) = G, is an isomorphism.

5. The event structure semantics of A/

Now we recall some terminology concerning event structures (prime event
structures introduced in [7]) denoting the behaviour of systems. Event struc-
tures are represented via sets of events with relations expressing causal de-
pendencies and conflicts between them. The subsets of events representing
executions in the event structure are called configurations. They have to be
conflict-free and left-closed with respect to < (all prerequisites for any event
occurring in the execution must also occur).

Definition 5.1. An event structure is a triple £ = (E, <, #), where
e FEis a set of events:;

e < C Ex Eis a partial order (the causality relation), satisfying the
principle of finite causes:
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| ‘_Ve 'e E:{deE|d< e}1 is finité;

o #CEX E is a symmetnc and. lrreﬂexwe relation ( the conflict rela-
t:on) satisfying the principle of conﬂlct heredlty '

Vel,ez, €3 € E. er<e &- el#ea =_> e-;#e3.

For-£=(E<'#) Iet td-—{(ee)|eGE}<—<\ad <?c<
(tré.xis:twlty), =<\<He# d & e#d&Ve,d € E: ( <
ek dy<d) = (e; =el&d =d) (lmmedlate conflict). :

A conﬁguratwn of an event structure 8, = (E' < #) is a subset C of E
such’ tha,t .

(1) Ve, e e C (e # ¢ ) (conﬂlct—free) _
(i) Ve, € E.e€ X & e <e= ¢ eC (left-closed)

~ We shall denote by C(£) the set of finite conﬁgutatlons (1 €., ea,ch member
“of C(£) is a finiteset) of £.

In a graphic represéntation only lmmedla.te chﬂlcts - not the inherited
ones — are pictured. The d-relation is represénted by arcs, omitting those -
derivable by transxtmty Followmg these conventions, the example of a
graphical representa.tlon of the event structure is shown in Figure 5. Possible
conﬁgura.tlons of this structure are: 0 {el} {e.,} {el,e;;} {ei, 62} {e,, AN
{31,82, eq}. ' ‘ e :

ey

e " : .e;.;",""-# _ e
' -Figure 5
Now we can give the evént st‘ructme sem'a,ntics of V.

Definition 5.2. The event structure of N is the trlple EWN) = (E, <, #),
where (recall that G, = (V,,, E,) for each p € R as specified in Definition 3.1)

L ] E = UpERVPT

o <= UpGR(E;)!

e Y(n,c),(n,c) € E . (n,c) # (n',¢) =
Vpe R . {(n,c),(n'.cN} € V,.
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{61,6‘2'64}

7N

{e1,e3} {e1.e2} {e1,e4}

{e1} {es}
0

Figure 6

Figure 6 shows the event structure of the coloured network in Figure 2.
For £(N), let C denote the set of all finite configurations of £(N).

Proposition 5.3. (G,C’) and (C,g): are isomorphic posets. In fact, b’ :
G — C given byVp € R . h'(G, = (V,, E,)) = V, is an isomorphism.

It will be convenient to recall some notions concerning posets. Let PO =
(D, <) be a poset. Then for D' C D, UD’ will denote the Lu.b. of D in PO
if it exists. Two elements z and y of D are compatible, in notation z y, if
they have an upper bound, thatis: 2ty 3zeD|z<z2&y<z A
subset D' of D is pairwise consistent, in notation D’ 4}, if every two elements
of D' are compatible in D, that is: D’ f Vz,y € D' . z {t y. PO is said
to be coherent, if every pairwise consistent subset D’ of D has a l.u.b. in
PO. PO is said to be finitary coherent, if every finite pairwise consistent
subset D’ of D has a l.u.b. in PO. z € D is called a prime element, if for
every D' C D such that UD’ exists z < UD' implies that z < y for some
y € D'. Let PR(PO) denote the set of prime elements of PO. PO is said to
be prime algebraic iff Vz € D .z =u{y |y € PR(PO) & y<z}.z € D is
called finite element, if it only dominates a finite number of elements, that
is, if the set {y | y < z} is finite. We shall denote the set of finite elements
of PO by FI(PO). PO is finitary iff PR(PO) C FI(PO).

We can now state the announced result:

Proposition 5.4 [8]. Let £ be an event structure. Then (C(£),C) is a
prime algebraic, finitary coherent and finitary poset.

Figure 7 shows the poset of configurations of the event structure in
Figure 5.
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(fzc) - " (fase0) B (f2, co)

S+ #

o) —— (f1,c) —— 09— (fi, ) —— () —— (fi, <)
' ' ‘ r-“-Figu.re'?_ ‘
Proposﬂ:lon 5.5.

(1) (T,C) and. (C, C) ar’e zsomorph:c posets

(ii) (T,C) and (G C') are prime algebmzc ﬁmtary coherent and finitary
posets

6. Concludmg remarks

In this paper we have formalized a number of behawor notions (firmg se-

- quences, trace languages dependence graphs and event structures) of colo-

ured’ (data,ﬂow) networks. We have proved strong formal relationships be-
" tween the above notions. In a certain sense our results are related to and
‘extend .the well-known results concerning behavior notions of elementary.
‘net systems [8]. It is worth remarking that the obtained results were for-
‘mulated in terms of finite objects (finite dependence graphs and the poset
~of finite configurations of event, structures) since the trace language we have -
~ defined contains only finite strings. Fortunately this restriction involves no
- permanent loss of 'informa.tion concerning infinite behaviours.
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