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Properties of matrices in methods
of constructing an interpolating spline
via the coordinates of its derivatives
in B-spline basis*

Yu.S. Volkov

We consider an interpolation problem. We have the given values f; =
f(z;) of some periodic function f(z) of the period b — a in the nodes of a
mesh

A: a=zg<z;<...<zNy=0b

It is required to construct a (b— a)-periodic interpolating spline S(z) of the
degree 2n — 1 (N > 2n).

In practice, the construction of a spline (of the minimal defect) is reduced
to solution of some system of linear equations. For splines of arbitrary odd
degree the method of determining the B-spline decomposition coefficients
is most widespread. However it is not optimal. For example, in the case
of cubic splines the priority is usually given to methods of construction via
the first or second derivatives of a spline in the nodes, as for any nonuni-
form mesh the condition number of matrices of the corresponding systems
is equal to 3. But the conditioning of the B-spline collocation matrix on
essentially nonuniform meshes can be arbitrarily large [1]. Similar estimates
of conditioning were obtained by the author for splines of arbitrary odd de-
gree [2]. But in general case, contrary to the cubic one, methods with a well
conditioned system of equations are unknown. Generally, to derive systems
with respect to the nodal values of some derivative is a rather complicated
problem. Only the system with respect to the moments (with respect to
the (2n — 2)-th derivative, if the spline degree is equal to 2n — 1) is known
[3]. But the matrix of this system on a nonuniform mesh can also be ill
conditioned [4].

The author has derived the systems of equations for finding the deriva-
tives of splines as coordinates with respect to a B-spline basis [5]. In the
present paper, the properties of matrices of such systems are considered.

The condition number of a matrix A is understood as the value

cond(A) = ||4] - [|A7Y
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with the Chebyshev max-norm of a matrix. We assume that the mesh A is
periodically continued beyond the interval [a,b] over the whole of the real
line. Let h denote the length of the largest interval of A. The B-splines
which we use have the numbering which is different from the standard one
(cf. [1, 6, 7]) but is more convenient for our purposes, — the index of a
B-spline corresponds to the number of the middle knot on the support, but
not the left one, i.e., B-splines of the degree k — 1 (of order k) B;x(z) and
Qix(z) have the support (x4 [k/g],mg_l_[(k_*_l) /2))- The above B-splines differ
by the normalization

YBa@=1 [ Qunir=1,
¢ supp Qik

Qik ( ) k By (m) .

Tit[(k+1)/2] — Ti—[k/2]

The bases formed by corresponding periodic B-splines (see [7]) will be
denoted by Bik, Bag,. .., Byk and Quk, Q2k, - - - , @k respectively.
For1 <k <2n-1, the author has derived ([5]) the systems of equations

Apby = §1®) (1)

with respect to by, bak, . . . , by — the coefficients of the decomposition of the
k-th derivative of the required spline S(z) in normalized periodic B-splines
of the degree 2n —1 -k, i.e.,

N
, S®) () = 3" bk Bjan—k(z). (2)
j=1

The elements afj of the matrices Ay are of the form
b

af = f Qik(7)Bjan—k(7) dr,
a

and the elements fi(k) of the vector f*) on the right-hand side of (1) are
equal to

f‘.(") =kK!- f[m,;_[k/z],---a$i+[(k+1)/2]}‘

The properties of B-splines directly imply that all matrices A4; are
(2n — 1)-banded, and their elements a . have the properties

aszﬂ, ":,j:112:"'rN;

N
Z“?jﬂl’ i=12,...,N.
i=1
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It means that || Ak[| =1 and, hence, cond(Ay) = || A7

Lemma 1. In the special case when A is uniform, the matrices A of
all systems (1) for k = 1,2,...,2n — 1 are identical and coincide with the
B-spline collocation matriz, i.e.,

afj = Bi,zﬂ(a:j).

Proof. Let h be the step of a uniform mesh. Without any loss of generality
one can take z; = ih. The formula for the convolution of B-splines [7] in
our notations is

Tg
[ Big1e = )Bjancs) 3o )y = Bo(o) ®)
2 .
Assume ¢ = nh+ih — jh. Then the expression on the right-hand side of (3)
is equal to B,"zn(wj).
Since B[klg],k(.’z - y) = B[k/z],k(kh -4 'y) and B1m(1') = Bl+1,m(T + h),
therefore at £ = nh + th — jh we have

Bsy (2 —y) = Bir(y + o), Blanzk) 3n_1(¥) = Bjan-k(y + 0)

with o = jh — |227E | k. So, the left-hand side of (3) is equal to
2

Bix(7)Bjan—k(T) dr.
supp(Bix Bj,2n—k) '

Since in' this case the B-splines B;; and Q;; coincide, the left-hand side of
(3) is equal to af;. m]

Lemma 2 [5]. For f € C¥[a,b] the following error bound holds
k ) )
59 ~ 1Ol < (m= [3] + (= 1+ BIAT) wFOiB). (8

As it is known, the influence of rounding errors when solving'a system of
equations is characterized by the condition number of the matrix of the sys-
tem. Thus, the good conditioning of A} not only guarantees good accuracy
of calculating the spline S(z) in the result of solving (1), but also reduces
the constant in (4). However, good approximation of f (k)(z) by the spline
S*)(z) does not imply good conditioning of the matrix Aj.

Let us consider a sequence of meshes A, : a = Ty < Ty < ... < TNy =
b, v=1,2,..., such that :

h, = max (it1, —ziy) 2 0 as v — oo. (5)
5 Ly~
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Let a (b — a)-periodic spline S,(z) of the degree 2n — 1 interpolates the
- function f(z) at the nodes of the mesh A,.

Theorem 1. If the matriz A,:yl , k=1,2,...,2n — 1, which is inverse to
the matriz Ay, of the coefficients of the system of equations (1) is uniformly
bounded with respect to v, then

58 (@) - 18 (2) = o(1) (6)
uniformly with respect to = on [a, b]l.

The proof immediately follows from Lemma 2.

It was shown by the author [4] that if k = 1,2,...,n—2ork=n+1,
n+2,...,2n—1, then there exists a function f(z) € C*[a,b] and a sequence
of meshes {A,} possessing property (5) such that

“Sg? - f"‘)H — 00 as v — 00, (7
co
i.e., relation (6) does not hold. Thus, the following theorem takes place.

Theorem 2. Ifk=1,2,...,n—2ork=n+1,n+2,...,2n—1, then for
any arbitrarily large constant K there ezists a mesh A such that cond(Ag) =
145 > K.

It should be noted that though || A;||, k =1,2,...,n — 2, can be arbi-
trarily large, nevertheless, for a rather smooth function f(z) (for example,
f(z) € C™[a,b]) relation (6) holds [3].

Theorem 2 leaves only two systems of equations (k = n — 1,n) which,
probably, are well conditioned for arbitrary nonuniform meshes A. Concern-
ing the boundedness of the value ||A,?||, the assumption was made as early
as in 1973. It is checked for n = 2,3 [8]. For an arbitrary n only estimates
depending either on the global mesh ratio [9] or on the number of nodes of
a mesh [10] were established.

Numerous computing experiments which we have conducted show that
the worst from the viewpoint of conditioning of systems (1) are the geometri-
cal meshes which were used for the construction of an example of divergence
of the interpolating process [4], i.e.,

A: —-1l=zg<z1<...<zNy =1,

Tit1 = z; + p(z; — Ti-1), i=0,1,...,[N/2] - 1;
TN—i = Ty, i=0,1,...,[N/2].

Tables 1 and 2 contain the values cond(A,,_;) and cond(A,,) respectively
for the splines of odd degrees from 3 up to 15 calculated on geometrical (with
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Table 1. The condition numbers of the matrices A,_;

Degree of S(z)

p | N :
3 5 7 9 11 13 15

20 | 3.0 7.5 18.53 | 45.73 | 112.8 | 278.4 | 686.9
1 50 | 3.0 7.5 18.53 | 45.73 | 112.8 | 278.4 | 686.9
100 | 3.0 7.5 18.53 | 45.73 | 112.8 | 278.4 | 686.9

20 | 4.83 | 19.37 | 58.47 | 202.6 | 616.2 | 2252. | 7587.
5 50 | 4.83 | 19.52 | 60.32 | 213.9 | 658.4 | 2394. | 7965.
100 | 4.83 | 19.52 | 60.34 | 214.1 | 660.5 | 2406. | 8013.

20 | 5.54 | 22.81 | 65.59 | 227.2 | 685.2 | 2534. | 8531.
15 50 | 5.54 | 23.08 | 68.14 | 240.5 | 729.7 | 2673. | 8883.
100 | 5.54 | 23.08 | 68.17 | 240.9 | 732.5 | 2687. | 8933.

Table 2. The condition numbers of the matrices A,

Degree of 5(z)
3 5 7 9 11 13 15

1 30 | 75 18.53 | 45.73 | 112.8 | 278.4 | 686.9
5 | 3.0 § 9.22 | 34.38 | 117.7 | 472.2 | 1702. 6921.
15 | 3.0 | 9.72 | 39.26 | 135.5 | 552.6 | 1973. 7995.

a parameter p) meshes for various N and p. The condition numbers of the
matrices A, for various p weakly react to changes of N. Since for each p
the calculated values of the condition numbers for N = 20,50, 100 coincide
to within all digits given in the table, therefore the column (), containing
the number of nodes in the mesh, is omitted in Table 2.
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