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Properties of the inverse problem operator for
reconstructing the tsunami source∗

T.A. Voronina, V.V. Voronin

1. Introduction

This paper outlines some aspects of an approach to reconstructing an ini-
tial water elevation field that generates a tsunami. Recently, the devastating
tsunamis have acutely put forward the problem for their timely warning and,
as consequence, the importance of the accurate tsunami simulation. Math-
ematical modeling of tsunamis is to provide tsunami-withstanding commu-
nities with reliable information of inundation heights and arrival times for
the purpose to immediate protective measures. Numerical modeling of a
tsunami source is an important tool of assessment and mitigation of the
negative effects of tsunamis.

Among mathematical approaches based on the inversion of near-field
water-level data, most often used are the methods relying upon Green’s
functions technique (GFT) [1], the least square inversion combined with the
GFT [3] or an optimization approach [2]. These methodologies with various
modifications are widely used in practice.

This paper deals with an application of an original approach to the prob-
lem of retrieving the initial water elevation field (tsunami source) based on
the inversion of remote measurements of water-level data (marigrams). This
inversion method was first proposed by T.A. Voronina and V.A. Tcheverda
in 1998 [4] and was already described in its fundamentals in previous papers
[5, 7, 8]. Particularly, the proof of the compactness of the inverse problem
operator was first presented in [5]. In this method, the data space consists
of a given number of tide-gauge records, and the model parameter space
is represented by the values of the initial water elevation field at a given
number of points.

The direct problem of the tsunami wave propagation is considered within
the scope of the linear shallow-water theory. The ill-posed inverse problem
of reconstructing initial tsunami waveforms is regularized by means of the
least-square inversion using the truncated SVD approach. As a result of the
numerical process, an r-solution is obtained [6]. In the present paper, the
properties of inverting operator are studied by means of numerical modeling.
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This study is aimed at investigation of the characteristics of the method
avoiding the influence of such a factor as bathymetry and deals, particularly,
with establishing the dependence of the goodness of the inversion on the
number of receivers, their azimuthal coverage and the frequency band when
the computational domain is a right-angle basin. The method presented
allows one to control the instability of the numerical solution and to obtain
an acceptable result in spite of the ill-posedness of the problem.

2. Models

Mathematically, the problem of reconstructing the initial tsunami waveform
in the source area is formulated as determination of spatial distribution of an
oscillation source using remote measurements on a finite set of points (later
called receivers). Let us consider the coordinate system xyz and direct the
axis-z downwards. The plane {z = 0} corresponds to the undisturbed water
surface. The curvature of the Earth is neglected. Consider the aquatic part
Φ of a rectangular domain Π = {(x, y) : 0 ≤ x ≤ X, 0 ≤ y ≤ Y } on
the plane {z = 0} with the solid boundaries Γ and the straight-line sea
boundaries. The arrival of the wave on the coast is not considered in this
study. One of the main advantages of this method is that it is completely
independent of any particular source model. Let Ω = {(x, y) : x1 ≤ x ≤
xM , y1 ≤ y ≤ yN} be a tsunami source subdomain of Φ. The observational
data are the water level records which are assumed to be known at a set of
points in the domain Φ. Since a tsunami in the ocean is a long gravitational
wave with a low amplitude, its propagation can be considered in the scope
of the linear shallow water theory. Let η(x, y, t) be a function of the water
surface elevation relative to the mean sea level which is considered to be a
solution of the linear shallow water equation

ηtt = div(gh(x, y) grad η) + ftt(x, y, t) (1)

with the initial conditions

η|t=0 = 0, ηt|t=0 = 0 (2)

completed on the continental coasts with the total reflecting conditions

∂η

∂n

∣∣∣
Γ

= 0, (3)

and the boundary conditions simulated on an open boundary when the spa-
tial boundary occurs in an ocean location. The full absorbing boundary
conditions of second order of accuracy were used at the open boundary.
The tsunami wave is assumed to be triggered by a sudden vertical displace-
ment f(x, y, t) of the sea floor. It is assumed that f(x, y, t) = H(t)ϕ(x, y),
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where ϕ(x, y) is a co-seismic vertical displacement and H(t) is the Heaviside
step function. As a result ϕ(x, y) is the initial sea surface deformation in the
target domain Ω. Let us consider a special case for the approach proposed
when the basin depth is the function h(x, y) = h0. The acceleration of grav-
ity is the constant g and the wave phase velocity is defined as c(x, y) =

√
gh0.

In addition, the function η(x, y, t) is assumed to be known at a set of points
Mi = { (xi, yi), i = 1, . . . , P}. In order to obtain a system of linear alge-
braic equations by means of a projective method, a trigonometric basis was
chosen in the model space, i.e., the unknown function ϕ(x, y) was sought for
as a series of spatial harmonics ϕmn(x, y) = sin

mπ

l1
(x− x1) · sin nπ

l2
(y − y1),

m = 1, 2, . . . ,M , n = 1, 2, . . . , N , and the center of the tsunami source
was believed to be at the point (xc, yc), being the central point of Ω. Here
l1 = (xM−x1), l2 = (yN−y1). Thus, the unknown function of water surface
elevation ϕ(x, y) is approximated by the sum of spatial harmonics:

ϕ(x, y) =
M∑
m=1

N∑
n=1

cmn sin
mπ

l1
(x− x1) · sin nπ

l2
(y − y1) (4)

with unknown coefficients {cmn} in the domain Ω. For sampling the initial
field data, we assumed the synthetic marigrams to be known at the set of
points {(xp, yp), p = 1, . . . , P} and for a finite number of the frequency
instants Kw. Now, we assume that the dimensions of the model space and
the data space are equal to

dim(sol) = K = MN ; dim(data) = L = PKw.

Case study: a constant basin depth. Let us consider a special case
for the approach proposed when the computational domain is the right-
angle basin based on the rectangular Π (Section 2) with the height h0,
boundary condition (2) being correct for the line y = 0 and the free boundary
conditions corresponding to the lines {x = 0, y = Y, x = X} in the plane
{z = 0}. With these assumptions, equation (1) can be rewritten in the form

1

c2
0

ηtt = ∆η +
1

c2
0

ftt(t, x, y).

This makes possible to consider the analytical solution of the above equation
in the spectral domain. Let us denote

η(x, y;ω) =

∞∫
−∞

η(x, y, t)e−iωt dt,

f(ω, x, y) =

∞∫
−∞

f(x, y, t)e−iωt dt = ϕ(x, y)

∞∫
0

e−iωt dt =
−i
ω
ϕ(x, y).
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After applying the Fourier transform with respect to time, one can obtain
the following inverse problem: to recover the function ϕ(x, y) ∈ L2(Ω) with
a known spectrum of the function η(x, y;ω) for a certain frequency band
[ω1, ω2]

η(x, y;ω)|M = η0(xj , yj , ω), ω1 ≤ ω ≤ ω2 (5)

with η(x, y;ω) being the solution to the Helmholtz equation

∆η +
ω2

h0
η =

iω

c0
ϕ(x, y) (6)

satisfying the Sommerfeld radiation condition. Therefore, the recorded field
depends on the source amplitude in the following manner:

η0(x, y, ω) =
−iω
c2

0

∫∫
Ω

ϕ(ξ, ζ)H
(1)
0

(
k
√

(x− ξ)2 + (y − ζ)2
)
dξ dζ, (7)

i = 1, . . . , P,

where k ≡ ω/c0, and H
(1)
0

(
k
√

(x− ξ)2 + (y − ζ)2
)

is Hankel’s function. Let

us denote F (ω) = −iω/c2
0. As was mentioned above, the trigonometric basis

was chosen in the model space and the unknown function ϕ(x, y) was sought
for in the form (4). For the data space, let us consider that the observational
system consists of P receivers disposed at a set of points { (xi, yi), i =
1, . . . , P}, where the spectrum of the recorded field η0(x, y, ωj) is known for
some frequency setting {ωj , j = 1, . . . ,Kω}. This leads to the following
system of linear algebraic equations with respect to the coefficients cmn
according to formula (4):

η0(xi, yi, ωj) = F (ωj)
M∑
m=1

N∑
n=1

cmn

xM∫
x1

yN∫
y1

sin
mπ

l1
(ξ − x1) sin

nπ

l2
(ζ − y1)×

H
(1)
0

(
kj
√

(xi − ξ)2 + (yi − ζ)2
)
dξ dζ. (8)

In order to compute these integrals, the uniform grid was introduced over the
rectangle Ω with the parameters R, Q over x and y directions, respectively:
hx = l1/R, hy = l2/Q, ξp = phx, p = 0, . . . , R, ζq = qhy, q = 0, . . . , Q.
Within each elementary rectangle [ξp ≤ ξ ≤ ξp + hx] × [ζq ≤ ζ ≤ ζq + hy]
the bilinear approximation for Hankel’s function was used. Then system (8)
could be rewritten in the form
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η0,ij = Fj

M∑
m=1

N∑
n=1

cmn

R−1∑
p=1

Q−1∑
q=1

ξp+hx∫
ξp

ζq+hy∫
ζq

sin
mπ

l1
(ξ − x1) sin

nπ

l2
(ζ − y1)×

H̃pq(ξ, ζ) dξ dζ. (9)

Now, it is possible to use the r-solution method for system (9) as was ex-
plained in [4].

There is another fact to be remarked: the vector η0(x, y, ωj) is a complex
one when the unknown function ϕ(x, y) describing the source amplitudes is
a real one. Therefore, the unknown coefficients {cmn} will be real, too. This
fact was taken into account in the algorithm as follows: instead of every
ith complex equation of system (9) there are written two real equations of
the new system, where the (2i − 1)th row will consist of a real component
part of the ith rows of the “old” matrix and of the ith component part of
the right-hand side vector of the “old” system. Similarly, the (2i)th row of
the new matrix will correspond to the imaginary parts of the ith row of the
matrix and the right-hand side vector, respectively. Thus, the number of
equations in the new system (9) will be equal to L = 2PKw.

3. Numerical experiments: description and discussion

A series of calculations were carried out by the method proposed to set up the
dependence of the goodness of an inverted function on certain characteristics
of the observational system such as the number and location of receivers,
the frequency band of the data. As the main objective of our research is an
application to reconstructing an initial tsunami waveform, we can assume
the location of the target domain Ω to be known. In the truly real cases,
the tsunami source area is specified from seismological data shortly after
the event. Synthetic data for the numerical inversion experiments presented
below were computed as a solution of problem (1), (2) with appropriate
boundary conditions and a function ϕ(x, y) in the form

ϕ(x, y) = β(x, y)α(x), (10)

where the parameter α(x) was selected according to the case study that will
be clear in what follows. Let

β(x, y) = max

{
1− (x− x0)2

R2
1

− (y − y0)2

R2
2

, 0

}
. (11)

The goodness of the reconstruction is estimated with a misfit parameter as
a percentage relative error in the l2-norm:
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( K∑
i=1

(ϕi − ϕ̂i)2

)1/2 / ( K∑
i=1

ϕ2
i

)1/2

× 100 %, K = NM ;

the ratio of the squared averaged difference between the theoretical values
{ϕi = ϕ(xm, yn), i = n+ (m− 1)N, n = 1, . . . , N, m = 1, . . . ,M} and the
inverted ones to the theoretical function.

A series of the calculations were made by the method proposed and were
aimed at recovering the unknown function ϕ(x, y) in the form (4). Let us
assume: a flat bathymetry h(x, y) ≈ 4.082 (below all distances are scaled in
kilometers); the wave velocity c0 = const = 0.2 km/s; α(x) = 1 in formula
(10), i.e., the initial field is only a turning-up function. Let us denote a
computational domain on the surface {z = 0} as a rectangle Π = {(x, y) :
−X ≤ x ≤ X, 0 ≤ y ≤ Y } encompassing all the receivers and the source
area Ω. We assume that the total reflective boundary condition (3) is fulfilled
on the line y = 0, and an open boundary corresponds to the lines x = −X,
x = X, y = Y . The center of the source is located at (x0, y0) = (0, 150).
The function ϕ(x, y) is sought for according to formula (4) with M = N =
21, its maximum value being ϕmax = 1 m, and the domain Ω is a spatial
discretization by means of 100× 100 mesh points, i.e., R = Q = 101 in (9).

Let us define an assembly of the above specifying parameters as Pattern
and designate as Model the parameters of Pattern joint with additional
parameters such as the number of receivers Kp, the number of frequencies
Kw, the range of frequency band and a geometry of aperture. Figure 1
shows the layout scheme of the source-receivers arrangement for Models 1–3
used below.

Figure 1. The source-receivers arrange-
ment on the surface z = 0: the source
for Model 1 is the central small circle, the
source for Models 2 and 3 is the central
ellipse, the target domain Ω is the rectan-
gle; receivers are marked with bullets

The dependence of the inverted field on the number of receivers
and the aperture angle. This issue is of primary practical importance:
how goodness of the inverted function depends on the number of receivers
used in the inversion procedure. First of all, our purpose was to obtain
acceptable results of the inversion using a minimum number of marigrams.
In this connection, we have made the computer simulation using a number
of records that range from 1 to 30 with different azimuthal coverage.
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Figure 2. The singular spectra of the
matrix A for Model 1 with different
numbers of receivers used in the inver-
sion

Figure 3. Dependence of the number r,
a maximum value of the inverted func-
tion and of the value Kw on the number
of receivers in Model 1; condA = 108

Figure 4. The inverted fields in Model 1

Let us consider Model 1 based on Pattern with the linear aperture along
the line y = 0, L = 1000 (according to Figure 1) and condA = 108, the
number of receivers being: 3, 5, 8, 15, 20, 30. These receivers were uni-
formly distributed along the aperture. Comparing the singular spectra for
the different inversion versions in Figure 2 we can predict the best or a poor
inversion: a worse result will be in the inversion in which 3 receivers were
used, while the best result will be provided using 15–30 receivers (as will
be clear in what follows, for a real bathymetry increasing the number of
receivers will not ensure the better inversion). Indeed, Figure 3 shows the
number r, Kw and a maximum value of the inverted function multiplied by
100 against the number of the receivers used in the inversion. It should be
mentioned that the value Kw in the experiments performed was defined by
storing a product valueKpKw. The goodness of a solution is improving when
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the number of stations increases up to 15. Obviously, further increasing is
useless. This is confirmed by the pictures of the inverted fields in Figure 4
(see maximum values of the inverted function in the table in Figure 3).

Within the scope of the model with a constant depth of the basin, the
dependence of the goodness of the inversion on the number of receivers
and their azimuthal envelopment was studied. Let us change some spatial
parameters in Pattern. Let now the function ϕ(x, y) be a semi-ellipsoid (10),
(11) with α(x) = 1, R1 = 50, R2 = 25; w ∈ [0.001, 0.01] Hz; Ω = {(x, y) :
−100 ≤ x ≤ 100, 100 ≤ y ≤ 200} and the number of receivers range is from
3 to 15 in Model 2, from 1 to 5 in Model 3, respectively.

Figure 1 above shows the arrangement of receivers: in Model 2 they
are uniformly distributed on the line y = 0, L = 200, while in Model 3

Figure 5. The singular spectra of
the matrix A in Model 2 with differ-
ent numbers of receivers used in the
inversion

receivers were set on the segment
[−α, α] of the circle centered at the
point (0, 150) with R = 150 and the
aperture angle {2α, α = πn/10, n =
0.5, 1, 2.5, 3, 5, 6, 10}. It is clear from
Figure 5 that the behavior of the sin-
gular spectra as a function of the
number of receivers in Model 2 keeps
the main features being typical of the
ill-posed problem singular spectrum.
Here, the quantity of frequencies Kw

was equal 30 for the inversion by 15,
10, 7 marigrams; 50 for the case with

5 marigrams and 100 for the case with 3 marigrams, respectively. In Fig-
ure 6, the inverted fields within Model 2 are represented.

Figure 6. The inverted fields in Model 2
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Next, we present the results obtained in Model 3 when the goodness
of the inversion was studied with a range of the aperture angle and the
number of receivers. In Figure 7, one can see how a singular spectrum of
the matrix A changes with the number of receivers being increase from 1 to 5.
In addition, the available interval
of the number r is increasing and,
as consequence, the inversion is im-
proving. Adding new receivers leads
to increasing a maximum value of
the inverted function (line 4 in
Figure 8) from the value 0.28 to
the value 0.876 and, simultaneously,
to decreasing the misfit parameter
(line 2) from 44 % to 2.43 % for the
cases with different aperture angles.

Figure 7. The singular spectra of the
matrix A in Model 3 with the different
aperture angle ranges

Figure 8. The diagram of changing
the inversion parameters with the num-
ber of receivers used in the calculations
in Model 3: an aperture angle multi-
plied by 10 (1), the misfit parameter
(2), the number r (3) and the maximum
value of the inverted function multiplied
by 100 (4)

Figure 9 shows that other inversion parameters also obey the already
obtained regularities: adding receivers to the inversions procedure leads
to increasing the number r that results in obtaining a more informative
solution, i.e., the inversions become more robust. The results represented
in Figure 9 show that increasing the
aperture angle leads to the rise of
the maximum value of the inverted
function (line 3). At the same time,
the total volume of the displacement
in the target domain (line 1) is in-
variant in all these cases in contrast
to the total energy (line 2), as is
shown in Figure 9.

Figure 9

Let us discuss the results represented in Figure 10. When 5 receivers
were used in the inversion process, the simulation was made not only with
condA = 108 (lines 3a and 2a), but, in addition, with condA = 100 (lines 3b
and 2b) for the misfit parameter and a maximum value of the inverted
function, respectively. As it is clear from the graphs in Figure 10, the misfit
parameter and maximum values of the inverted function are worse when
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Figure 10. The diagram of chang-
ing the inversion parameters with the
aperture angle range and the number
of receivers used in Model 3: half-
aperture angle multiplied by 10 (1);
100max (2a) and the misfit parameter
(3a) for condA = 108; the number r
(4); and 100max (2b) and the misfit
parameter (3b) for condA = 100

Figure 11. The inverted fields in Model 3
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condA = 100. When the aperture angle (line 1) is sufficiently wide, the
influence of the conditioning number is not significant.

The inverted fields for the cases that were discussed above are presented
in Figure 11. The best result was obtained when the source area is ringed by
receivers, i.e. the half-aperture angle α = π and the number of marigrams
engaged in the inversion process is equal to 5.

4. Conclusion

We applied an inversion method to the problem of reconstructing the initial
water elevation field that generates a tsunami. The application of r-solutions
is an effective means of regularization of an ill-posed problem. The number
of r basic vectors applied appears to be essentially lower than the minimum
dimension of the matrix. This, in fact, enables one to avoid the instability
of the problem caused by a sharp decrease in singular values of the matrix.
We have also shown that the quality of reconstruction depends, mainly, on
the range of angles of observation. The best range is the entire circle. The
quality of a solution is improving when the number of stations increase up
to 10–15. The further increase is useless. Since the calculations were really
made in the time-spectral domain, we can conclude that for the solution to
be satisfactory, the shortest wavelength should be less than half the char-
acteristic size of the tsunami source. The number of frequencies used in
calculations should not be large; it is sufficient to use about 15 frequencies.
This result should be kept in mind when designing a tide-gauge network to
study a tsunami source.
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