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Inverse algorithm for recovering a tsunami source
using truncated SVD∗

T.A. Voronina

Abstract. The inverse problem to infer the initial water displacement is treated as
an ill-posed problem of the hydrodynamic inversion of tsunami tide gauge records.
To this end, we have developed a technique based on the least square inversion and
a truncated SVD approach. The proposed filtering technique essentially improves
the recover of a tsunami source. We have carried out a series of numerical exper-
iments with synthetic data and a real bathymetry. The accuracy of the tsunami
source recovery depends on the spatial distribution of an observation system, target
areas and bathymetric features along the wave path. The validity of the approach
proposed is confirmed by the numerical results obtained.

Introduction

Tsunamis are rare abrupt marine invasions that cause a severe loss and
pain to the coastal communities. The devastating tsunamis have actually
put forward their timely warning. One of the most important issues of
the tsunami simulation is gaining some insight into a tsunami source. It is
known that only some time after an event, having analyzed various seismic,
tidal and other data, it appears possible to estimate the basic characteristics
of a tsunami source. Thus, the numerical simulation of a tsunami source
is one of available tools for the research into tsunami problems. Therefore
the interest in the inversion problem for tsunami data has gained as well.0.
As is known, the above-mentioned inverse problem is an ill-posed one that
stipulates the conditions for all mathematical techniques. There are many
different methods and techniques for solving this problem. Some of the
studies were based on the assumption that the propagation model is linear.
Thus, Satake [1, 2] was the first to propose a formal inversion method for
the tsunami waveform, by using Green’s functions technique to invert a co-
seismic slip to a set of simple prescribed rectangular sub-faults from the
observed tide gauge data. Tinti et al. [3, 4] have proposed a method where
the inversion of tide-gange records to determine the initial waveform was
carried out by the least square inversion of a rectangular system of linear
equations. One of the main advantages of this method is that it does not
require a priori assumption of a fault plane solution: actually, this method
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is completely independent of any particular source model. A similar method
for the tsunami waveform inversion is proposed by Pires and Miranda [5] as
an alternative to the technique based on Green’s functions of the linear long-
wave model. Many papers are devoted to estimating the slip distribution
of an earthquake in the tsunami center by the inversion of teleseismic body
waves.

At first, there was a desire to understand what a minimum number of
water level records should be used to recover a tsunami source sufficiently
well. For this purpose, we have chosen a linear shallow-water model and
an approach based on the SVD and r-solution. The first simple numerical
experiments have shown the effectiveness of this approach for the tsunami
source function recovery [6].

Based on the typical tsunamigenic earthquakes with a reverse dip-slip
or a low-angle trust mechanism and with allowance for the corresponding
seismic sources, we numerically simulate the a potential tsunami. The co-
seismic deformation of the sea bottom is taken to be identical to the tsunami
initial condition.

In the case under study, the initial tsunami waveform problem is formu-
lated as an inverse problem of mathematical physics for restoration of the
initial water displacement in the source area by the water-level oscillations
observed at a number of points distributed in the ocean. It is well known
that the above-formulated problem is an ill-posed one. The possibility to
obtain a unique solution exists [7] only when the source function allows fac-
torization, i.e., the dependencies on time and spatial variables are separable.
We assume the time dependence to be described by the Heavyside function.
A mathematical description of the forward problem of wave propagation
consists in a system of linear shallow-water equations in the rectangular
coordinates. This system is approximated by the explicit-implicit finite dif-
ference scheme on a uniform rectangular grid so that the system of the linear
algebraic equations is obtained. The ill-posed inverse problem is regularized
by means of the least square inversion using the truncated SVD approach.
In this method, the inverse operator is regularized with the help of its re-
striction on the subspace spanned on a finite number of the first right-hand
side singular vectors [6]. The so-called r-solution [8] is a result of the nu-
merical process. The quality of the solution obtained is defined by relative
errors of the source function recovery.

In this paper, we make an attempt to answer the following question: how
accurately can a tsunami source be reconstructed using records at a given
tide gauge network? For answering this question, we have carried out a
series of numerical experiments with synthetic data and a real bathymetry.
It is necessary to recognize that the results obtained strongly depend on the
signal-to-noise ratio due to the ill-posedness of the problem under study.
Bearing in mind the fact that a tsunami wave is a low-frequency one in
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comparison with the background noise, we made an appropriate filtering
of calculated signals. The proposed filtering technique essentially improves
the recovery of a tsunami source [9] (reference to this paper can be found
in [10]). It was found, as in some other methods, that the inversion skill
of tsunami sources increases with the improvement of the azimuthal and
temporal coverage of assimilated tide gauges stations.

1. Inversion method

Mathematically, the problem of reconstructing the original tsunami wave-
form in the source area is formulated as determination of spatial distribution
of an oscillation source using remote measurements on a finite set of points.
One of the most difficult and poorly understood aspects of the tsunami waves
propagation is their interaction with the coastline. In this paper we have
chosen the simplest of approximate models: the one with a condition of total
reflection from a solid wall, consisting in nullifying a normal derivative of
the function describing the free surface elevation with respect to the external
normal vector. We will neglect the curvature of the Earth. Let us direct the
axis z downward. The plane {z = 0} corresponds to an undisturbed water
surface. Since tsunami in the ocean is a long gravitational wave with a small
amplitude, its propagation (for a regional tsunami) can be described by the
following linear shallow-water equation

Wtt = div(gh(x, y) gradW ) (1)

with the initial and boundary conditions

W |t=0 = ϕ(x, y), Wt|t=0 = 0, (2)

∂W

∂n

∣∣∣
H

= 0, (3)

where W (x, y, t) is a water elevation over the undisturbed state, h(x, y) is
the depth of the ocean, g is the acceleration of gravity, c(x, y) =

√
gh(x, y)

is the wave phase speed and n is the unit vector, outwardly directed, normal
to the boundary H. The finite function ϕ(x, y) is a bottom displacement in
the tsunami center.

Let us solve the problem in the aquatic part of the rectangular domain
Φ = {(x; y) : (x0 ≤ x ≤ xM ;×y0 ≤ y ≤ yN} on the plane {z = 0} with
both solid and free marine boundaries. Let Ω be a subdomain of Φ, which
is a projection of the bottom displacement domain to the sea surface. It is
assumed to be a support of the tsunami center (the target domain). Now,
our problem is to recover the bottom uplift ϕ(x, y) in the domain Ω, when
the given data, i.e., the water-level elevation W0(x, y, t), 0 ≤ t ≤ T , are
known on a certain set of receivers R : {(xi, yi) ∈ G, i = 1, . . . , P}, disposed
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on some segment of the line G : {(x(s), y(s)), 0 ≤ s ≤ l} which is a smooth
curve without self-crosses G ∈ Φ.

Let us denote by A the operator of the solution to the forward problem.
We assume that the initial uplift ϕ(x, y) is finite and its support is a compact
one and belongs to a limited area of Ω. In addition, the function ϕ(x, y) is
assumed to belong to the class W 1

2 (Ω) (the Sobolev space of distributions
with square-integrable derivatives). If we assume that the function h(x, y) is
continuously differentiable (this assumption does not necessarily correspond
to the experiments*), one can assume that the linear operator A is defined
by the following way: for each given ϕ(x, y) one should resolve the Cauchy
problem (1)–(3) and trace its solution on the line G. Thus, problem (1)–(3)
is now reduced to the following equation:

A〈ϕ(x, y)〉 = W0(s, t), (4)

where ϕ(x, y) is the initial bottom elevation, W0(s, t) is the water elevation
on the line G. As was done in [11], the implementation of the standard trace
theorem technique gives compactness of the operator A appointed in (4).
As A : W 1

2 (Ω)→ L2((0, L)× (0, T )), it does not possess a bounded inverse.
The solution of (4) will be sought for in the least-squares formulation:

φ∗(x, y) = arg min ‖A < φ(x, y) > −U(t)‖L2(M×(0,T )).

Any numerical method to resolve (4) requires its finite-dimensional approx-
imation. The usual way to do this is projective methods.

The r-solution is a projection of an exact solution to the subspace
spanned on the r right-hand side singular vectors corresponding to the top
singular values of the compact operator A. It is reasonable that a larger r
leads to a more informative solution. Finally, the value r is defined by a
singular spectrum and the data noise level. Thus, the numerical solution
to equation (4) includes its regularization using the singular value decom-
position of the operator A. The operator A possesses a singular system
{sj , ūj , v̄j}, where sj ≥ 0 (s1 ≥ s2 ≥ . . . ≥ sj ≥ . . .) are singular values,
and ūj , v̄j are the left- and the right-hand-side singular vectors. A very im-
portant property of singular vectors is that they form a basis in the model
and data spaces, so any functions ϕ(x, y) and W (s, t) can be presented as
Fourier series:

ϕ(x, y) =
∞∑

j=1

αj v̄j , W0(t) =
∞∑
i=1

W0iūi

with αj = (ϕ(x, y), v̄j(x, y)), W0i = (W0(t), ūi(t)). Taking into account these
properties, one can construct the r-solution of equation (4) in the form

*Weak solutions in W 1
2 exist and are unique under a much weaker hypothesis on h, for

instance, merely that log h(x, y) be bounded and measurable.
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ϕ[r](x, y) =
r∑

j=1

(W0, ūj)
sj

v̄j(x, y). (5)

This truncated series is stable for any fixed parameter r with respect to
perturbations of the right-hand side and the operator itself [8]. As one
can see, the ill-posedness of the operator equation of the first kind with
a compact operator is due to the fact that sj → 0 with j → ∞. So,
one can perturb the right-hand side W0(s, t) in such a way that some of
its vanishing perturbations can result in rather a large perturbation of the
solution. It should be noted that the operator perturbation also brings about
the solution instability. The proposed algorithm and substantiation of the
validity of this approach are described in considerable detail in [6, 11].

2. Discretization of the problem

Let us assume the domain Ω to be a part of the rectangle [x1, xM ]× [y1, yN ].
In order to obtain a system of linear algebraic equations by means of the
projective method, in the model space a trigonometric basis was chosen, i.e.,
the unknown function ϕ(x, y) was sought for as a series of spatial harmonics
with unknown coefficients cmn:

ϕ(x, y) =
M∑

m=1

N∑
n=1

cmn sin
mπ

l1
(x− xc) · sin

nπ

l2
(y − yc), (6)

where l1 = (xM − x1), l2 = (yN − y1), xc = (x1 + xM )/2, yc = (y1 + yN )/2.
To sample the data, we assume the observation system to consist of P

receivers, which are at the points (xp, yp), p = 1, . . . , P . In this paper, we
consider the case when the free surface oscillations W0(xp, yp, t) are known
for some finite quantity of the time counts tj , j = 1, . . . , Nt, at each re-
ceiver. We introduce a rectangular grid with the step ∆x,∆y over the
spatial variables and ∆t over the time. System (4) is approximated by the
explicit-implicit finite difference scheme on a uniform rectangular grid based
on the four-point pattern [12]. The scheme is based on the so-called spa-
tial pattern, which in combination with a central-difference approximation
of spatial derivatives simplifies the numerical implementation of boundary
conditions, as there is no need to define all the unknown functions on the
boundary. The scheme is of second order of accuracy with respect to spatial
variables and of first order with respect to time. As was mentioned above,
the arrival of the wave at the coast is not considered here.

Simulating the tsunami wave, we need approximation of the two types of
boundary conditions: a) conditions on the coastal boundary are assumed to
be the full reflection conditions: these are expressed by nullifying the deriva-
tive of W (x, y, t) with respect to external normal vector (3); b) conditions
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on the so-called free boundaries due to an artificial restriction of a consid-
ered domain: the absorbing boundary conditions (ABC). In this paper, we
use the full absorbing conditions of second order of accuracy [13]. To obtain
matrix presentation of the operator A, it is necessary to numerically resolve
a forward problem (1)–(3), where each of the basic functions in series (6) is
used instead of ϕ(x, y).

3. Numerical experiments: description and discussion

As a model, we used the displacement representing the bottom deformation
due to typical tsunamigenic earthquakes with reverse dip-slip or low-angle
trust mechanisms. Numerical experiments are presented for the real bottom
topography in the case study of the Peru coastal zone. The function to be
recovered was chosen in the form

ϕ(x, y) = ψ(x, y) · (x− x0 + 3R1) · (x− x0 +R1/6), (7)

where

ψ(x, y) = max
(

1− (x− x0)2

R2
1

− (y − y0)2

R2
2

, 0
)
.

The domain Φ is a part of the rectangle {0 ≤ x ≤ 600, 0 ≤ y ≤ 400}
with piecewise-linear boundaries of dry land, the domain Ω = {400 ≤ x ≤
500, 200 ≤ y ≤ 300} is a rectangle, the center point of the tsunami source
was assumed as (xc, yc) = (450, 250), R1 = 40, R2 = 50 (all the the horizon-
tal lengths are given in kilometers). In this case, from (7) maximum and min-
imum values of the function ϕ(x, y) are ϕmax = 1.959 m, ϕmin = −0.67 m,
respectively. According (6) M = 25 and N = 11 were used for modeling the
tsunami source (7). Now ∆x = ∆y = 1, so, the domain Ω contains 100×100
grid points. A series of calculations were carried out by the method proposed
and were aimed at recovering the unknown function ϕ(x, y) in (7).

In Figure 1, the contour lines of the real bottom topography of the
Peru coastal zone with the target domain Ω and 14 tide gages enumerated
clockwise and marked with asterisk (∗) are shown.

In Figure 2, typical graphics of common logarithms of singular values
of matrix A with respect to their numbers are shown. The curve numbers
relate to the quantities of the tide gages used in the recovery procedure.
So, we can use r = 42 for the case of three receivers (namely, marked
with 3, 10, 12) and r = 115 for 10 receivers. As practice shows, using
r ≤ 50 we can scarcely obtain an acceptable result. In fact, the behavior of
graphics depends not only on the number of receivers but on their location
and bathymetric characteristics as well.

A sharp decrease in singular values, when their number increases, is
typical of all calculations, this is connected with the ill-posedness of the
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Figure 1 Figure 2

problem. We can choose a parameter r for (5) only from the interval, where
the graphics of common logarithms of singular values is slightly sloping. As
was mentioned above, matrix A is proceeded from the location in space and
the number of tide gages. Thus, comparing the curves for three and four
tide gages, one can conclude that a maximum allowable r is influenced not
only by the number of tide gauges, but also by their azimuthal coverage.

As was shown in [14], the quality of the tsunami waveform recovery is
improved with increasing the number of tide gages, located within the char-
acteristic size of the rectangle of the search and, also, in the case when the
receiver captures the most informative signal. After carrying out numerical
experiments it becomes clear that the most satisfactory parameter value is
r ≥ 70. In such a way the proposed approach allows one to control a numer-
ical instability of the solution and therefore to obtain an acceptable result
in spite of the ill-posedness of the problem. The proposed technique based
on the detailed analysis of the properties of the inverse operator makes it
possible to obtain a reliable result for a given observation system.

The observed data concerning the form of the arrived wave were sim-
ulated as a result of solution to direct problem (1)–(3) perturbed by the
background noise, i.e., a high-frequency disturbance. All the experiments
discussed in this paper were carried out with the noise rate of 3 % of a sig-
nal maximal amplitude over all the receivers. It is necessary to note that
the results obtained strongly depend on the presence of noise due to the ill-
posedness of the problem. However, since a tsunami wave has much lower-
frequency as compared to the background noise, it is reasonable enough
to apply the frequency filtration of the observed signal (or synthetic mare-
ograms in as our case).



148 T.A. Voronina

Influence of the receivers configuration on the recovery accuracy

P d r e fmax fmin Receivers

7 2 73 0.3767 1.559 −0.7170 3, 4, 5, 6, 9, 10, 11
7 2 55 0.4436 1.381 −0.7680 2, 3, 4, 5, 6, 9, 10
7 2 65 0.4588 1.449 −0.9230 5, 6, 7, 8, 9, 10, 11
7 3 93 0.3164 1.732 −0.6472 5, 6, 7, 8, 9, 10, 11
7 4 99 0.2671 1.816 −0.7028 5, 6, 7, 8, 9, 10, 11
7 2 42 0.5520 1.276 −0.6745 1, 3, 5, 7, 9, 11, 13
7 4 59 0.3173 1.706 −0.7371 1, 3, 5, 7, 9, 11, 13
7 2 23 0.6278 1.106 −0.6959 3, 4, 5, 6, 7, 8, 9
7 2 45 0.5752 1.431 −1.3500 1, 2, 3, 5, 8, 9, 10
7 2 66 0.6443 1.995 −1.9200 1, 2, 3, 5, 9, 10, 11

a b

c d

Figure 3. Wave forms: a) initial –– ϕmax = 1.959, ϕmin = −0.67; b) recovered
with three tide gages –– ϕmax = 1.213 (0.885), ϕmin = −0.738 (−0.357), r = 41,
e = 0.717; c) recovered with five tide gages –– ϕmax = 1.757 (1.4716), ϕmin =
−1.0073 (−0.5142), r = 57, e = 0.4729; d) recovered with seven tide gages ––
ϕmax = 1.835 (1.5138), ϕmin = −0.7016 (−0.5484), r = 103, e = 0.262, d = 6
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The initial data smoothing was performed by using an original method
of the grid function smoothing proposed at the Computing Center of the
Siberian Branch of USSR Academy of Sciences in 1974 [9] (see also [10]).
The idea of the original algorithm is in sewing n-times differentiable lo-
cal approximations of the grid function with the help of Partition of Unity
Method. As the recovered tsunami source is characterized by essential noise,
which can cause a considerable distortion by the numerical modeling of
tsunami propagation and tsunami inundation, we made use of an appropri-
ate 2D-smoothing procedure (based on the above method) for the recovered
tsunami waveform as well. The filtering technique proposed essentially im-
proves the results of recovery.

In these calculations, r-solution was obtained with cond ≥ 1000. The
table gives an idea of the influence of the receivers configuration on the
recovery accuracy. Here P is the number of receivers in configuration, d is
log(1/ cond), e is a relative error (in L2-norm) in the source function, fmax

and fmin are extremal values of the source function, and the last column
represents lists of receivers.

As a result of the numerical simulation, we have obtained the initial
water displacement in the tsunami source area. In Figure 3, the initial and
the recovered tsunami waveforms are presented. The values in parentheses
correspond to smoothing the waveforms. The quality of the solution strongly
depends on the number of receivers and their disposition and was evaluated
as relative errors (in L2-norm) in the source function (before smoothing).

After smoothing the recovered waveform, we solved the direct problem
with the tsunami waveform obtained. We calculated mareograms at the
same points and compared them with the synthetic ones, which were con-
sidered as initial data in our recovering. One can see them in Figure 4.

Some of them relate to the receivers used in recovering but others –– to
the rest observational points. The solid line is to exact (synthetic) mare-
ograms, the dashed line is to mareograms for five receivers (3, 4, 6, 7, 10)
and a dash-dotted line is to for seven receivers (5–11). As is seen in this
case, the calculations with five receivers do not provide a sufficient match of
mareograms. But seven receivers give a good agreement both in receivers
used in the algorithm and at other observational points. If the main purpose
is the prediction of water elevation in the area based on the data provided
by some tide gauges, the agreement of mareograms is more important for
us than the accuracy in the form of a tsunami source.

Conclusion

This paper proposes a new approach to the problem of recovering a tsunami
source, followed by the calculation of water elevation in the area in question.
This method allows us to appreciate a minimal number of receivers needed
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Figure 4. Marigrams
in all observation points

for the tsunami source recovery. This approach also allows us to control
numerical instability and therefore to obtain an acceptable result in spite
of the ill-posedness of the problem. The SVD technique and the usage
of r-solutions are combined with smoothing filtering procedures both the
initial data and the calculated tsunami waveform. This leads to an essential
improvement in calculated water elevations. Such an approach proves to be
extremely helpful to evaluate a real possibility of a given tide gauges system
for recovering the initial water displacement.
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