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Numerical simulation of a tsunami source:
the case study of the Peru coastal area∗

T.A. Voronina

Abstract. This paper studies the importance of spatial distribution of the sea-
level monitoring stations for the accuracy of restoration of a tsunami source. The
ill-posed inverse restoration problem is regularized by means of the least squares
inversion using a truncated SVD approach. The wave propagation is described by
linearized shallow-water equations when depth depends on an arbitrary function of
two variables. Results of numerical experiments are presented in the case study of
the Peru coastal area.

1. Introduction

Recently, the devastating tsunamis have acutely put forward the problem for
their timely warning. People living in the costal areas, for example, on the
South American Pacific coast, are always exposed to tsunami risks, because
abrupt marine invasions such as tsunamis are particularly devastating for the
coastal areas. False tsunami warnings are a cause of great financial losses.
Scientists and engineers are joining forces for a more accurate prediction
of tsunami dangers. An important component of the assessment and, thus,
mitigation of the effects of the tsunami impact is computer-aided simulation.
One of the main needs for developments in tsunami modeling is estimating
the characteristic parameters of a tsunami source. Most of these parameters
can only be estimated by compilation of seismic, geophysical and tidal data
some time after the event. Thus, the numerical modeling of a tsunami
source is one of available tools for the research into tsunamis problems. The
recover of a tsunami source requires the “inversion” of a marigram recorded
at monitoring stations. The accuracy of restoration of a tsunami source
depends on a spatial distribution of a monitoring system, respectively, the
target areas and bathymetric features along the way path. For this reason,
we have developed a technique based on the inverse problem by a truncated
SVD approach.

In this paper, we make an attempt to answer the following questions:

• How accurately can we restore the source of tsunami in marigrams
recorded at the existing system of observation?
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• Is it possible to improve the recovery by providing the “most informa-
tive” direction to the monitoring system?

• Can accurate source models be developed in the near-real time?

With a view towards answering these questions, we have proposed a new
approach of the so-called dynamic tsunami source modeling. The proposed
methodology is validated with experiments using synthetic data and real
bathymetry. This approach includes the following steps. First, we obtain
the synthetic tide gauge records from a model source, whose form we are to
reconstruct. These can be records observed at real time instants. The origi-
nal tsunami source in the area in question is recovered by the inversion of the
above wave records. We calculate mariograms from the earlier reconstructed
source. To define the “most informative” part of the initial observation sys-
tem for a target area, we compare synthetic mariograms, obtained in two
cases in the same locations (it will compare synthetic and real recordings) at
all available sea-level tide-gauges. Next, we consider the observation system,
which contains only good matching stations. Now we can again restore the
tsunami source using only the tide-gauge records that were determined as
being the “most informative” part. This “improved” tsunami source can be
proposed for the use in further tsunami calculation. Taking into account
a prior information that the tsunami is a long gravitational low-amplitude
wave at all above stages, an appropriate filtering of the data and calculated
signals was made. It was found, as in other methods, that the inversion
skill of a tsunami source increases with azimuthal and temporal coverage of
assimilated tide-gauges stations.

2. Restoration of the initial tsunami waveform

Mathematically, the problem of reconstructing the original tsunami wave-
form in the source area is formulated as determination of spatial distribution
of an oscillation source using remote measurements on a finite set of points.
Thus, this problem is implemented by the inversion of the wave records ob-
served on a set of the sea-level stations – the “data space”. The “model
space” is represented by a linear combination of given basic functions.

The mathematical description of the direct problem of the wave propa-
gation consists in a linear shallow-water system of differential equations in
the rectangular coordinates:

Wtt = div(h gradW ) (1)

with the initial and the boundary conditions:

W |t=0 = ϕ(x, y), Wt|t=0 = 0, (2)
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= 0, (3)

where W (x, y, t) is a water elevation over the undisturbed state, h(x, y) is a
depth of the ocean, f(x, y, t) describes the movement of the bottom in the
tsunami area. The velocity of the tsunami wave propagation is also described
as c(x, y) =

√
gh. A unique solution exists only when the function of the

source allows factorization [1], i.e., the function f(x, y, t) can be factorized
as f(x, y, t) = ε(t) · ϕ(x, y), where ε(t) is the Heaviside function, ϕ(x, y)
is shearing of bottom in the tsunami center. We solve the problem in the
domain Φ with piecewise-linear inner and outer boundaries. Let Ω be a
subdomain of Φ, and it is assumed to be a support of the tsunami center
(the target domain).

Now, our problem is to recover the bottom displacement ϕ(x, y) in the
domain Ω, when the given data, i.e. the water elevation W0(x, y, t), 0 ≤
t ≤ T , are known on a certain set of the receivers M = { (xi, yi) ∈ G,
i = 1, . . . , P}, disposed on some segment of the line G, this may be a smooth
curve without self-crosses, G = {((x(s), y(s)), 0 ≤ s ≤ l}.

Let us denote by A the operator of the solution to the direct problem.
Thus, the solution to problem (1)–(3) is now reduced to the vector equation

A〈φ(x, y)〉 = W̄0(xi, yi, t), (4)

where φ(x, y) is the initial bottom elevation, W̄0(xi, yi, t) is water elevation
on the line G. One can assume that the linear operator A is defined by
the following way: for each given φ(x, y) one should resolve the Cauchy
problem (1-3) and trace its solution at the points from the set M . Let us
assume that the function φ(x, y) is of the class W2

1(Φ), the function h(x, y)
is continuously differentiable. According to [2], we can consider

A : W2
1(Φ)→ L2((0, L)× (0, T )).

As was done in [4], it is possible to prove that this operatorA is a compact
one, so it does not possess a bounded inverse. Any attempt to numerically
resolve equation (4) should be followed by some regularization procedure.
In the present paper, we use an inversion method, already described in
the previous publications [3]. The inverse operator is regularized with the
help of its restriction on a subspace spanned on a finite number of the first
right singular vectors [4]. Any compact operator possesses a singular system
{sj , ūj , v̄j}, i.e., the singular values sj ≥ 0 (s1 ≥ s2 ≥ . . . ≥ sj ≥ . . .) and the
left (ūi) and the right (v̄j) singular vectors. A very important property of
singular vectors is that they form a basis in the model and the data spaces.
As one can see from [6], the ill-posedness of the operator equation of the first
kind with a compact operator is due to the fact that sj → 0 with j →∞. So,
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one can perturb the right-hand side W0(xi, yi, t) in such way that some its
vanishing perturbation ε(t) can result in rather a large perturbation of the
solution. For example, ε(t) = εjW0(xi, yi, t), with εj → 0 as j →∞ in such
a way that sj/εj → 0. It should be noted that the operator perturbation
also brings about the solution instability.

The numerical solution to equation (4) includes its regularization us-
ing the SVD-decomposition of the operator A, that leads to constructing
r-solution given by the relation

φ[r](x, y) =
r∑

j=1

(W̄0, ūj)
sj

v̄j(x, y). (5)

This truncated series is stable for any fixed parameter r with respect to
perturbations of the right-hand side and the operator itself [5]. System
of equations (4) is approximated by the explicit-implicit finite difference
scheme on a uniform rectangular grid based on the four-point pattern [7].
The scheme is of second order of accuracy with respect to spatial variables
and of first order with respect to time.

Let us assume Φ to be a subdomain of the rectangle Π = {x0 ≤ x ≤ xM ,
y0 ≤ y ≤ yN}. A uniform rectangular grid is defined in Π, but in fact,
part of grid points correspond to the dry land. So, the difference scheme
employs only the grid points disposed in Φ. The arrival of the wave to
the coast is not considered here. Simulating the tsunami wave, we need
approximation of the two types of boundary conditions: a) conditions on
the coastal boundary are assumed to be the full reflection conditions–– these
are expressed by nullifying the derivative of W (x, y, t) with respect to the
external normal vector (3); b) conditions on the so-called free boundaries due
to an artificial restriction of a considered domain–– the absorbing boundary
conditions (ABC). In this paper, we use the full absorbing conditions of
second order of accuracy [8].

3. Numerical experiments: description and discussion

Let us assume the domain Ω to be on [x1, xM ]× [y1, yN ] rectangle. In order
to obtain a system of linear algebraic equations by means of the projective
method, in the model space, the trigonometric basis was chosen, i.e., an
unknown function φ(x, y) was sought for as a series of spatial harmonics
with unknown coefficients cmn:

φ(x, y) =
M∑

m=1

N∑
n=1

cmn sin
mπ(x− xc)

l1
sin

nπ(y − yc)
l2

, (6)

where l1 = xM − x1, l2 = yN − y1, xc and yc are central points of the
intervals.
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To sample the data, we suppose the observation system to consist of P
receivers, which are at the points (xp, yp), p = 1, . . . , P . We consider the
case when the free surface oscillations W0(xp, yp, t) (marigram) are known
for some finite quantity of the time counts tj , j = 1, . . . , Nt, in each receiver.
It will be reasonable to choose a basis in the data space as vectors ~u (kj), k =
1, . . . , P , j = 1, . . . , Nt, with components (ukj

i ) = δij . So, the dimensions of
the solution and of data spaces are dimsol = K = M × N ; dimdata = L =
P ×Nt. This leads to the following system of linear algebraic equations with
respect to unknown coefficients {cnm}:

Ac̃ = f̃ , (7)

where
f̃ = (w11, . . . , w1Nt , w21, . . . , w2Nt , wP1, . . . , wPNt)

T ;
wij = W0(xi, yi, tj), i = 1, . . . , P, j = 1, . . . , Nt;

c̃ = (c1, c2, . . . , ck)T .

To obtain the matrix A, it is necessary to numerically resolve direct prob-
lem (1)–(3), where instead of φ(x, y) the basic function is used. The matrix
A is a rectangular one and possesses SVD decomposition A = UΣV T ,
where V is K ×K matrix and U is L× L matrix. The right-hand singular
vectors ṽj of the matrix A are columns of the matrix V , they make a basis
in the space of solutions. The left-hand singular vectors ũi are columns of
the matrix U and they make a basis in the space of the right-hand side. So,
according to (5), one should find r-solution to a finite-dimensional approxi-
mation as

φ[r]KL(x, y) =
r∑

j=1

(f̃ , ũj)
sj

Ṽj(x, y), (8)

where Ṽj(x, y) =
∑K

k=1 vjkφk(x, y) and r = max
{
k : sk

s1
≥ 1

cond

}
.

It turned out that the number r of basic vectors applied appears to be
essentially lower than a minimum dimension of a matrix. The number r
depends both on a singular spectrum of the matrix A and on the noise level
in the observed signals. The singular spectrum of matrix A is determined by
the monitoring system. This dependence is investigated in the present paper
with the use of numerical simulation. The quality of the solution strongly
depends on the number of receivers and their disposition and is evaluated
as relative errors (in L2-norm) in the source function restoration.

Such an approach proves to be extremely helpful to evaluate a real pos-
sibility of a given tide-gauges system for restoration of the initial water dis-
placement. As a model we used the displacement representing the bottom
deformation due to typical tsunamigenic earthquakes with reverse dip-slip
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or low-angle trust mechanisms. Numerical experiments are presented for
the model bottom topography in the case study of the Peru coastal zone.

The function to be recovered was chosen in the form ϕ(x, y) = ψ(x, y) ·
α(x), where α(x) depends on the tips of a model, in our case, α = (x−x0 +
3R1)(x− x0 +R1/6), and the function ψ(x, y) describes the paraboloid

ψ(x, y) = max
{

1− (x− x0)2

R2
1

− (y − y0)2

R2
2

, 0
}
.

The domain Π = {0 ≤ x ≤ 600, 0 ≤ y ≤ 400} is a rectangle, the domain
Ω = {400 ≤ x ≤ 500, 200 ≤ y ≤ 300} is a rectangle, the center point of the
tsunami source is (xc, yc) = (450, 250), R1 = 40, R2 = 50 (all the sizes are
measured in kilometers). Therefore, ϕmax ≈ 1.959 m; ϕmin ≈ −0.67 m. The
function ϕ(x, y) was approximately found in the form of (8), where M = 25,
N = 11. A series of calculations were carried out by the method proposed
and were aimed at recovering the unknown function ϕ(x, y).

In all these calculations, r-solution was obtained when cond = 10. In
Figures 1 and 2, the bottom topography and common logarithms of singular
values of the matrix A are shown. A sharp decrease in singular values, when
their number increases, is typical of all the calculations. The influence of
the conditioning number is essential, too. However, significant oscillations
appear in the solution when the conditioning number cond > 10. This is
typical for all ill-posed problems. The observed data concerning the form of
the arrived wave were simulated as a result of solution to direct problem (1)–
(3), perturbed by the background noise, i.e., a high-frequency disturbance.
All experiments presented here were carried out with the disturbance rate of
3 % of a maximum amplitude of a signal over all receivers. It is necessary to
note that the results obtained strongly depend on the presence of disturbance
due to the ill-posedness of the problem. However, since the tsunami wave is
of an essentially lower frequency as compared to the background noise, it is

Figure 1. Bottom topography Figure 2. Singular values of matrix A
in common log scale
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Figure 3. Typical signals with noise of 3 % and the same signals after filtration

Figure 4. Initial, corrected (with nine observation stations), recovered, and
corrected (with six observation stations) tsunami waveforms

reasonable enough to apply the frequency filtration of the observed signal.
In this paper, the filtration is done by the method described in [9]. In

Figure 3, there are typical signals with noise and the same signals after fil-
tration. As a result of the numerical simulation, we have obtained the initial
water displacement in the tsunami source area. In Figure 4, the initial and
the recovered tsunami waveforms are represented for the recovered tsunami
waveform ϕmax ≈ 1.399 m, ϕmin ≈ −0.47 m, and for the “corrected” wave-
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Figure 5. Synthetic marigrams from initial and recovering tsunami sources at
the fifth and the eighth points of the given monitoring system

form –– ϕmax ≈ 1.328 m, ϕmin ≈ −0.5 m, in the case of six observed points;
ϕmax ≈ 1.549 m, ϕmin ≈ −0.6591 m for the nine observed points, respec-
tively.

One can see that the recover of the tsunami source was characterized by
an essential noise. Probably, the numerical models of tsunami propagation
and tsunami inundation cannot be adequately calculated in this case. This
means that the recovering tsunami waveform was filtered over as well as
the “corrected” tsunami source (see Figure 4). Thus, using the “corrected”
tsunami source, we calculated marigrams at the same points and compared
them to the observed ones. For some points of the observed system, it was
a good match, for the others –– it was not (Figure 5). We believe that one
of the reasons of a poor coincidence of marigrams is bathymetric features of
the bottom relief. After that, we reformed the exiting observation system––
we kept only the first type points in the system. So, we have considered an
appropriate observation system and a tsunami source in a certain area to
use in the further forecast of the tsunami risk. Thus, we have obtained the
initial tsunami waveform matching the subsequent research.

4. Conclusion

This paper proposes a new approach to solving the problem of restoring
a tsunami source. We have developed the technique based on the inverse
problem by a truncated SVD approach. The proposed technique for filtering
both the initial data and calculated tsunami waveforms essentially enhances
the numerical results, which were found to be highly sensitive to a spatial
distribution of the monitoring stations relative to bathymetric features.
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