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Reconstruction of the initial tsunami
waveform by the coastal observations
inversion

T.A. Voronina

The paper deals with the reconstruction of the original tsunami waveform in
the source area records from the waves observed on a set of the coastal wave gauges.
The wave propagation is described by the linearized shallow-water equations when
depth depends on one variable. The direct problem is approximated by the explicit-
implicit finite difference scheme. The ill-posed inverse problem of the reconstruction
is regularized by means of the least square inversion using the truncated SVD
approach, so r-solution is a result of the numerical process. Results of numerical
experiments are presented.

1. Introduction

This paper is the sequel and further development of the earlier proposed
approach [10], which concerns the reconstruction of the original tsunami
waveform when receivers are disposed at some points on the coast. In [10],
the consideration was limited to the case of the flat bottom, in the present
paper, the depth depends on one variable that is the distance from the coast.
"This model corresponds to the bottom topography of the Kuril-Kamchatka
zone. We may reasonably consider that“our conclusions do not variate very
much when the general case of an arbitrary bottom is considered.

The problem of the reconstruction is posed as an inverse problem of the
mathematical physics. To solve this ill-posed problem we should apply the
approach using the so-called r-solutions such as in [6]. In this method, the
inverse operator is regularized with the help of its restriction on the subspace
spanned on a finite sample of the first right singular vectors.

As for a general case, the problem of the reconstruction of a source is not
uniquely solvable (see [1]). The uniqueness is provided by factorization of the
function which describes the action of this source, namely, the dependence on
time and spatial variables can be separated. Furthermore, the dependence
on time is a priori given. : ;

The mathematical description of the direct problem of the wave propaga-
tion consists in the linearized shallow-water system of differential equations
written in the rectangular coordinates. This system is approximated by the
explicit-implicit finite difference scheme on a uniform rectangular grid, so the
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system of the linear algebraic equations is obtained. Then the SVD-analyses
is applied to its matrix, and a generalized r-solution is sought. Its quality
depends on the number of receivers and their spatial disposition. This de-
pendence is investigated in the present paper by means of the numerical
simulation.

2. Statement of the problem

The wave propagation is described within the framework of the linear shallow
water theory, i.e., by a usual scalar wave equation for the water elevation
(variation in wave velocity is connected only with the bottom topography),
see [1]. Let us neglect the curvature of the Earth. Let the z-axis be directed
down-awards with depth. The plane {z = 0} corresponds to undisturbed
water surface. Since the tsunami wave in the ocean is a long gravitational
wave with a small amplitude, its propagation can be described by the shallow
water equation: —

Wy = div(h(z,y) grad W) + fu(t, z,y) (1)
with the initial conditions
Wlt=0=0; Wi|t=0 =0 (2)
and the boundary conditions
Wir = Wo(z(s), y(s), 1), 3)

where W (z,y,t) is a water elevation over the undisturbed state, h(z,y) is
the depth of the ocean, f(z,y,t) describes the movement of the bottom in
the tsunami source area. In this paper, we consider a depth as a function
of a spatial variable only: h(z,y) = h(z). Then the velocity of the tsunami
wave propagation is also described as ¢(z,y) = ¢(z) = \/gh.

We assume the function f(z,y,t) describing the movement of the bottom
in the source area can be factorized as follows: f(z,y,t) = &(t) - ¢(z,y),

where . 0
) t>0,
e(t) = { 0, t<0

is the Heavyside function.
Under the above assumptions, equation (1) can be replaced by the lin-
earized shallow water equations

Ui +gW, =0, Vi+gW,=0, Wi+ (hU),+ (hV), =0 (4)
with the boundary conditions

Wir = Wo(z(s),y(s); t) . (5)
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and the initial conditions
Wlt:ﬂ = (P(xry): U|t=0 = V|t=0 = O: (6)

where W (z, y, ) is the elevation of the wave over the ocean level, (U(z,y,1),
V(z,y,t))Ts a vector of the velocities and g is the gravity constant.

Simulating the tsunami wave with the help of the system (4) with the
boundary and initial conditions (5) and (6), we need approximation of the
two kinds of the boundary conditions:

a) the conditions on the coastal boundary are assumed to be the full re-
flection conditions; these are expressed by vanishing when the deriva-
tive of W(z,y,t) with respect to the external normal vector:

ow

o |, (7)

b) the conditions on the so-called free boundaries due to the artificial re-
striction of a considered domain; these are expressed by the conditions
of free passing and the absorbing conditions. In this paper, we use the
full absorbing conditions of the second degree of accuracy [3].

We solve the problem in the rectangular domain ® = {(z,y): z¢ <z <
zr, Yo <y <yn}. Let us assume that y-axis is directed along the coastal
line, and z-axis is perpendicular to it.

The (2 denotes the subdomain of ¢ which is assumed to be a support of
the tsunami center (the target object domain).

Now our problem is in recovering the bottom movement ¢(z,y) in the
domain 2, when the given data is the water elevation Wy(z,y,t) in a certain
set of the receivers {M; = (z;,¥;), i = 1, P}, disposed on the boundary I':

Wo(z,y;t)|m; = woi(t), 0<t<T.

In this work, we consider the case when the free surface oscillations are
known on some segment of the boundary coinciding with the y-axis (this is
the coast line), though this method is also applicable for an arbitrary form
of the boundary (this may be a smooth curve without self-crosses).

Let us assume that the support of the function ¢(z,y) is included in the
rectangle @ and this function is of the class W3 (&®).

So, that the solution of problem (4)-(6) is now reduced to the following
vector equation:

wo(t)

Alp(z,v)) =U(t) = w[)z‘(t)

‘w'oj; (t)
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We can consider A : W3(®) — La(M x (0,T)). As it was done in [10],
it 1s possible to prove that this operator is a compact one, so it does not
possess a bounded inverse. The numerical solution to equation (8) includes
its regularization using the SVD-decomposition of the operator A4, that leads
to the construction of r-solution [5]. The algorithm used in this way and
substantiation of using this approach are described in detail in [10].

3. Discretization of the problem

Let us assume that the domain §2 is [z, Ze] X [yb, ¥e] rectangle. The unknown
function ¢(£,¢) will be sought in the form of a series of spatial harmon-

ics with the unknown coefficients ampn, m = 1,2,...,n,, n = 1,2,...,n,,
namely:
is Ty . mm . nmw
e(£,¢) =Y Zamnsm?(f—xb)-smg((—yb), 9)
m=1n=1

where Iy = (ze — #b), I2 = (Ye — ¥p). Let us discretize the observed wave-
field. The observation system is assumed to consist of k, receivers, their
coordinates being (zp,yp), p = 1,...,kp, the mareogram being known (the
wave elevation as the function of time) in each of them, i.e., Wy(zp, yp, t) are
given. The boundary I' of the domain ® consists of four straight segments
numbered by the Roman numbers I-IV respectively: {z = 0}, {y = yn},
{x = EM}: and {y = 0}

For the discretization in the problem we introduce the rectangular grid
with the step Az, Ay in spatial variables and At with respect to time:

zi =z9+iAz, i=1,...,k;, where Az = (zp — z9)/kz,

yj:y0+jAya j=1,...,ky, WhereAyz(yN_yO)/ky:
193 =t0+kAt, k=1,...,kt, whereAtz(tk—tg)/kt.

The system of equations (4) is approximated by the explicit-implicit finite
difference scheme on the uniform rectangular grid based on the 4-point pat-
tern [7]. The scheme is of second order of accuracy with respect to spatial
variables and of the first order with the respect to time. The scheme is de-
rived applying the method described in [8]. The scheme is stable under the
condition At < A//2gH, where A = max(Agz, Ay), H = max; j(H;;). The
arrival of the wave to the coast is not considered in this work; it is assumed
to arrive along the normal vector.

The boundary conditions on the bounds II-IV are replaced by their finite
difference analogs.
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The algorithm of solution of the direct problem is the following:

a) the initial data are defined: these are the distribution of depths in the
domain ®, the elevation of the bottom in the perturbation domain
the height of the wave and the initial velocity values;

b) the values of W, are calculated from the known values of Un, Vp,
Wh;

c) the values of the velocities at the (n + 1)-th time step are calculated
from Wﬂ+1: Vm Un-

]

Let us write down system (4) in the vector form:
Ad =b. (10)
Here the column vector @ consists of the unknown coefficients a,y,:

-
T
a= (611,...,alny,agl,...agny,... ,an,I,...,an,ny) .

Its length, i.e., the number of the unknown coefficients, is equal to N =
Nz X Ny.
The column vector b contains the right-hand sides of the equations:

r T
b= (wn,...,wln,,...,wpl,...,wpn,,...,wkph...w;,,,,.,,) ’

where p is a receiver number, n; is the number of the time counts in each
receiver.

The matrix A of system (10) is a rectangular one for a general case.
The right singular vectors of the matrix 4, i.e., {#i; i =1,...,N} make a
basis in the space of solutions. In the same way, the left singular vectors
{d;; 7 = 1,... M} make a basis in the space of the right-hand sides. So,
the solution to equation (10) is of the form:

X ()

85

a=

¥}, (11)
i=1

where s; are singular values of the matrix A. In the process under study, the
singular values rapidly decrease with an increase in their numbers, which is
equivalent to the ill posedness of the problem. The approximated solution
is therefore sought for as a linear combination of the first + right singular
vectors:

3. (12)

The above-determined vector represents r-solution to system (10).
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4. Numerical experiments

A series of calculations was made by the proposed method and were aimed
at recovering the unknown function ¢(z,y). In all these calculations, the
conditioning number of r-solution equals to the value cond = 1071,

The function to be recover was chosen in the form: ¢(z,y) = ¥(z, y)a(z),
where a(z) depends on the type of a model:

[ (& —=o+ 3R1)(z — zo + R1/6) for Model 1,
*=11 for Model 2,

and the function ¥(z,y) describes the paraboloid:

—zg)? (y—yo)z} 3)

1/)(2,2[) = max{oa 1- (m R12 R22
The domain  is [100,200] x [50,150] rectangle, the center point of the
tsunami source (zg,yo) = (150,100) (all the sizes are assumed to be mea-
sured in kilometers). Function (13) was approximately sought for in the form
of (9), where n, = 25, ny, = 11. The receivers were disposed on the y-axis
(the coastal line), the minimum distance between them was equal to 10 km,
the receiver points belong to the segment [10,190], the maximum number
of them is k, = 5. The matrix A (as a real matrix) is of size 153x275 when
there are three receivers, and 255 x275 when there are five ones. By the word
‘Model’ we mean all information concerning the considered experiment.

The observed data concerning the form of the arrived wave were sim-
ulated as a result of solution of the direct problem (4)-(7), perturbed by
the background noise, i.e., a high-frequency disturbance. All experiments
presented here were made with the disturbance rate of 5% of a maximum
amplitude of a signal over all receivers.

It is necessary to recognize that the results obtained strongly depend
on the presence of disturbance due to the ill posedness of the problem.
However, since a tsunami wave was much more lower-frequency as compared
the background noise, is reasonable enough to apply the frequency filtration
of the observed signal. In this work, the filtration is done by the method
described in [9].

Model 1 is a source with the parameters: R; = 25, Ry = 50, a(z) =
(z — 2o + 3R1)(z — 2o + R1/6). Therefore, fmax ~ 0.73. This model is the
source of a gently dipping fault with incidence under an insular arc.

Model 2 differs from Model 1 by the function a(z): now a(z) = 1; so,
fmax = 1. This source is a homogenous elevation near to circular paraboloid.
Comparing the results obtained for these two sources we can understand
clearly which features of coastal mareograms depend on a source and which
features are due to a wave propagation.
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Figures 1 and 2 represents the relative errors (in Ls-norm) of recover-
ing the source functions for Models 1 and 2 from three and five receivers.
Namely, Figures la and 1b correspond to these two models, respectively,
for the case, when there are three receivers positioned symmetrically with
respect to the midpoint of the coast. In each experiment, the horizontal
axis points (n = 1,...,9) note n x 10 km the distance from the midpoint to
the first supplemental pair of the receivers. By the midpoint we mean the
projection of the central point of the rectangle 2 (or the central point of the
source, that is the same) onto the coastal line. The presence of a receiver in
the midpoint has an essential influence on the results because the signal in
this direction is mostly informative. Figures 2a and 2b represent the same
errors for Models 1 and 2, respectively, when five receivers are used.

Figure 1. The relative errors (in Ly-norm) of recovering a source
functions for models with 3 receivers positioned symmetrically
with respect to the midpoint of the coast: a — Model 1, b — Model 2
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Figure 2. The relative errors (in L,-norm) of recovering a source
functions for models with 5 receivers: a — Model 1, b — Model 2.
One of the receivers is disposed at the midpoint and two pairs of
others move symmetrically to the endpoints of the coastal segment
while the distance in each pair is fixed at 40 km (dashed line),
20 km (solid line), and 10 km (dash-dot line).
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Figure 3. Calculations for Model 1. Recovered initial form (a) for 3 stations
(err = 37.1%, app = 80 km, fumax = 0.63 m, fuin = —0.282 m) and (b) for 5
stations (err = 20.4%, app = 140 km, fmax = 0.71 m, fumin = —0.29 m). Graph
(c) shows singular values (log scale) of the matrix A for the cases (a) and (b)
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Figure 4. Calculations for Model 2. Recovered initial form (a) for 3 stations
(err = 24.8%, app = 160 km, frax = 0.87 m; fmin = —0.15 m) and (b) for 5
stations (err = 10.7%, app = 160 km, frax = 0.99 m, fmin = —0.09 m). Graph
(c) shows singular values (log scale) of the matrix A for the cases (a) and (b)
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Figure 3 represents the natural logarithms of the singular values (Fig-
ure 3c) and source function recovered from three (Figure 3a) and five (Fig-
ure 3b) receivers for Model 1. Figure 4 contains the same results for Model 2.
A sharp decrease in the singular values when their number increases is typ-
ical of all the calculations (‘app’ is a length of aperture).

The influence of the conditioning number is essential too. However, great
oscillations appear in the solution when the decreasing the conditioning
number (cond < 10~!). This is typical of all ill-posed problems.

5. Conclusion

Based on conducted numerical experiments we can conclude:

1. The quality of reconstruction of the form of a source is improved with
increasing the number of receivers, located within the characteristic
size of the rectangle of the search and, also, in the case when the
receiver captures the most informative signal;

2. Simulation of a source more complicated in its shape requires an in-
crease in the number of basic functions and a decrease in the mesh
size;

3. The application of R-solutions is an effective means of regularization
of an ill-posed problem. The number of r basic vectors applied appears
to be essentially lower than the minimum dimension of a matrix. This,

in fact, enables us to avoid instability of the problem dealing with a
sharp decrease of singular numbers of the matrix.
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