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Investigation of weak equivalence notions
for event structures*

Votintseva A.V.

1. Introduction

The notion of bisimulation equivalence has been introduced by D.M.R.Park
[10]. Informally, two processes are bisimilar if their possible behaviors have
the same branching structure, i.e. any behavior of one system can be re-
produced by the other system. The great importance and usefulness of
bisimulations in the theory of concurrent systems are evident. Mathemati-
cally, bisimulation is a very pleasant notion. It leads to a natural behavioral
abstraction from transition systems. Algebraically, in the setting of CCS-
like languages, bisimulations lead to elegant and simple laws [5]. Moreover,
bisimulation equivalence has a beautiful characterization in terms of the
Hennessy-Milner logic [5]. In [8] the concept of back-and-forth bisimula-
tions has been introduced. In a back-and-forth bisimulation the agents can
simulate each others’ behavior not only in the direction of the arrows but
also when going back in their history. This kind of bisimulations is interest-
ing because of its connection with temporal and modal logics. These logics
give rise to equivalences on transition systems and Kripke structures and
it appears to be very useful to give operational characterizations of these
equivalences. In the world of temporal and modal logics, there has been a
lot of interest in past-tense operators. If one is looking for the operational
characterizations of the equivalences induced by logics with a past-time op-
erator, it seems natural to consider back-and-forth bisimulations.

Classical bisimulation theory deals with transition systems. Meanwhile
it is possible to adapt the basic notion to systems with a richer structure,
e.g. event structures [9] containing all features considered by many different
logics. A simple way to do this is to view an event structure as a transition
system by considering the graph of its global states. But this does not
take a richer structure into account. Different bisimulation equivalences
between event structures and their preservation under the action refinement
are considered in [2-4]. An advantage of event structures is their ability to
naturally represent and study the basic relations — causality, concurrency
and conflict (nondeterministic choice) — between the events of structures. It
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is known that the variants of back-and-forth bisimulations capture intuition
concerning causality and (implicitly) concurrency but not a conflict between
event occurences in the structures. Attempting to get around this lack, we
introduce a number of variants of bisimulations which explicitly reflect all
the relations between events.

Over the years several semantics of the silent step have been introduced.
The silent step normally denoted by the symbol 7, is due to Milner [6]. It
enables abstraction from the internal activity. There are several options
for defining an equivalence distinguishing just “visible” behaviors of the
processes. In the literature, different kinds of such equivalences have been
investigated in the interleaving semantics for transition systems and process
algebras.

In this paper, for all considered strong bisimulations (not distinguish-
ing a silent move 7 from other actions), namely, interleaving, step, pomset
and history-preserving, there have been introduced the variants explicitly re-
flecting conflict and concurrency relations between events in a structure; the
weak variants of the mentioned bisimulations are defined and relatmnshlps
between all considered equivalence notions are established.

Action refinement is a very important operation for the top-down design
of concurrent systems, since it allows the level of abstraction to be changed
by replacing an action with a system of subactions. Recently, this operation
has attracted much attention ([3, 4]). Naturally, one would like a semantics
to induce a congruence with respect to all operations of interest. For the
refinement operator, it turns out that this is not the case for interleaving,
step, and pomset-based semantics. In [3] it has been shown that the history
preserving bisimulation is a congruence with respect to the action refinement
for event structures without silent moves. .

In this paper, for all recently introduced equivalence notions there has
been established whether they are preserved under refinement operation or
not.

The paper is organized as follows. Section 2 introduces the basic frame-
work, labelled prime event structures, and related notions.

In Section 3, strong bisimulations and their variants (back, conflict-
preserving and concurrency-preserving) are considered. A variant of an
rbisimulation which takes into account the structure of a maximal con-
figuration is introduced. The complete hlerarchy of the considered strong
bisimulations is built.

Weak bisimulations are introduced in Section 4, where interrelations be-
tween different kinds of equivalence notions are established.

Section 5 defines the operation of action refinement for event structures
with silent actions. The behaviors of all considered bisimulation notions
under the action refinement is investigated.

Conclusion summarizes the basic results.
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2. Event structures

Here we consider the labelled prime event structures with silent actions
(let us call them simply event structures) as a basic model of concurrent
processes. An event structure consists of a set of event occurrences partially
ordered by a causality relation. In addition, the structure contains a conflict
relation between the events. Two events that are neither causally related nor
in conflict are said to be concurrent. The subsets of events corresponding
to executions in an event structure are called configurations which must be
conflict-free and left-closed with respect to causality.

Definition 2.1. An event structure over an alphabet Act (7 ¢ Act) the
symbol 7 represents an internal action) is a 4-tuple £ = (E, <, #, ), where

e E is a countable set of events;

e < C E x E is an irreflexive partial order (the causality relation) sati-
sfying the principle of finite causes:
Ve € E+{d € FE |d< e} is finite;

# C E X E is an irreflexive, symmetric relation (the conflict relation)
satisfying the principle of conflict heredity:
Vei,ez,e3s € Eoey <ex & €1 # e3 = ez # e3;

o l: E — Act, is a labelling function, where Act, = Act U {7}. O

Through the paper, we assume a set Act of action names (labels) to be
fixed. The components of an event structure £ are denoted by E;, <., #¢,
and l;. If it is clear from the context, the index £ is omitted. For an event
structure £ we denote:

id = {(e,e) | e € E};

< =< U id;

— = (E x EY\ (£ U <71 U #) (concurrency);

co=—U1id.

An event structure £ is called empty iff E, = 0; finite iff E, is finite;
conflict-free iff #, = 0. Two event structures £ and F are isomorphic
(€ = F) iff there exists a bijection between their sets of events preserving
the relations <, #, and labelling.

In graphic representations only the immediate conflicts — not the inher-
ited ones — are pictured. The <-relation is represented by arcs omitting
those derivable by transitivity. Following these conventions, a trivial exam-
ple of an event structure is shown in Fig. 1, where E = {e;,ez,e3, €4},
<= {(61’33))(61)84)’(62163)')(62’64)}7 # = {(e3s,e4),(es,€3)}, lfe1) = a,
I(ez) = b, les) = T, l(es) = b.
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Figure 1

We will frequently give algebraic expressions (see [1]) for our examples, to
make them easier to understand. The algebraic syntax includes the primitive
constructs: sequential composition (;), parallel composition (||), and sum
(+). The operation ; (||, +, respectively) may be easily “interpreted” by
indicating that all events in one component are in the <-relation (~—-relation,
#-relation, respectively) with all events in the other one.

The states of an event structure are called configurations. An event can
occur in a configuration only if all the events in its past have occurred. Two
events that are in conflict can never both occur in the same stretch of the
behavior.

Before giving the formal definition of a configuration, we need some
preparations. Let £ be an event structure and C C E;. Then 1C = {e €
E, |3 €Coe <celand |[C={ecE; |3 € C.oe<ce} Fora
singleton e € E,, we will write e instead of 1{e} and | e instead of | {e}.

Definition 2.2. A configuration of the event structure £ is the subset
C C E; such that

e Ve,e' € C o (e #¢ €') (conflict-free);
e Ve,e €Esoec C &e <, e= e € C (left-closed). 0O

Let C(£) denote the set of all configurations of £. A configuration C €
C(€) is called mazimal iff the following holds: C' € C(£) & C C C' =
C = (', i. e. C is a maximal set. Let RC(€) denote the set of maximal
configurations of £.

It is clear that Je € C(£) for each e € E,. Let LC(E) = {le| e € E,} de-
note the set of local configurations of £ and LC,;,(€) = {le € LC(E) | l:(e) €
Act} U {0} denote the set of visible local configurations of £. Additionally,
we assume LCo(E) = (LC(E) U {0}).

Let C' C C € C(€). Then C' is called a step if Vey, e3 € C' - =(e1 <¢ €2);
the restriction of £ to C' is defined as £ [ C' = (C', <, N (C' x C'), #: N
(C'xC"), I |cr). We use pom,(C) = {(€ [ (C"\C))/ | CCC"eC(€)}
to denote the set of pomsets of C. We denote by C' not only the set itself,
but also the labelled partial order it induces by restricting <, and I, to C’.
It will (hopefully) be clear from the context what is meant. We will use the
following notation for C C E, and p € pom.(C):
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vi8(C) = {e € C | l¢(e) € Act}; vis(p) = p [ vis(Ep);
hart(C) =l vis(C)N 1 vis(C); hari(p) = p [ hart(E,).

Definition 2.3. Let £ be an event structure and C, C' € C(£). Then

G c-.0 &L ccoe,

¢ denotes —¢|ze2(g);

(i) ¢ 5,0 &L © -, C and €'\ C = p, where p € pom,(C),
¢ denotes %glccg(‘g);

(iii) C =, C' &L o3, ¢ and vis(p) = 0,
>, denotes =] LC3(E);

(iv) C 2,0 &L 30,,6,.05, 0,5, ¢S, C' and p = hart(p),

b4 € €
Ck, 0 & 30,005, 01D, Ca b, C' and p = hart(p);

(v) C1: ¢ &L 30" e OE) + (C —: C" & C' =, C"),

I& denotes Tglccg(e);

i) ¢ 1.0 &L ot o,

ZS denotes fg lccg(g);
def

i) CtL 0 &L S(ct1.0 v o0 Vo, 0),
1, denotes 1| zc2(z). O

Lemma 2.1. Let £ be an event structure, C and C' € C(£), and | d

and }d' € LC(E). Then

(i) Ct: C" = CUC €C(&);

(ii) C1.C' < FecC3I € ce#.¢;

(i) C1, C' <= C\C'#0#C'\C&Vec C\C'Ve' € C'"\Cose —; ¢€;
(iv) {dpld <= d< . d

(V) dd 1,18 < d e ds

(vi) AT, 1d = d— d.

Proof follows easily from Definition 2.3. m|

An event structure £ is called an event structure without autoconcurrency
if Ve,e' € E; o (e coc € & ls(e) = (') = e=¢€.

Lemma 2.2. Let £ be an event structure without autoconcurrency and
C,C,C"eCE)withC'#C". Then C' B, Cand C" 5. C = p#q.
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Proof. Let ¢' 5, € and C" 5, C. Assume the contrary, i.e. there
exists an isomorphism f : (C\C’) = (C\ C"). Since C' # C", there exist
ec C"\C' C (C\C') and f(e) € C'\C" C (C\ C") such that e #; f(e).
Let us consider all possible relations between e and f(e). Here f(e) <. e
(e<c f(€)) contradicts C" € C(€) (C' € C(E)); e#, f(e) contradicts e, f(e) €
C € C(€); e —¢ f(e) contradicts the fact that £ is without autoconcurrency.

O

In the following we will consider only the event structures without auto-
concurrency and call them simply event structures.

3. Strong Bisimulations

In this section we consider bisimulation notions investigated in [2, 4]. Be-
sides, we introduce new variants of bisimulations aimed to reflect all the
relations between events in a structure.

Definition 3.1. Let £ and F be event structures, B C C(£) x C(F),
a € {i,8,p,h} and B € {a,b,c,7}*. Then
(1) B is an a-bisimulation between £ and F iff (§, ) € B and for all (C,D) €
B the following holds:
-E[C=2F[Difa=h,
—if ¢ 5, ¢’ such that
— p has at most one element if o = 1,
—pis a step if a = s,
then there are D' and q such that D %, D', p = q and (C", D') € B,
— and vice versa;
(ii) B is an ab-bisimulation between £ and F iff B is an a-bisimulation
between £ and F and for all (C, D) € B the following holds:
—if ¢" B, C such that
— p has at most one element if a =1,
- pis astep if a = s,
then there are D’ and g such that D' %, D, p = q and (C", D’) € B,
— and vice versa;
(iif) B is an aa-bisimulation between £ and F iff B is an a-bisimulation
between £ and F and for all (C, D) € B the following holds:
- if C' §,C", there is D' such that D ¥,.D' and (C’,D') € B,
— and vice versa,
(iv) B is an ac-bisimulation between £ and F iff B is an a-bisimulation
between £ and F and for all (C, D) € B the following holds:
- if C 1} C', there is D' such that D 1. D' and (C',D') € B,
— and vice versa; :
(v) B is an ar-bisimulation between £ and F iff B is an a-bisimulation
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between £ and F, and the following holds:
~ for all R € RC(€) and C € C(€), if C C R, there are R' € RC(F)
and D € C(F) suchthat DC R, £ [ R=F [ R' and (C, D) € B,
- and vice versa.
& and F are af-bisimilar, denoted £ ~,5 F, if there exists an a3-bisimul-
ation B that is an ary-bisimulation for all vy € 8. a

We now turn our attention to showing how various bisimulation equiva-
lences just defined are related to those earlier introduced.

Proposition 3.1. Let £ and F be event structures, a,o’ € {i,s,p, h}
and 3 € {a,c,7}*. Then

£ maﬂb}? =& Ro'Bb F.

Proof. It is sufficient to prove that £ ~gy F <= € =pgp F.

‘=’ Assume B to be an i8b-bisimulation between £ and . We first show
hb-bisimilarity of B. Clearly, (0,0) € B. Let (C, D) € B. The proof consists
of the three parts.

1. First of all, it is necessary to show that £[C = F[D. (The case with
C =0 = D is trivial.) W.lo.g. suppose ® 33, C; ... Coy B, Cp, = C.
Since B is an i#b-bisimulation between £ and F, there are D,,, D,,_1, ..., Dy
and ay, ..., ay suchthat ® 3= Dy ... D,_y %% D,, = D and (C;,D;) e B
for all 1 < i < n. We proceed by induction on n.

n = 1. Obvious.

n > 1. By the induction hypothesis, there exists an isomorphism f,,_; :
Cn-1 — Dp_;. Since B is an i8b-bisimulation, we can extend f,_; to a
label-preserving bijection f : C — D. Let us prove f to be an isomorphism.
Assume C'\ Cp—1 = {e}. Since C € C(£) and D € C(F), it is sufficient to
show that €' <; e <= f(€') <z f(e) for all € € Cp_1. Assume the con-
trary, i.e. ¢ <, e and ~(f(e') <5 f(e)) for some ¢’ € C,,_; (the converse
case is symmetric). W.lo.g. suppose €’ <; e and l;(¢') = ap—_;. The case
f(€') = f(e) contradicts the fact that f is a label-preserving bijection. The
case f(e) <x f(e') contradicts D,,_; € C(F). The case f(e) —f(e') remains
to be considered. Then we have D] _, = D\{f(¢')} € C(F), D!,_, C D,
and D\D!,_, = a,_1. Hence D! ;, "3, D by Definition 2.2. Since
B is an ifb-bisimulation, there exists C!,_, such that C_, **3'; C and
(Ch-1, D}, 1) € B. Let C\C}_; = {€"}. We consider all possible relations
between events ¢’ and e”.

- €" <; €. Then " <, e, contradicting C},_, € C(£), because e € C!,_,
but €' € C;,_;.

- €' <¢ €". Then we get the contradiction e” ¢ C, since C € C(£).

~ ¢’ #. €". This contradicts e’,e" € C.
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- € —; €". Since l(e') = I(€"), we get a contradiction to the fact that
£ is without autoconcurrency.

Thus £[C = F[D.

2. Suppose C 2')5 C'. Wlo.g. assume C 3, Cy ... Cp1 3. Cp =C'.
Since B is an i3b-bisimulation between £ and F, there are D1,...,Dn_1, Dy,
such that D 35 Dy ... Dy_y =¥ D, = D' and (C;,D;) € B for all

1<i<n. Let D'\ D = q'. Then we have D 2;,: D', by Definition 2.3(ii).
Since £[C = F[D and £[C' = F[D' (by the above proof), it is clear that
!~

P =q.

3. Suppose C” 5’;5 C. The proof is similar to that of case 2.
Thus B is an h3b-bisimulation between £ and F, by Definition 3.1.

‘<’ This easily follows from Definition 3.1. |

Proposition 3.2. Let £, F be event structures, o € {i,s,p,h} and
B € {a,r}*. Then

(l) £ afb F e & ~hfc .7:;
(ii) € =~agp F <= € =qagpc F-

Proof. (i) ‘=" According to Proposition 3.1, we can set a = h. Assume B
to be an hBb-bisimulation between £ and F. It is necessary to show hfc-
bisimilarity of B. Suppose (C,D) € B and C 1. C'. By Definition 2.2 and
Lemma 2.1(i), we have C # C' and C U C’' = C" € C(€). This implies
C C C" withp = C"\C and C' C ¢" with p' = "\ C'. Hence C 5, C"

and C' E); C", due to Definition 2.2. Since B is an h3b-bisimulation, we have
E[C = F[D and can find D" and q such that D %, D" and (C",D") € B.

Once again by hBb-bisimilarity of B, there exist D’ and ¢’ such that D’ %,
D" and (C',D') € B. Note that £[C' = F[D' and £[C" = F[D", due
to Definition 3.1(i). It is necessary to show D 1). D'. Let us proceed by
contradiction. According to Definition 2.2, only two cases are admissible,
because D 15 D',

1. D =, D'. This implies D C D', due to Definition 2.3. If D = D', then
E[(C"\C) = F[(D"\D) = F[(D"\D') = C[(C"\ ') contradicting Lemma
2.2, because C # C'. Let us consider the case D C D’'. Assume f: D' — C'
to be an isomorphism and Cp = f(D). Obviously, Cy C C'. We now show
Cp € C(€). Clearly, Cj is conflict-free. Assume e € Cj and ¢’ € E; such that
e <gce. Sincee € C' and C' € C(€), € € C'. So, f~Y(e) € D, f7 (') € D'
and f~1(e') <5 f1(e). Since D € C(F), we have f~1(e') € D. This implies
e € Cyp, i.e. Cy € C(E). Hence Cyp —¢ C' and Cy —, C", by Definition 2.3.
Clearly, £[(C" \ Co) = E[(C" \ C). Then Cp # C contradicts Lemma 2.2
and Cp = C contradicts Definition 2.3, because Cy —, C' and C, 1% C'.
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2. D' -, D. Symmetric to case 1.

‘<’ Assume B to be a minimal hGc-bisimulation between £ and F. Let
us first show i8b-bisimilarity of B. Suppose (C,D) € B and ' 5, C. This
implies £[C = F[D, by Definition 3.1(i), and C' \ C’ = a, by Definition 2.2.
Let f : C — D be an isomorphism and C'\ C' = {e}. Take D’ = D\ {f(e)}.
Clearly, D\ D' = a and £[C' = F[D'. Then D' € C(F). Hence D' 5,
D, due to Definition 2.2. Suppose the contrary, ie. (C',D'} ¢ B. By
hBc-bisimilarity of B, there are C"”, D" and p, ¢ such that (C",D") € B,
E[C" = F[D" and C" B, C, D" 5, D. Note, p=q. Thus C' 1: C" (and
D' +5 D"), due to Definition 2.2. In the case C' = C" (or D' = D"), we
have a = p = q (or a = g = p). Then D' # D" (or C' # C") contradicts
Lemma 2.2 and D' = D" (or C' = C") contradicts (C’',D’) ¢ B. Hence C' #
C” (and D' # D"). Obviously, C ¢C' (and D' ¢ D"). By Definition 2.2.,
we have =(C' —¢ C") (and (D' — D")) and two cases remain to be
considered.

1. C" -, C' (and D" -, D"). Let C'\C" = p' (and D'\D" = ¢'). Then
c” g); C’' (and D" il),: D'), according to Definition 2.2. By hfBc¢-bisimilarity
of B, there are D" {(and C") and ¢” (and p") such that D" 21—;,.- D" (and

C¢" %, ") and (C',D") € B (and (C",D') € B). Since (C',D') & B, it
holds that D' # D" (and C’ # C"). Once again by hfBc-bisimilarity of B,
we have £[C' & F[D" (and £[C" = F[D') and can find D (and C) and
a such that D" 3, D (and C" %, C) and (C, D) € B (and (C, D) € B).
From Lemma 2.2 it follows that D # D (and C # C), because D' # D" (and
C' # C"). 1t is easy to check that B' = B\ {(C, D)} is an hBc-bisimulation
contradicting the minimality of B.

2. C't, C" (and D' 1. D"). Then C"\ C' = a (and D"\ D' = a)
and C'\ C" = p (and D'\ D" = q). Due to h@c-bisimilarity of B, we can
find D" (and C") such that D" . D" (and C" 1. C") and (C",D") € B
(and (C™,D’') € B). Since (C',D') ¢ B, it holds that D' # D" (and C' #
C"). We now show D"\ D" = a (and C"\ C" = a) and D" \ D" = ¢
(and C" \ C" = p). By hBc-bisimilarity of B, we have £[C' = F[D"
(and E[C" = E[D'). Since E[C’' = F[D', there exists an isomorphism
f: D' — D" (and an isomorphism g : C' — C"') such that f(D' N D") =
D'ND™ (and ¢g(C'NC™) = C'NC™). Let D"\ D' = {d} (and C"\C' = {e}).
Let us show D"\ D" = {d} (and C"\ C" = {e}). Suppose the contra.ry, ie.
there is d' € D"\ D" (and €' € C"\ C") such that d' # d (and €' #; e).
Then d' € D'\ D" (and ¢’ € C'\ C") and f(d') € D"\ D' (and g(€') €
C"\ C'). Clearly, d' #5 f(d') (and €' #; g(e')). Four cases remain to be
considered.

- d —; f(d) (and ¢ —; g(¢')). This contradicts the fact that F
(and &) is without autoconcurrency.
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—d #- f(d') (and € #. g(¢')). By Lemma 2.1(ii), we have D" f,D"
(and C"* /t,C") contradicting Definition 2.2, since D" {1, D"
(and C” 1, C").

— d' <5 f(d') (and €' <, g(€')). This contradicts D" € C(F) (and C" €
C(€)).

- f(d') <5 d' (and g(€') <, €'). This contradicts D' € C(F) (and C'
€ C(€)).

Thus D" \ D" = a (and C" \ C" = a). Moreover, D" N D" = D" N D’
(and Cllﬂcm — C"ﬂ Cl) Hence DIH\DH — DIII\(DHI nDH) — f(.D’ \ (DI al
DH)) —_ f(DI\DM) =q (an C”I\C” — Clll\(glﬂcu) — g(Cl\(C!nC”)) —
g(C'\ C") = p). Take D = D" U D" (and C = C" U C'"). This implies
D" %, D (and C" %, C) and D" ﬁiand (o 2, C), by Definition 2.2
and Lemma 2.1(i). W.lo.g. assume (C,D), (C,D) € B. Since D' # D"
(and C' # C™), we have D # D (and C # C), due to Lemma 2.2. It is
easy to check that B’ = B\ {(C, D)} is an hBc-bisimulation contradicting
the minimality of B.

Thus B is an afb-bisimulation between £ and F according to Propositi-
on 3.1.

(i) ‘=’ This follows from point (i) of the proposition and Definition 3.1.

‘<’ This follows from Definition 3.1. 0O
Proposition 3.3. Let £, F be event structures, 8 € {a,b,c}*. Then

S%hﬂfJ;_—“}g%hﬂr}-.

Proof. ‘=’. Suppose £ ~pg F and B to be an hf-bisimulation between
€ and F, R € RC(€) and C € C(€) such that C C R. Then C B, R
by Definition 2.3. Since B is an hf-bisimulation between £ and F, there
exists a configuration D € C(F) such that (C,D)e Band £ [C = F [ D.
Due to Definition 3.1(i), there exists R’ € C(F) such that D 5, R/, p = ¢,
(R,R') € Band £[R = F[R'. According to Definition 2.3(1), D C R'". It
is necessary to show R’ € RC(F). Assume the contrary, i.e. there exists
R" € RC(F) such that R’ C R". Due to Definition 2.3, we have R’ 5, R"

and ¢’ # 0. Then there exists R such that R —3'}5 R and p' = ¢' according
to Definition 3.1. This implies R C R by Definition 2.3, which contradicts
R € RC(E). The converse case is similar.

‘="' This follows from Definition 3.1. a

We now introduce a number of bisimulations which are directly defined
on the domain of local configurations of the event structures. As it has been
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shown in [11], these notions are useful to discover a match for the equivalence
induced by the logic L1 [7].

Definition 3.2. Let £ and F be event structures, B C LCo(E) x LCo(F)
and B € {a, b, ¢, r}*. Then
(i) B is a local bisimulation between & and F iff (0,0) € B and for all
(C, D) € B the following holds:

—if C B, ¢, then there exist D' and ¢ such that D By D', psyq
and (C',D’) € B,
— and vice versa;
(ii) B is a local b-bisimulation between £ and F iff B is a local bisimulation
between £ and F and for all (C, D) € B the following holds:
~if ¢' %, C, then there exist D’ and g such that D' +%, D, p=gq
and (C',D') € B,
~ and vice versa,; :
(iii) B is a local a-bisimulation between £ and F iff B is a local bisimulation
between £ and F and for all (C, D) € B the following holds:
—if C J,C', then there exists D’ such that D ¥ D' and (C',D') € B,
— and vice versa;
(iv) B is a local c-bisimulation between £ and F iff B is a local bisimulation
between £ and F and for all (C, D) € B the following holds:
~ if C 1),C’, then there exists D' such that D 1".D'" and (C',D') € B,
— and vice versa;
(v) B is a local r-bisimulation between £ and F if B is a local bisimulation
between £ and F and the following holds:
—for all R € RC(€) if | e C R, then there exist R' € RC(F) and
JdC R suchthat E [ R= F [ R' and (Je,}d) € B,
— and vice versa.
& and F are locally B-bisimilar, denoted by £ ~g F, if there exists a local
(B-bisimulation B which is a local 4-bisimulation for all y € S. O

Lemma 3.1. Let £ and F be event structures, B be a minimal local
bisimulation between £ and F, and (C, D) € B. Then £[C = F[D.

Proof. Assume § %, C and 0 %, D. We suppose the contrary, i.e. p # q.
Since B is a local bisimulation, there exist D' € LCo(F) (C' € LCy(E)) and

¢’ (and p') such that %, D' (and 0 vg’); C, p = ¢ (and ¢ = p') and
(C,D') € B (and (C',D) € B'). Obviously, D # D' (and C # C'). Then
B' = B\{(C, D)} is a local bisimulation between £ and F, which contradicts
the minimality of B. Hence, £[C = F[D. D

Proposition 3.4. Let £ and F be event structures and 8 € {a,b,c, T}*.
Then & 7 ¥:] F=E£ =8 F.
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Proof. Assume & ~j3 F and B to be an hf-bisimulation between £
and F. Let us define B = BN (LCo(E) x LCy(F)). Tt is necessary to show
I3-bisimilarity of B. Let us prove the case with 8 = A (the remalmng cases
are similar). Clearly, (§,0) € B. Suppose (C,D) € B and C 5, ¢'. Then
(C,D) € B, due to the construction of B, and C 5, C', due to Definition
2.3. Since B is an hfB-bisimulation, we have £[/C = F[D and can find D'
and q such that D %, D' and (C",D') € B. Moreover, £[C' = F[D', by
Definition 3.1(i). This implies p = g and D' € £Cy(F). Hence D —‘:q“>_1: D,
due to Definition 2.3, and (C', D') € B, due to the construction of B.

Thus B is an [#-bisimulation between £ and F, by Definition 3.2. |

Theorem 3.1. Let £ and F be event structures and 7,8 € Ugcyq, bier)e
({eB | « € {i,s,p,h}} U {lﬁ}) Then £ =, F implies £ ~; F iff there is a
directed path from ~., to =5 in Fig. 2.

Proof. ‘<’ All the implications in Fig. 2 follow from Definitions 3.1, 3.2
and Propositions 3.1-3.4.

‘=+’ Now we show that it is impossible to draw any arrow from one
equivalence to the other so that there is no directed path from the first
equivalence to the second one in the graph in Fig. 2. For this purpose, we
give the following examples.

The event structures £; = (a;b) + (a;b) and F1 = (a;b) + (a;(b + b))
are af-bisimilar but not isomorphic.

Next we consider the event structures £ and Fp:

a a
& | # | P #

b # b b # b b # b b # b
which are o/’-bisimilar, but neither o/b3'- nor h3- nor I3-bisimilar for o/ €

{i,s,p} and g’ € {a,¢,r}*.
The event structures £ and F3:

Es #
b ¢ ¢ #

O

b b
F3 l# l
¢ c

are a'(3'-bisimilar, but neither a'b3'- nor o/'3-bisimilar for o/ € {i,s}, " €
{p,h} and @' € {a,c,r}*.

Let us consider the event structures £ and F':
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gl f’

O —Q R

The composed structures £, = (d || £') + (d || F')and Fy = (d || (£’ +
F) + (d|| (&' + F')) axre iB'-bisimilar, but neither ib3'- nor o B-bisimilar
for & € {s,p,h} and B € {a,c,r}*.

The event structures & and Fs:
85.-'#'-. cFE
A

d d

fs.-‘#'-. o o o
VVARV.VARV.VARV.Y.
d d d d d d d d
are o8’ and [@'-bisimilar, but neither ab3'- nor ac8'- nor l¢@'- nor Ibg'-

bisimilar for 8’ € {a,r}*.

The event structures £ = a;b and Fg = a;(b + b) are af'- and 15’
bisimilar, but neither aad’- nor laf'-bisimilar for 8’ € {b,¢c,r}*.

Let us consider the event structures £ and F"':

Lo # o #

WA TIWAAY

The composed structures & = &" + &" and Fy = F' + F" are
I3 -bisimilar, but neither [b3'- nor af-bisimilar for 8' € {a,c,r}*.
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The event structures g =(a || (b + ¢)) + (a||d) + (b || (@ + ¢)) and
Fa=(all(b+0) + Gll@+e)+@lb+e)+ G+ )
are af'- and I@”"-bisimilar, but neither acB”- nor ab@'- nor leB"-bisimilar
for #' € {a,r}* and 8" € {a,b,r}*.

Let us finally consider the event structures &, Fg, and &;4:

&y b c # c Fa

iF e S F
N/ TN

The event structures & and Fy are {3-bisimilar, but not af-bisimilar. The
event structures £;9 and Fy are [3'-bisimilar, but not Ir@-bisimilar for 3' €
{a,b,c}*. o

4. Weak bisimulations

Taking into account the “invisible” nature of a step 7, we treat weak bisim-
ulation equivalences as variants of strong bisimulations. In this section we
investigate the difference between streng and weak variants of the considered
bisimulations for event structures.

Definition 4.1. Let £ and F be event structures, B C C(€) x C(F),
a € {i,s,p,h} and B € {a,b,c}*. Then
(i) B is a weak a-bisimulation between £ and F iff (0,0) € B and for all
(C,D) € B the following holds:
- & [vis(C)= F [vis(D) ifa=h,
~if C &, C' so that
— p has at most one element if a =1,
—-pisastepifa=s,
then there are D' and g such that D =, D', vis(p) = vis(q) and
(C',D') € B,
— and vice versa;
(ii) B is a weak ab-bisimulation between £ and F iff B is a weak a-bisimu-
lation between £ and F and for all (C, D) € B the following holds:
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—if C' 2, C so that
— p has at most one element if a =1,
—pisastep ifa=s,
then there are D' and g such that D' 5, D, vis(p) = vis(q) and
(C',D') € B,
— and vice versa;
(iii) B is a weak aa-bisimulation between £ and F iff B is a weak a-bisimu-
lation between £ and F and for all (C, D) € B the following holds:
~if C ¥,C’, then there is D' such that D ¥.D’' and (C',D') € B,
-~ and vice versa;
(iv) B is a weak ac-bisimulation between £ and F iff B is a weak a-bisimu-
lation between £ and F and for all (C, D) € B the following holds:
— if C 1} C', then there is D' such that D 1. D' and (C',D') € B,
— and vice versa.
& and F are weakly afB-bisimilar, denoted by £ =,,g F, if there exists a
weak af-bisimulation B which is a weak ay-bisimulation for all ye 8. O

Proposition 4.1. Let £ and F be event structures, o, o' € {i,s,p, h}
and 8 € {a,c}*. Then

£ ~rafb F = €& ~ra!Bb F.

Proof is analogous to that of Proposition 3.1. O

Next we introduce the variants of bisimulations defined over the set of
visible local configurations.

Definition 4.2. Let £C,i5(€) X LCyis(F) and B € {a,b,c}*. Then
(i) B is a weak local bisimulation between £ and F iff (0,0) € B and for all
(C, D) € B the following holds:

P
—if C |, C' and C' € LCyis(E), then there are D' € LC,;,(F) and

q such that D [=q:>Jr D', vis(p) = vis(q) and (C', D') € B,
— and vice versa;
(ii) B is a weak local b-bisimulation between £ and F iff B is a weak local
bisimulation between £ and F and for all (C, D) € B the following holds:

P
—if C' >, C and C' € LCy;,s(E), then there are D' € LCyi(F) and

q such that D’ |-j>}. D, vis(p) = vis(g) and (C',D’') € B,
— and vice versa;
(iii) B is a weak local a-bisimulation between £ and F iff B is a weak local
bisimulation between £ and F and for all (C, D) € B the following holds:
~if C #,C' and C' € LC,;,5(E), then there is D' € LC,45(F) such
that D ¥,.D' and (C',D') € B,
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— and vice versa;
(iv) B is a weak local c-bistimulation between € and F iff B is a weak local
bisimulation between £ and F and for all (C, D) € B the following holds:

—~if C 1, C' and C' € LC,;5(E), then there is D' € LC,;,(F) such

that D 1. D' and (C',D') € B,

— and vice cersa.
£ and F are weak-locally B-bisimilar, denoted by £ =g F, if there exists
a weak local 3-bisimulation B which is a weak local <y-bisimulation for all

vy €pP. ~ O
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Theorem 4.1. Let & and F be event structures and 7,4 € Uge(a,p,c}*
({ap | @ € {i,s,p,h}} U{IB}). Then the following holds:
(i) € =, F implies £ =5 F iff there is a directed path from =, to =,; in
Fig. 3;
(ii) £ ~, F implies £ ~,5 F iff v = § or there is a directed path from =, to
~s in Fig. 2 and there is a directed path from ~,, to ~,4 in Fig. 3;
(iii) £ ~r¢ F does not imply £ =, F for all 4 and 4.

Proof. (i) ‘=’. Now we show that it is impossible to draw any arrow from
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one equivalence to the other so that there is no directed path from the first
equivalence to the second one in the graph in Fig. 3. For this purpose, we
give the following examples.

The event structures £;; and Fiq:

a T
&n # Fu l
a a

are T7a3-bisimilar, but not Taf'c-bisimilar for 8' € {a, b}*.
Let us consider the event structures £" and F""':

a #
em l F
T #

S R

N0

# b

The composed structures €12 = £" + £" and Fig = F" + F" are
T3 -bisimilar, but not 7af'b-bisimilar for 5’ € {a, c}*.
Let us consider the event structures £"” and F"':

a a
nn nn
5‘ Il) F i \ /

The composed structures €13 = (£ + ™) || 7 || 7 and Fy3 = F"' || T are
Taf-bisimilar, but not 7{3-bisimilar.

The proof of the remaining cases is analogous to that of Theorem 3.1,
using the examples £1-€1p and Fy—Fg, since the correspondent weak and
strong bisimulations coincide for the class of event structures without silent
action T.

‘<’. All the implications in Fig. 3 follow from Definitions 4.1, 4.2 and
Proposition 4.1.

(ii} ‘=’. According to Definitions 3.1, 3.2, 4.1 and 4.2 it is easy to see
that strong bisimulations imply the correspondent weak ones. Now we show
that it is impossible to draw any arrow from =, to ~,s so that there is no
directed path from ~,., to =,; in the graph in Fig. 3 or from ~, to =;
in the graph in Fig. 2. For this purpose we consider the examples from
Theorem 3.1.
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The event structures

& and Fg are af- and !F'-bisimilar, but neither raaB'’- nor rlaf-
bisimilar for 8’ € {b,c}";

&s and F5 are af’ and [3'-bisimilar, but neither 7ab@'- nor 7acB"- nor
rlc"- nor Tlbf'-bisimilar for 8’ € {a}* and 8" € {a,b}*; '

& and F, are o/@'-bisimilar, but neither 7a'd8'- nor ThB- nor TI8-
bisimilar for o' € {i,s,p} and #' € {a,c}*;

&3 and F3 are o @'-bisimilar, but not ra”(-bisimilar for o' € {i,s},
o" € {p,h} and B’ € {a,c}*;

&4 and F; are if¥'-bisimilar, but not 7o/B-bisimilar for o’ € {s,p, h} and
B’ € {a,c}*;

&9 and Fg are [F-bisimilar, but not ra3-bisimilar;

&7 and Fr are I3'-bisimilar, but not 7Ib@'-bisimilar for 8’ € {a, c}*;

s and Fg are I3"-bisimilar, but not rlc3"-bisimilar for 8" € {a,b}*.

‘«<’, All the implications follow from Definitions 3.1, 3.2, 4.1, 4.2 and
Theorems 3.1 and 4.1.

(iii) The example of the event structures £14 = (a;{b + (b;7))) + (a;b)
and Fi4 = (a;b) + (a;b) shows that any weak bisimulation does not imply
any strong one, since £14 ~ry Fi4, but £14 %, Fra. ]

5. Bisimulations and action refinement

One of the most important features of the equivalence notion is its preserva-
tion by refinement of actions. Since we have introduced new bisimulations,
it is interesting to see whether or not they are preserved by refinement. We
use the definition of refinement from [3]. This operator allows one to design
systems in a top-down style changing the leve! of abstraction by interpreting
actions on a higher level by more complicated processes on a lower level. A
refinement function is a function RF specifying, for each action a, a finite,
conflict-free and nonempty event structure RF(a) which is to be substituted
for a. Interesting refinements will mostly refine only certain actions, hence
replace most actions by themselves. However, for uniformity, we consider
all actions to be refined assuming that the silent action 7 is replaced by
itself. Given an event structure £ and a refinement function RF, we con-
struct the refined event structure RF(£) as follows. Each event e labelled
by a is replaced by a disjoint copy, &, of RF(a). The causality and conflict
structure is inherited from £: every event which was causally before e will
be causally before all events of £, all events which causally followed e will
causally follow all the events of £, and all events in conflict with e will be
in conflict with all the events of &,.

Definition 5.1. Let £ be an event structure and RF be a refinement
function (for £) which associates a finjte, conflict-free and nonempty event
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structure RF(a) with each action a € Act and RF(7) = ({e},0,0,7). Then
the refinement of £ by RF is the event structure RF(E) = (FE, <,#,l)
defined as follows:

* Egpe) = {(e,€') | e € E¢, € € Erpq,(ephi

e (e,€') <mrre) (d,d) &= (e<cd)V(e=d & € <gpq.(e)) 4);

o (e,¢') #rr(e) (d,d') < (e #: d);

* lrre)(e:€) = lrrg.(e)(€)- 0

Note that the refinement RF(E) of £ is an event structure according to
Definition 5.1 and the construction of the event structure RF(a) for each a.

Proposition 5.1 ([4]). Let £ be an event structure and RF be a refine-
ment function (for £). A set C is said to be a configuration refinement of
C €C(€) by RF if

o C = Ueec{e} x Ce, where Ve € C : C. € C(RF(e)) \ {0};

e e € busy(C) = e is maximal in C w.r.t. <,
where busy(C) := {e € C | C; is not the maximal configuration}.

Then C(RF(£)) = {C | C is a configuration refinement of C € C(£)}. O

Proposition 5.2. Let o € {¢,3,p}, B € {a,b,¢,7}* and G’ € {a,b,c}*.
Then the following equivalences are preserved under the operation of action
refinement: ~pg, Rapg, g Trhp', Frapp and Xogr.

Proof. We first show the preservation of x5 under the operation of action
refinement. Let £ and F be event structures, RF be a refinement function.
Assume B to be an hg-bisimulation between £ and F. Define B = {(C,D) €
C(RF(E))xC(RF(F))| 3(C,D)e B3f :C - D - pri(C) =C,pr(D) = D,
and f is an isomorphism such that Ve € C + C, = Df(e)}. It has been
shown in [4] that B is an h-bisimulation between RF(£) and RF(F). For
D € C(¥) such that (C,D) € B, we define ref5(D) = Ugep{d} x Dqg
with Dy = Cj-1(g) for all d € D and for some isomorphism f from C
onto D. Due to Definition 2.2 and Proposition 5.1, it is easy to see that
ref5(D) € C(RF(F)). By the construction of B, we get (6’,ref&-(D)) € B.
_ Now we show that B is an hf-bisimulation between £ and F. Assume
(C,D) € B. Then (C,D) € B, by the construction of B. We consider the
two cases. _ 5 _
B = a. We suppose C' ¥pp(;)C'. By Lemma 2.1(ii), there are (¢,g) € C
and (¢',¢') € C' such that (e, g) #zrr() (€,9'), which impliese € C, e’ € C'
and e # € due to Proposition 5.1 and Definition 5.1. Hence, C {.C' again
by Lemma 2.1(ii). Since (C,D) € B, there exists D' such that D f£,D’
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and (¢, D') € B, due to Definition 3.1(iii). Assume D' = ref 5(D'). Then
(C',D") € B. By Lemma 2.1(ii) there are d € D and d' € D’ such that
d #5 d'. Then, by Definition 5.1, we have (d,g) #grp(r) (d',9) for all
9 € Egp(r(a) and ¢' € Egp(,(a)). According to Proposition 5.1, (d, g) € D
and (d,g') € D' for some g € ERF(I;(d)) and g' € Epp(,(a))- Again by
Lemma 2.1(ii), we get D ;i?‘RF(Jr D.
B = ¢. We suppose C TRF(E) C'. According to Proposition 5.1 and
Definition 5.1, the following three cases are possible:

- C 5, C'. By Definition 3.1(i), there are D' and g such that D 5. D',
p=qand (C",D') € B;

- ¢" %, C. By Definition 3.1(ii), there are D' and g such that D' 5, D,
p=qand (C',D') € B;

— C 1, C'. By Definition 3.1(iv), there is D’ such that D 1, D' and
(C'\D') e B.

Assume D' = refs(D'). Then (C',D") € B. According to Lemma
2.1(iii), we have (e,g) “rr(c) (¢',g') for all (e, g) € (C\ C") and (¢',q) €
(C"\ C). We consider arbitrary (e,g) € (C \ C') and (¢',¢') € (C'\ O).
Assume f : C — D and f' : C' — D' to be isomorphisms. By Proposition 5.1
and the construction of B, we get (f(e),g) € (D\ D') and (f(¢'),¢') € (D'\
D). 1t is sufficient to show that (f(e), g) rr(r) (F(€'),9"). We suppose the

contrary, i. e. ~((f(e).9) <rr(s) (F(€),g)). Obviously, (£(e),9) #rr(»
(f(€'),g'). Three cases remain to be considered.

- (f(e).9) #rr(s) (f(€),9'), which implies f(e) € D, f(¢') € D' and
f(e) #- f(€'), according to Definition 5.1 and Proposition 5.1. By
Lemma 2.1(ii), we have D ¥.D', which contradicts Definition 2.3;

~ (f(e),9) <rrp(s) (f(€'),9'). This contradicts D' € C(RF(F);
~ (f(¢'),9") <mr(s) (f(€),g). This contradicts De C(RF(F).

Hence, D TRF(5) D', due to Lemma 2.1(iii).

Therefore =~} is preserved under the action refinement, according to
Definition 3.1 and Proposition 5.1.

The preservation of ~jg under the action refinement can be proved by
the similar way. The preservation of ~,4s follows from Proposition 3.1 and
the above proof.

The preservation of ~, g, ~,qpg and ~,ig follows from Definitions 4.1,
4.2 and the preservation of the equivalences 3, Xapg', ~ig under the op-
eration of action refinement. a
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Proposition 5.3. Let a € {i,3,p}, B € {a,¢,7}* and §’ € {a,c}*. Then
Rag and X4 are not preserved under the operation of action refinement.

Proof. Let us consider the event structures £ and F:

The composed structures £15 = £ + F + (a||b) and Fi5 = F + F + (a||b)
are o/ - and 7o' @-bisimilar for o' € {i,s}. When refining an action b by
the sequence by — b2, we get £15 950,',5 Fi15 and &5 ?é-ra’ﬂ' Fis.

The event structures £ and F; (see the proof of Theorem 3.1) are pﬁ—
and 7p@'-bisimilar, but when refining an action a by the sequence a; — a2,
we get &4 ?Qp,g F4 and &4 %Tpﬁr Fa. a

6. Conclusion

In this paper, in order to get equivalence notions nicely adapted to pecu-
liarities of event structures, we have introduced a number of variants of
bisimulation notions which consider all the relations between event occur-
rences in the structures. Quite close connections between the introduced
and existing equivalences have been shown. A number of variants of bisimu-
lations defined on the domain of local configurations of event structures have
been put forward. It turned out that the variants of local bisimulations were
coarser than the corresponding ones of history-preserving bisimulations and
incomparable with interleaving, step and pomset bisimulations. For the class
of labelled event structures with invisible actions, we have introduced weak
variants of all considered bisimulation equivalences. Moreover, we have in-
vestigated the notion of r-bisimulation taking into account the structures of
the maximal configurations. The lattice of interrelations between the equiv-
alences under consideration has been established. For each bisimulation
equivalence it has been shown, whether it is preserved under the operation
of action refinement or not.
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