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Algebrai
 
hara
terization of behavioural equivalen
es

over event stru
tures

�

A. Votintseva

We 
onsider the pro
ess algebra BPA

�

proposed by Bergstra, Bethke, and Ponse, sin
e it ni
ely de�nes a 
lass of

in�nite pro
esses. Investigation of representation of event stru
tures for this 
lass of pro
esses is presented in this arti
le.

We extend the algebra BPA

�

by a parallel 
omposition and modify its sequential operation. For the obtained algebra,

named PBPA

�

, we get a 
orresponden
e between an algebrai
 bisimulation de�ned using the transition systems over

PBPA

�

-pro
esses and a behavioural one de�ned over event stru
tures. This gives us better understanding of the pla
e

of event stru
tures among other models of parallelism.

1. Introdu
tion

The development of methods for the design of 
on
urrent/distributed systems and investigation of their

properties are 
arried out by means of di�erent formal models (Petri nets, tra
e languages, transition

systems, event stru
tures, pro
ess algebras, et
.) varying a

ordingly to the 
lass of systems, the level

of abstra
tion for stru
tures and behaviours, and the kind of problems under 
onsideration. When

verifying di�erent properties of pro
esses and establishing a transition from one abstra
t model to

another, one 
an demand the sub
lasses of systems with equivalent behaviours to be spe
i�ed. At

the time, there have been designed a lot of equivalen
e notions for di�erent models of 
on
urrent

and distributed systems. With the aim to 
lassify the variety of their semanti
 representations, it is

ne
essary to 
hoose a 
ommon model of pro
esses and establish its 
orresponden
e to other ones (e.g.,

in [7℄).

Event stru
tures are a well-known formalism of \true 
on
urren
y" whi
h provides a very detailed

model for 
on
urrent and distributed systems. All the main issues attendant the 
on
urrent 
ompu-

tations are presented therein. The notion of event stru
tures was proposed by Nielsen, Plotkin and

Winskel in [10℄ to establish the 
orresponden
e between o

urren
e nets (a 
lass of Petri nets) and

S
ott domains (a 
lass of partial orders). An event stru
ture is a partially ordered set of event o

ur-

ren
es together with a symmetri
 
on
i
t relation. The ordering relation models 
ausality, whereas the


on
i
t relation expresses alternative 
hoi
es between events. Two event o

urren
es that are neither


ausally 
omparable nor in 
on
i
t may o

ur 
on
urrently. In this sense, event stru
tures provide

expli
it and distin
t representations of 
ausality, 
hoi
e, and 
on
urren
y. Computations in an event

stru
ture are modelled by 
on
i
t-free and left-
losed sets of event o

urren
es.

The notion of a bisimulation equivalen
e was introdu
ed in [14℄. The importan
e of bisimulations in

the 
on
urrent systems theory is widely a
knowledged. A bisimilarity of two systems means that they


an model the behaviours of ea
h other in the bran
hing-time semanti
s, i.e., starting with equivalent

states, the bisimilar systems must be able to perform the same moves, whi
h leads to the next pair

of equivalent states. Initially, the bisimulation notion was introdu
ed over transition systems, and

later it was extended to other formal models su
h as event stru
tures, Petri nets, pro
ess algebras,

and others. For �nite state automata, it was shown that a bisimulation equivalen
e is de
idable with

the time 
omplexity O(m logn), where m is the number of transitions and n is the number of states.

In [5℄ the variants of bisimulations over event stru
tures were investigated, namely, interleaving, step,

pomset, and history-preserving ones. In forth-and-ba
k variants of bisimulations ([9℄), two systems

model the behaviour of ea
h other not only in the future but also in the past. The forth-and-ba
k

bisimulations are interesting be
ause of their 
orresponden
e to equivalen
es indu
ed by temporal and

�
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modal logi
s with past operators. In [11℄ a number of bisimulations expli
itly re
e
ting 
on
i
t and


on
urren
y have been proposed, and all their interrelations have been established.

Corresponden
es between bisimulation notions de�ned over di�erent domains attra
t a lot of s
i-

enti�
 interests. A possible approa
h to study of behavioural equivalen
es is to 
hara
terize them

by means of pro
ess algebras. Several results in de
idability and (full or partial) axiomatization of

equivalen
es have been obtained for algebrai
 systems. As an example, de
idability of weak bisimilari-

ties between BPA (Basi
 Pro
ess Algebra), BPP (Basi
 Parallel Pro
esses) and �nite-state pro
esses

has been investigated in [6℄, and axiomatization and its 
ompleteness have been established for a

bisimulation over BPA

�

(BPA enri
hed with an iteration) in [2, 15℄. In this paper, we extend the

algebra BPA

�

to its parallel variant PBPA

�

by adding a new operator and adapting another one,

whi
h allows us to relate it to prime event stru
tures. We establish the 
orresponden
e between an

interleaving bisimulation earlier introdu
ed over event stru
tures and \algebrai
" one, i.e. that de�ned

over the transition systems of PBPA

�

-terms spe
i�ed by transition rules.

The paper is organized as follows. In Se
tion 2, we remind the basi
 de�nitions from the event

stru
tures theory. In Se
tion 3, an extension PBPA

�

of the pro
ess algebra BPA

�

and its operational

semanti
s are presented. Se
tion 4 proposes the event stru
ture semanti
s for PBPA

�

-terms and es-

tablishes the 
orresponden
e between the interleaving bisimulation over event stru
tures and algebrai


one. Con
lusion resumes the main a
hievements and gives some prospe
ts for further resear
h.

2. Basi
 notions of event stru
tures

A prime event stru
ture (event stru
ture for brevity) 
onsists of a set of event o

urren
es partially

ordered by a 
ausality relation. In addition, the stru
ture 
ontains a 
on
i
t relation between the

events. Two events that are neither 
ausally related nor in 
on
i
t are 
alled 
on
urrent.

De�nition 2.1. A (labeled) event stru
ture over an alphabet A
t is a quadruple E = (E;�;#; l),

where

� E is a 
ountable set of events;

� � � E �E is a partial order (the 
ausality relation) satisfying the prin
iple of �nite 
auses:

8e 2 E � fd 2 E j d � eg is �nite;

� # � E �E is a symmetri
 and irre
exive relation (the 
on
i
t relation) satisfying the prin
iple

of 
on
i
t heredity:

8e

1

; e

2

; e

3

2 E � e

1

� e

2

& e

1

#e

3

) e

2

#e

3

;

� l : E ! A
t is a labeling fun
tion. 2

The 
omponents of an event stru
ture E are denoted as E

E

; #

E

; �

E

and l

E

. The index E 
an be

omitted if 
lear from the 
ontext. For E = (E;�;#; l), we denote: id = f(e; e) j e 2 Eg; <=� nid;

�

2

�� (transitivity); <� =< n <

2

(immediate 
ausal dependen
y); ^= (E � E) n (� [ � [#)

(
on
urren
y); e #

m

d () e # d & 8e

1

; d

1

2 E � (e

1

� e & d

1

� d & e

1

# d

1

)) (e

1

= e & d

1

= d)

(minimal 
on
i
t).

In the gra�
 representations of an event stru
ture, only minimal 
on
i
ts (not the inherited ones)

are pi
tured. The immediate 
ausal dependen
ies are represented by dire
ted ar
s, omitting those

derivable by transitivity. A trivial example of an event stru
ture is shown in Fig. 2.1, where e

1

^ e

2

and e

2

^ e

3

.
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Figure 2.1.

An event stru
ture E is 
alled empty if E

E

= ;; �nite if E

E

is �nite; 
on
i
t-free if #

E

= ;; a

substru
ture of an event stru
ture F (E v F) if E

E

� E

F

, �

E

��

F

, #

E

� #

F

and l

E

= l

F

j

E

E

. Two

event stru
tures E and F are 
alled isomorphi
 (E

�

=

F) if there is a bije
tion between the sets E

E

and E

F

preserving the relations �, # and labeling.

The states of an event stru
ture are 
alled 
on�gurations. A 
on�guration de�nes the set of events

o

urred at a point of time. An event 
an o

ur in a 
on�guration if all pre
eded events have already

o

urred in it. Two events related by a 
on
i
t 
an not o

ur in the same 
on�guration.

De�nition 2.2. A 
on�guration of an event stru
ture E is a subset C � E

E

su
h that

(i) 8e; e

0

2 C � :(e #

E

e

0

) (
on
i
t-freeness);

(ii) 8e; e

0

2 E

E

� e 2 C & e

0

�

E

e) e

0

2 C (left-
losedness).

By C(E) we denote the set of all 
on�gurations in E . 2

A 
on�guration C 2 C(E) is 
alled maximal if the following holds: C

0

2 C(E) & C � C

0

) C = C

0

,

i.e. C is maximal w.r.t. the set in
lusion.

The set of 
on�gurations for the event stru
ture shown on Fig. 2.1 in
ludes the following elements:

;, fe

1

g, fe

2

g, fe

1

; e

3

g, fe

1

; e

2

g, fe

1

; e

2

; e

3

g, fe

1

; e

2

; e

4

g.

Let C

0

� C 2 C(E). ThenC

0

is a step if 8e

1

; e

2

2 C

0

� :(e

1

<

E

e

2

); the restri
tion of E to C

0

is de�ned

as E d C

0

= (C

0

; �

E

\ (C

0

�C

0

); #

E

\ (C

0

�C

0

); l

E

j

C

0

); we use pom

E

(C) = f(E d (C

00

nC))=

�

=

j C � C

00

2 C(E)g to denote the set of pomsets of C. We denote by C

0

not only the set itself, but also the labeled

partial order it indu
es by restri
ting �

E

and l

E

to C

0

. It will, hopefully, be 
lear from the 
ontext

what is meant. In addition, we de�ne 
ausal relations over the set of 
on�gurations as follows. Let

C; C

0

2 C(E). Then C !

E

C

0

i� C � C

0

; C

p

!

E

C

0

i� C !

E

C

0

and C

0

nC = p, where p 2 pom

E

(C).

We use 7!

E

= fC

a

!

E

C

0

2!

E

j a 2 A
t, C;C

0

2 C(E)g to denote the immediate 
ausality relation

between 
on�gurations.

We introdu
e a behavioural bisimulation equivalen
e de�ned over the sets of 
on�gurations of event

stru
tures.

De�nition 2.3. Let E and F be event stru
tures, B � C(E) � C(F). Then B is an interleaving

bisimulation between E and F i� (;; ;) 2 B and for any (C;D) 2 B the following holds:

{ if C

a

!

E

C

0

su
h that a 2 A
t and C

0

2 C(E), then there is D

0

2 C(F) su
h that D

a

!

F

D

0

and

(C

0

;D

0

) 2 B;

{ if D

a

!

F

D

0

su
h that a 2 A
t and D

0

2 C(F), then there is C

0

2 C(E) su
h that C

a

!

E

C

0

and

(C

0

;D

0

) 2 B.

E and F are interleaving bisimilar (denoted by E �

i

F) if there exists an interleaving bisimulation

between E and F . 2

3. Operational semanti
s of algebra PBPA

�

In this se
tion we 
onsider an extension of a well-known algebra BPA

�

(standing for Basi
 Pro
ess

Algebra with the binary Kleene star operator, due to [15℄) with a parallel operator. Moreover, we

modify the operator of sequential 
omposition. We take the pro
ess algebra BPA

�

as a starting point,
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be
ause it is 
apable to represent in�nite pro
esses in a very natural way and, after being extended

with additional operations, it seems to be �ne to �t the event stru
ture model. The extended algebra

PBPA

�

here 
onsidered re
e
ts all basi
 relations between the pro
esses: 
ausality, 
on
urren
y and


hoi
e.

We now de�ne the syntax of PBPA

�

over a �xed alphabet A
t:

PBPA

�


f

(A
t) : r = aj(pjjq)j(p; q)

is the set of 
on
i
t-free terms, where a 2 A
t and p; q 2 PBPA

�


f

(A
t);

PBPA

�

(A
t) : s = aj(pjjq)j(p + q)j(r; q)j(r � q)

is the set of all PBPA

�

-terms, where a 2 A
t, p; q 2 PBPA

�

(A
t), and r 2 PBPA

�


f

(A
t).

The semanti
s of the pro
ess algebras are often given using the notion of a labeled transition

system. A (labeled) transition system over an alphabet A
t is a triple Tr = (V;!; s), where V is a set

of states;!� V �A
t�V is a transition relation and s 2 V is the initial state. Two transition systems

Tr

1

= (V

1

;!

1

; s

1

) and Tr

2

= (V

2

;!

2

; s

2

) are 
alled isomorphi
 if there is a bije
tion f : V

1

! V

2

su
h that f(s

1

) = s

2

and f preserves the transition relation, i.e. for all v; v

0

2 V

1

and a 2 A
t the

following holds: v

a

!

1

v

0

, f(v)

a

!

2

f(v

0

).

We present the operational semanti
s of PBPA

�

by means of a transition system asso
iated with

ea
h pro
ess represented by a PBPA

�

-term. Over the set PBPA

�

(A
t) we de�ne a transition relation

�!

PBPA

�

� PBPA

�

(A
t)�A
t� (PBPA

�

(A
t)[f

p

g), where

p

=2 PBPA

�

(A
t) is used to denote a

su

essful termination. We write p

a

�!

PBPA

�

q to denote the transition from the pro
ess (represented

by the term) p to the pro
ess q, when performing the a
tion a 2 A
t given by the transition rules

shown in Table 3.1.

Table 3.1.

(Ax) If a 2 A
t, then a

a

�!

PBPA

�

p

x

a

�!

PBPA

�

p

x

a

�!

PBPA

�

x

0

(A1) x+ y

a

�!

PBPA

�

p

(B1) x+ y

a

�!

PBPA

�

x

0

(A2) y + x

a

�!

PBPA

�

p

(B2) y + x

a

�!

PBPA

�

x

0

(A3) x;y

a

�!

PBPA

�

y (B3) x;y

a

�!

PBPA

�

x

0

;y

(A4) xjjy

a

�!

PBPA

�

y (B4) xjjy

a

�!

PBPA

�

x

0

jjy

(A5) yjjx

a

�!

PBPA

�

y (B5) yjjx

a

�!

PBPA

�

yjjx

0

(A6) x � y

a

�!

PBPA

�

x � y (B6) x � y

a

�!

PBPA

�

x

0

;(x � y)

(A7) y � x

a

�!

PBPA

�

p

(B7) y � x

a

�!

PBPA

�

x

0

We de�ne a bisimulation equivalen
e over the obtained algebrai
 system (PBPA

�

(A
t);�!

PBPA

�

)

of transitions.

De�nition 3.1. An algebrai
 bisimulation is a relation R � PBPA

�

(A
t)�PBPA

�

(A
t) su
h that:

| pRq and p

a

�!

PBPA

�

p

0

2 PBPA

�

(A
t) ) 9q

0

2 PBPA

�

(A
t) � q

a

�!

PBPA

�

q

0

and p

0

Rq

0

;

| pRq and q

a

�!

PBPA

�

q

0

2 PBPA

�

(A
t) ) 9p

0

2 PBPA

�

(A
t) � p

a

�!

PBPA

�

p

0

and p

0

Rq

0

;

| pRq ) (p

a

�!

PBPA

�

p

, q

a

�!

PBPA

�

p

). 2

We 
all two PBPA

�

-terms p and q equivalent (p$q) if there is an algebrai
 bisimulation R su
h

that pRq.

As an example, one 
an observe that the following term equivalen
es hold:
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(x;y);z $ x;(y;z)

x � y $ x;(x � y) + y

x+ y $ y + x

xjjy $ yjjx

(x+ y) + z $ x+ (y + z)

(xjjy)jjz $ xjj(yjjz)

x+ x $ x

Hen
e, the pro
ess (a � b) for a
tions a and b 
an be depi
ted by:

#

"!

-

6

a � b

b

p

a

4. Event stru
ture semanti
s for PBPA

�

Now we wish to give the event stru
ture semanti
s of PBPA

�

-terms, where ea
h PBPA

�

-term de�nes

an event stru
ture up to isomorphism. For a given term p 2 PBPA

�

(A
t) we 
onstru
t the event

stru
ture E

PBPA

�

(p) = (E;�;#; l) by indu
tion on the stru
ture of p as follows:

1. Let p = a 2 A
t. Then E = (feg; ;; ;; f(e; a)g).

2. Let p = p

1

jjp

2

, E

1

= E

PBPA

�

(A
t)

(p

1

) and E

2

= E

PBPA

�

(A
t)

(p

2

) su
h that E

E

1

\E

E

2

= ;.

Then E = (E

E

1

[E

E

2

;�

E

1

[ �

E

2

;#

E

1

[#

E

2

; l

E

1

[ l

E

2

).

3. Let p = p

1

+ p

2

, E

1

= E

PBPA

�

(A
t)

(p

1

) and E

2

= E

PBPA

�

(A
t)

(p

2

) su
h that E

E

1

\E

E

2

= ;.

Then E = (E

E

1

[E

E

2

;�

E

1

[ �

E

2

;#

E

1

[#

E

2

[ f(e

1

; e

2

); (e

2

; e

1

)je

1

2 E

E

1

; e

2

2 E

E

2

g; l

E

1

[ l

E

2

).

4. Let p = p

1

; p

2

, E

1

= E

PBPA

�

(A
t)

(p

1

) and E

2

= E

PBPA

�

(A
t)

(p

2

) su
h that E

E

1

\E

E

2

= ;.

Then E = (E

E

1

[E

E

2

;�

E

1

[ �

E

2

[f(e

1

; e

2

)je

1

2 E

E

1

; e

2

2 E

E

2

g;#

E

1

[#

E

2

; l

E

1

[ l

E

2

).

5. Let p = p

1

� p

2

. We assume p

(0)

= p

1

+ p

2

and p

(i+1)

= p

1

; p

(i)

+ p

2

for all i � 0.

Then E is de�ned as the minimal stru
ture su
h that E

PBPA

�

(A
t)

(p

(n)

) v E for all n 2N.

Here event stru
tures present iteration as unfolding. By 
onstru
tion, E

PBPA

�

(p) is a prime event

stru
ture for all p 2 PBPA

�

.

Before establishing the 
orresponden
e between a bisimulation de�ned over event stru
tures and

an algebrai
 one, we introdu
e for ea
h term p 2 PBPA

�

(A
t) the notion of a pro
ess stru
ture whi
h

is a quadruple Pr(p) = (P;!

p

; s; l), where P is the set of subpro
esses of the initial pro
ess s 2 P,

!

p

is a transition relation between pro
esses over the alphabet A
t and l : P ! PBPA

�

(A
t) [ f

p

g

is a labeling fun
tion. The pro
ess stru
ture Pr(p) is 
onstru
ted a

ording to the following rules:

(TR1) Let p = a 2 A
t. Then P = fv; sg, !

p

= fs

a

!

p

vg, l(s) = a and l(v) =

p

.

(TR2) Let p = p

1

;p

2

and Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

) have been 
onstru
ted

so that P

1

\P

2

= fs

2

g and l

1

(s

2

) =

p

. Then P = P

1

[P

2

; !

p

=!

p

1

[ !

p

2

; s = s

1

; l(v) = l

2

(v)

for all v 2 P

2

, and l(v) = l

1

(v);p

2

for all v 2 P

1

n fs

2

g.

(TR3) Let p = p

1

+ p

2

and Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

) have been 
on-

stru
ted so that P

1

\ P

2

= fs

1

g = fs

2

g. Then P = P

1

[ P

2

; !

p

=!

p

1

[ !

p

2

; s = s

1

(and

s = s

2

); l(v) = l

1

(v) for all v 2 P

1

n fsg, l(v) = l

2

(v) for all v 2 P

2

n fsg and l(s) = l

1

(s) + l

2

(s).

(TR4) Let p = p

1

jjp

2

and Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

) have been already


onstru
ted. Then P = P

1

�P

2

; (v

1

; v

2

)

a

!

p

(v

0

1

; v

0

2

), ((v

1

a

!

p

1

v

0

1

& v

2

= v

0

2

) _ (v

2

a

!

p

2

v

0

2

&
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v

1

= v

0

1

)); s = (s

1

; s

2

);

l(v; v

0

) =

8

>

<

>

:

l

2

(v

0

) if l

1

(v) =

p

,

l

1

(v) if l

2

(v

0

) =

p

,

l

1

(v)jjl

2

(v

0

) otherwise.

(TR5) Let p = p

1

�p

2

. For 0 � i we assume Pr

i

(p

1

) = (P

i

1

;!

i

p

1

; s

i

1

; l

i

1

) and Pr

i

(p

2

) = (P

i

2

;!

i

p

2

; s

i

2

; l

i

2

) to

be pro
ess stru
tures su
h that (P

i

1

;!

i

p

1

; s

i

1

)

�

=

(P

j

1

;!

j

p

1

; s

j

1

) and (P

i

2

;!

i

p

2

; s

i

2

)

�

=

(P

j

2

;!

j

p

2

; s

j

2

)

for all i and j, and the following holds: s

i

1

= s

i

2

(= s

i

), P

i

1

\ P

i

2

= fs

i

g, P

i

1

\ P

i+1

1

= fs

i+1

g =

P

i

1

\P

i+1

2

, where l

i

1

(s

i+1

) =

p

; P

i

2

\P

j

2

= ;, with i 6= j; P

i

1

\P

j

1

= ;, with i � j�1 and j+1 � i;

P

i

1

\P

j

2

= ;, with i 6= j and i 6= j�1. Then P =

S

i�0

(P

i

1

[P

i

2

); s = s

0

; !

p

=

S

i�0

(!

i

p

1

[ !

i

p

2

);

l(v) =

8

>

<

>

:

l

i

2

(v) if v 2 P

i

2

n fs

i

g for 0 � i,

l

i

1

(v);(p

1

� p

2

) if v 2 P

i

1

n fs

i

; s

i+1

g for 0 � i,

l

i

1

(v) � l

i

2

(v) if v = s

i

for 0 � i.

In a pro
ess stru
ture, two di�erent pro
esses 
an be labeled by the same PBPA

�

-term, whi
h means

that these pro
esses behave in the same way while o

urring in di�erent possible 
omputations of the

modeled system. Fig. 4.1 (a) shows the transition system of PBPA

�

(A
t) taking the pro
ess p =

(b; a)� (a+b) as the initial states, whereas Fig. 4.1 (b) re
e
ts the �nite fragment of the 
orresponding

pro
ess stru
ture Pr(p).

?�

�

�

�� �

�

�

��

A

A

A

AU

(b; a) � (a+ b)

a; ((b; a) � (a+ b))

bb

p

aa

a)

?

�

�

�

��

A

A

A

AU

A

A

A

AU

(b; a) � (a+ b)

a; ((b; a) � (a+ b))

b b

p p

a

a

b)

?

�

�

�

��

A

A

A

AU

A

A

A

AU

(b; a) � (a+ b)

a; ((b; a) � (a+ b))

b b

p p

a

a

: : :

Figure 4.1.

Lemma 4.1. Let Pr(p) = (P;!

p

; s; l) be a pro
ess stru
ture for p 2 PBPA

�

(A
t). (TR1)-(TR5).

Then

(i) l(s) = p;

(ii) if p 2 PBPA

�


f

(A
t), then jfv 2 Pjl(v) =

p

gj = 1;

(iii) l(v) =

p

) fv

0

2 Pj9a 2 A
t : v

a

!

p

v

0

g = ;.

Proof. We prove (i) by indu
tion on the stru
ture of the term p.

� p = a 2 A
t. A

ording to (TR1), we have l(s) = a = p.
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� p = p

1

jjp

2

. Let, for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

), it be proved

that l

1

(s

1

) = p

1

and l

2

(s

2

) = p

2

. A

ording to (TR4), we have s = (s

1

; s

2

) and l(s

1

; s

2

) =

l

1

(s

1

)jjl

2

(s

2

) = p

1

jjp

2

= p, sin
e l

1

(s

1

) 6=

p

and l

2

(s

2

) 6=

p

.

� p = p

1

+ p

2

. Let, for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

), it be proved that

l

1

(s

1

) = p

1

and l

2

(s

2

) = p

2

. A

ording to (TR3), we have s = s

1

= s

2

and l(s) = l

1

(s) + l

2

(s) =

l

1

(s

1

) + l

2

(s

2

) = p

1

+ p

2

= p.

� p = p

1

;p

2

. Let, for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

), it be proved that l

1

(s

1

) = p

1

. A

ording to (TR2),

we have s = s

1

and l

1

(s

2

) =

p

, where s

2

is the initial state in Pr(p

2

). Hen
e, s 2 P n fs

2

g and,

a

ording to (TR2), we get l(s) = l

1

(s);p

2

= l

1

(s

1

);p

2

= p

1

;p

2

= p.

� p = p

1

� p

2

. Let, for Pr

0

(p

1

) = (P

0

1

;!

0

p

1

; s

0

1

; l

0

1

) and Pr

0

(p

2

) = (P

0

2

;!

0

p

2

; s

0

2

; l

0

2

), it be proved

that l

0

1

(s

0

1

) = p

1

and l

0

2

(s

0

2

) = p

2

. A

ording to (TR4), we have s = s

0

= s

0

1

= s

0

2

) and

l(s) = l

0

1

(s

0

) � l

0

2

(s

0

) = p

1

� p

2

= p.

We prove (ii) by indu
tion on the stru
ture of the term p.

� p = a 2 A
t. Obvious, due to (TR1).

� p = p

1

;p

2

. Let, for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

), it be proved that

there are the only node v 2 P

1

and the only node v

0

2 P

2

labeled by

p

. A

ording to (TR2),

we have v = s

2

and l(v) = l

2

(s

2

) = p

2

2 PBPA

�

; 8

�

v

2 P

1

n fvg � l(

�

v

) = l

1

(

�

v

);p

2

2 PBPA

�

and

8

�

v

2 P

2

� l(

�

v

) = l

2

(

�

v

). It is obvious that there is the only node v

0

in P = P

1

[P

2

labeled by

p

.

� p = p

1

jjp

2

. Let, for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

), it be proved that

there are the only node v 2 P

1

and the only node v

0

2 P

2

su
h that l

1

(v) =

p

and l

2

(v

0

) =

p

.

A

ording to (TR4), we have l(v

1

; v

2

) =

p

, (l

1

(v

1

) =

p

and l

2

(v

2

) =

p

). This is possible only

if v

1

= v and v

2

= v

0

. So, there is the only node (v; v

0

) 2 P su
h that l(v; v

0

) =

p

.

We prove (iii) by indu
tion on the stru
ture of the term p.

� p = a 2 A
t. Obvious, a

ording to (TR1).

� p = p

1

;p

2

. By the point (ii) of the lemma, we have that there is the only node v

0

2 P

1

su
h that l

1

(v

0

) =

p

, sin
e p

1

2 PBPA

�


f

. A

ording to (TR2), we have v

0

= s

2

2 P

2

and

8v

0

2 P

1

n fv

0

g � l(v

0

) = l

1

(v

0

);p

2

2 PBPA

�

, sin
e l

1

(v

0

) 6=

p

. For v

0

2 P

2

we have l(v) = l

2

(v).

Hen
e, l(v) =

p

, (v 2 P

2

& l

2

(v) =

p

). Let

�

v

2 P

2

be su
h that l

2

(

�

v

) =

p

. Then, by the

indu
tion hypothesis, we get fv

0

2 P

2

j9a 2 A
t �

�

v

a

!

p

2

v

0

g = ;. Sin
e !

p

1

\ !

p

2

= ; implied

from (TR2), we have 8v 2 P

2

� fv

0

2 P

2

j9a 2 A
t � v

a

!

p

2

v

0

g = fv

0

2 Pj9a 2 A
t �

�

v

a

!

p

v

0

g.

Therefore, fv

0

2 Pj9a 2 A
t �

�

v

a

!

p

v

0

g = ;.

� p = p

1

+ p

2

. Let v 2 P be su
h that l(v) =

p

. We assume v 2 P

1

(the 
ase \v 2 P

2

" 
an be

proved in the similar way). Sin
e !

p

1

\ !

p

2

= ; implied from (TR3), we have fv

0

2 Pj9a 2

A
t � v

a

!

p

v

0

g = fv

0

2 P

1

j9a 2 A
t � v

a

!

p

1

v

0

g = ;, due to the indu
tion hypothesis.

� p = p

1

jjp

2

. Let (v

1

; v

2

) 2 P be su
h that l(v

1

; v

2

) =

p

. A

ording to (TR4), this is possible

if l

1

(v

1

) =

p

and l

2

(v

2

) =

p

. Let us 
onsider (

�

v

1

;

�

v

2

) 2 P su
h that l

1

(

�

v

1

) =

p

and l

2

=

(

�

v

2

) =

p

. Then, a

ording to (TR4), we get f(v

1

; v

2

) 2 Pj9a 2 A
t � (

�

v

1

;

�

v

2

)

a

!

p

(v

1

; v

2

)g

= f(

�

v

1

; v

2

) 2 Pj9a 2 A
t � (

�

v

1

;

�

v

2

)

a

!

p

(

�

v

1

; v

2

)g [f(v

1

;

�

v

2

) 2 Pj9a 2 A
t � (

�

v

1

;

�

v

2

)

a

!

p

(v

1

;

�

v

2

)g

= f(

�

v

1

; v

2

) 2 Pj9a 2 A
t �

�

v

2

a

!

p

2

v

2

g [f(v

1

;

�

v

2

) 2 Pj9a 2 A
t �

�

v

1

a

!

p

1

v

1

g = ; [ ; = ;.

� p = p

1

� p

2

. Let Pr

i

(p

1

) = (P

i

1

;!

i

p

1

; s

i

1

; l

i

1

) and Pr

i

(p

2

) = (P

i

2

;!

i

p

2

; s

i

2

; l

i

2

) be the pro
ess

stru
tures 
onstru
ted a

ording to (TR5) for 0 � i. We 
onsider v

0

2 P su
h that l(v

0

) =

p

.

Then v

0

62 P

i

1

for all i � 0, sin
e for v 2 P

i

1

nfs

i

; s

i+1

g the following holds: l(v) = l

i

1

(v);(p

1

�p

2

) 2

PBPA

�

and l(s

i

) = l(s

i+1

) = p

1

�p

2

for 0 � i, due to the point (i) of the lemma. Hen
e, v

0

2 P

i

2

for some 0 � i. A

ording to (TR5), we have that!

i

p

j

are disjoint for j = 1; 2 and 0 � i and, so,

fv 2 Pj9a 2 A
t � v

a

!

p

v

0

g = fv 2 P

i

2

j9a 2 A
t � v

a

!

i

p

2

v

0

g = ; by the indu
tion hypothesis. 2
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The following proposition shows that the pro
ess stru
tures adequately present the transition

system of the algebra PBPA

�

, i.e. that de�ned by the rules (Ax), (A1)-(A7) and (B1)-(B7).

Proposition 4.1. Let p 2 PBPA

�

(A
t) and Pr(p) = (P;!

p

; s; l) be the pro
ess stru
ture for p.

Then, for any v

1

; v

2

2 P, it holds that v

1

a

!

p

v

2

) l(v

1

)

a

!

PBPA

�

l(v

2

).

Proof. We prove by indu
tion on the stru
ture of the term p.

1. p = a 2 A
t. If v

1

a

!

p

v

2

, then l(v

1

) = a and l(v

2

) =

p

, a

ording to (TR1). And a

a

!

PBPA

�

p

is a transition in PBPA

�

(A
t), due to (Ax).

2. p = p

1

;p

2

. Let the proposition be proved for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

). A

ording to (TR2), we have P = P

1

[ P

2

. We assume that v

1

a

!

p

v

2

. Sin
e

a

!

p

=

a

!

p

1

[

a

!

p

2

, it is easy to see that fv

1

; v

2

g � P

1

or fv

1

; v

2

g � P

2

. If fv

1

; v

2

g � P

2

, then l(v

1

) = l

2

(v

1

),

l(v

2

) = l

2

(v

2

) and, by the indu
tion hypothesis, l

2

(v

1

)

a

!

PBPA

�

l

2

(v

2

). If fv

1

; v

2

g � P

1

, then

l(v

1

) = l

1

(v

1

);p

2

,

l(v

2

) =

(

p

2

if v

2

= s

2

;

l

1

(v

2

);p

2

otherwise.

Let v

2

= s

2

. Then l

1

(v

2

) =

p

, due to Lemma 4.1 (i) and a

ording to (TR2). By the indu
tion

hypothesis, we have l

1

(v

1

)

a

!

PBPA

�

p

. A

ording to (A3), we get l

2

(v

1

);p

2

a

!

PBPA

�

p

2

. We

assume that v

2

6= s

2

. Then l

1

(v

2

) 2 PBPA

�

(A
t). By the indu
tion hypothesis, l

1

(v

1

)

a

!

PBPA

�

l

1

(v

2

). Then, a

ording to (B3), we have l

1

(v

1

);p

2

a

!

PBPA

�

l

1

(v

2

);p

2

.

3. p = p

1

+ p

2

. Let the proposition be proved for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

). Let us 
onsider v

1

; v

2

2 P su
h that v

1

a

!

p

v

2

. Sin
e

a

!

p

=

a

!

p

1

[

a

!

p

2

, it is easy to see

that fv

1

; v

2

g � P

1

or fv

1

; v

2

g � P

2

. We assume that fv

1

; v

2

g � P

1

(the 
ase fv

1

; v

2

g � P

2

is

proved in the similar way). Let us 
onsider two possible 
ases. We suppose that v

1

2 P

1

n fs

1

g,

then l(v

1

) = l

1

(v

1

) and l(v

2

) = l

1

(v

2

). By the indu
tion hypothesis, l

1

(v

1

)

a

!

PBPA

�

l

1

(v

2

) and,

hen
e, l(v

1

)

a

!

PBPA

�

l(v

2

). Assume that v

1

= s

1

. Then l

1

(v

1

) = p

1

, due to Lemma 3.1 (i), and

l(v

1

) = p

1

+ p

2

, a

ording to (TR3). By the indu
tion hypothesis, we have p

1

a

!

PBPA

�

l

1

(v

2

).

Then, a

ording to (B2) (or (A2) if l

1

(v

2

) =

p

), we have p

1

+ p

2

a

!

PBPA

�

l

1

(v

2

). Therefore,

l(v

1

)

a

!

PBPA

�

l(v

2

).

4. p = p

1

jjp

2

. Let the proposition be proved for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

). A

ording to (TR4), we have P = P

1

� P

2

. Let us 
onsider (v

1

; v

0

1

); (v

2

; v

0

2

) 2 P su
h

that (v

1

; v

0

1

)

a

!

p

(v

2

; v

0

2

). A

ording to (TR4), we suppose that v

0

1

= v

0

2

and v

1

a

!

p

1

v

2

(the


ase of v

1

= v

2

and v

0

1

a

!

p

1

v

0

2

is proved in the similar way). By the indu
tion hypothesis, we

have l(v

1

)

a

!

PBPA

�

l(v

2

), l

2

(v

0

1

) = l

2

(v

0

2

) = q 2 PBPA

�

[ f

p

g. A

ording to (TR4), we get

l(v

1

; v

0

1

) = l

1

(v

1

)jjq and l(v

2

; v

0

2

) = l

1

(v

2

)jjq if q 6=

p

, and l(v

1

; v

0

1

) = l

1

(v

1

), l(v

2

; v

0

2

) = l

1

(v

2

)

if q =

p

. Then q =

p

, and we get l(v

1

; v

0

1

) = l

1

(v

1

)

a

!

PBPA

�

l(v

2

) = l(v

2

; v

0

2

). For q 6=

p

,

a

ording to (B4), we get l(v

1

; v

0

1

) = l

1

(v

1

)jjq

a

!

PBPA

�

l(v

2

)jjq.

5. p = p

1

�p

2

. Let the proposition be proved for Pr

i

(p

1

) = (P

i

1

;!

i

p

1

; s

i

1

; l

i

1

) and Pr

i

(p

2

) = (P

i

2

;!

i

p

2

; s

i

2

; l

i

2

) (with i � 0). Let us 
onsider v

1

; v

2

2 P su
h that v

1

a

!

p

v

2

. A

ording to (TR5), we

have

a

!

p

=

S

i�0

(

a

!

i

p

1

[

a

!

i

p

2

). Therefore, fv

1

; v

2

g � P

i

1

or fv

1

; v

2

g � P

i

2

for some i � 0. Two


ases are worth to be 
onsidered:

1) fv

1

; v

2

g � P

i

1

. Four 
ases are possible:

{ Let v

1

= s

i

(with s

i

= s

i

1

= s

i

2

) and v

2

= s

i+1

. This means that P

i

1

= fv

1

; v

2

g. A

ording

to (TR5), it implies that p

1

= a 2 A
t, sin
e v

1

a

!

p

1

v

2

. We have l(v

1

) = p

1

� p

2

= a � p

2

and l(v

2

) = p

1

� p

2

= a � p

2

, sin
e p

1

= a

a

!

PBPA

�

p

, due to the axiom (Ax). A

ording to

(A6), we get l(v

1

)

a

!

PBPA

�

l(v

2

).
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{ Let v

1

= s

i

and v

2

6= s

i+1

. By the indu
tion hypothesis, p

1

= l

i

1

(v

1

)

a

!

PBPA

�

l

i

1

(v

2

).

A

ording to (TR5), we get l(v

1

) = p

1

� p

2

and l(v

2

) = l

i

1

(v

2

);(p

1

� p

2

). Then, a

ording to

(B6), we get l(v

1

)

a

!

PBPA

�

l(v

2

).

{ Let v

1

6= s

i

and v

2

= s

i+1

. A

ording to (TR5), we have l(v

1

) = l

i

1

(v

2

);(p

1

� p

2

) and

l(v

1

) = (p

1

�p

2

), due to Lemma 4.1. By the indu
tion hypothesis, we have l(v

i

1

)

a

!

PBPA

�

p

.

Then, a

ording to (A3), we get l

i

(v

1

);(p

1

� p

2

) = l(v

1

)

a

!

PBPA

�

l(v

2

) = (p

1

� p

2

).

{ Let v

1

6= s

i

and v

2

6= s

i+1

. Then l(v

1

) = l

i

(v

1

);(p

1

� p

2

) and l(v

2

) = l

i

(v

2

);(p

1

� p

2

). By the

indu
tion hypothesis, l

i

(v

1

)

a

!

PBPA

�

l

i

(v

2

) and, a

ording to (B3), we get l(v

1

)

a

!

PBPA

�

l(v

2

).

2) fv

1

; v

2

g � P

i

2

. A

ording to (TR5), we get v

2

6= s

i

. Therefore, l(v

2

) = l

i

2

(v

2

). Let us 
onsider

two possible 
ases:

{ Let v

1

= s

i

(with s

i

= s

i

1

= s

i

2

). A

ording to (TR5) and Lemma 4.1 (i), we have

l(v

1

) = p

1

� p

2

and l

i

2

(v

1

) = p

2

. By the indu
tion hypothesis, l

i

(v

1

)

a

!

PBPA

�

l

i

(v

2

), i.e.

p

2

a

!

PBPA

�

l

i

(v

2

). Then, a

ording to (B7) (or (A7) if l

i

2

(v

2

) =

p

), we have l(v

1

) =

(p

1

� p

2

)

a

!

PBPA

�

l(v

2

).

{ Let v

1

6= s

i

. Then l(v

1

) = l

i

2

(v

1

). By the indu
tion hypothesis, l

i

2

(v

1

)

a

!

PBPA

�

l

i

2

(v

2

),

whi
h means that l(v

1

)

a

!

PBPA

�

l(v

2

). 2

The following theorem establishes the 
orresponden
e between the transition system for a pro
ess

de�ned by a PBPA

�

(A
t)-term and the transition system de�ned over the set of 
on�gurations of the

event stru
ture 
onstru
ted for the PBPA

�

(A
t)-term.

Theorem 4.1. For p 2 PBPA

�

(A
t), let Pr(p) = (P;!

p

; s; l) be the pro
ess stru
ture and E =

E

PBPA

�

(p). Then (C(E); 7!

E

; ;)

�

=

(P;!

p

; s).

Proof. We prove the theorem by indu
tion on the stru
ture of p.

1. p = a 2 A
t. Then C(E) = f;; fegg, where l

E

(e) = a; 7!

E

= f;

a

!

E

fegg. A

ording to (TR1),

we have P = fv

1

; v

2

g, !

p

= fv

1

a

!

p

v

2

g; s = v

1

. Let us 
onsider the mapping f : C(E) ! P su
h

that f(;) = v

1

and f(feg) = v

2

. It is easy to see that f is an isomorphism between (C(E); 7!

E

; ;) and

(P;!

p

; s).

2. p = p

1

;p

2

. Let us 
onsider E

1

= E

PBPA

�

(p

1

) and E

2

= E

PBPA

�

(p

2

) su
h that E

E

1

\ E

E

2

=

;. Let Pr(p

i

) = (P

i

;!

p

i

; s

i

; l

i

) be the pro
ess stru
ture for p

i

, with i = 1; 2. By the indu
tion

hypothesis, there are isomorphisms f

i

: C(E

i

) ! P

i

, with i = 1; 2. By 
onstru
tion of E

PBPA

�

(p)

and by de�nition of a PBPA

�

(A
t)-term, it is easy to see that E

1

is a 
on
i
t-free event stru
ture.

Therefore, E

E

1

2 C(E

1

) is the maximal 
on�guration in E

1

. By 
onstru
tion of E

PBPA

�

(p), we get

C(E) = C(E

1

) [ fE

E

1

[ C

0

jC

0

2 C(E

2

)g. Sin
e f

1

preserves the transition relation, due to Lemma

4.1 (ii,iii) we get l

1

(f

1

(E

E

1

)) =

p

and 8v 2 P

1

� l

1

(v) =

p

) v = f

1

(E

E

1

). A

ording to (TR2), we

have f

1

(E

E

1

) = s

2

. Then the mapping f : C(E) ! P, su
h that f(C) = f

1

(C) for C 2 C(E

1

) and

f(C) = f

2

(C nE

E

1

) for C 2 fE

E

1

[ C

0

jC

0

2 C(E

2

)g, is bije
tive.

We assume that C

a

!

E

C

0

. Two 
ases are worth to be 
onsidered.

{ Let C

0

2 C(E

1

). Then, obviously, C 2 C(E

1

). So, f(C) = f(C

1

) and f(C

0

) = f

1

(C

0

). Sin
e f

1

preserves the transition relation, f(C)

a

!

p

f(C

0

).

{ Let C

0

2 fE

E

1

[ CjC 2 C(E

2

)g n C(E

1

). Then C

0

6= E

E

1

, whi
h means that C

0

= E

E

1

[ C and

C 2 C(E

2

) n f;g. By de�nition of the relation

a

!

E

, we have C = C

0

n feg for some e 2 E

E

su
h

that l

E

= a. Hen
e, f(C) = f

2

(C nE

E

1

), f(C

0

) = f

2

(C

0

nE

E

1

), and C nE

E

1

a

!

E

2

C

0

nE

E

1

. Sin
e

f

2

preserves the transition relation, f(C)

a

!

p

f(C

0

).

We assume that f(C)

a

!

p

f(C

0

). If f(C

0

) 2 P

1

then, a

ording to (TR2), we get f(C) 2 P

1

.

Hen
e, f(C)

a

!

p

1

f(C

0

), f(C) = f

1

(C) and f(C

0

) = f

1

(C

0

). Sin
e f

1

preserves the transition relation,
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C

a

!

E

1

C

0

. Sin
e !

E

=!

E

1

[ !

E

2

, C

a

!

E

C

0

. If f(C

0

) 2 P

2

n P

1

then, a

ording to (TR2), we have

f(C) 2 P

2

. Hen
e, f(C)

a

!

p

2

f(C

0

) and f(C) = f(C n E

E

1

) and f(C) = f

2

(C

0

n E

E

1

). Sin
e f

2

preserves the transition relation, C nE

E

1

a

!

E

2

C

0

nE

E

1

, by de�nition of the relation

a

!

E

2

. This means

that C = C

0

n feg for some e 2 E

E

2

su
h that l

E

2

(e) = a. Sin
e E

E

= E

E

1

[ E

E

2

and l

E

= l

E

1

[ l

E

2

,

e 2 E

E

and l

E

(e) = a. Therefore, C

a

!

E

C

0

.

3. p = p

1

+p

2

. Let us 
onsider E

1

= E

PBPA

�

(p

1

) and E

2

= E

PBPA

�

(p

2

) su
h that E

E

1

\E

E

2

= ;. Let

Pr(p

i

) = (P

i

;

a

!

p

i

; s

i

; l

i

) be the pro
ess stru
tures for p

i

, with i = 1; 2. By the indu
tion hypothesis,

there are isomorphisms f

i

: C(E) = C(E

1

) [ C(E

2

) and C(E

1

) \ C(E

2

) = f;g. A

ording to (TR3), we

have s

1

= s

2

. Therefore, f

1

(;) = f

2

(;). Hen
e, the mapping f = f

1

[ f

2

: C(E)! P = P

1

[ P

2

, su
h

that f(C) = f

1

(C) with C 2 C(E

1

) and f(C) = f

2

(C) with C 2 C(E

2

), is a bije
tion.

We assume that C

a

!

E

C

0

and C

0

2 C(E

1

) (the 
ase C

0

2 C(E

2

) is proved in a similar way). Then,

obviously, C 2 C(E

1

) and, hen
e, C

a

!

E

1

C

0

. Sin
e f

1

preserves the transition relation, f

1

(C)

a

!

p

1

f

1

(C

0

). Sin
e

a

!

p

=

a

!

p

1

[

a

!

p

2

a

ording to (TR3), f

1

(C)

a

!

p

f

1

(C

0

).

We now assume that f

1

(C)

a

!

p

f

1

(C

0

). We have to show C

a

!

E

C

0

. A

ording to (TR3), we

have f(C)

a

!

p

f(C)

0

() (f(C)

a

!

p

1

f(C

0

) _ f(C)

a

!

p

2

f(C

0

)). We suppose that f(C)

a

!

p

1

f(C

0

) (the

remained 
ase is proved analogously), then f(C); f(C

0

) 2 P

1

. Sin
e f is a bije
tive fun
tion, C and

C

0

2 C(E

1

). Moreover, f(C) = f

1

(C) and f(C

0

) = f

1

(C

0

). Sin
e f

1

preserves the transition relation,

C

a

!

E

1

C

0

and, hen
e, C

a

!

E

C

0

(sin
e

a

!

E

=

a

!

E

1

[

a

!

E

2

), by 
onstru
tion of E

PBPA

�

(p).

4. p = p

1

jjp

2

. Let us 
onsider E

1

= E

PBPA�

(p

1

) and E

2

= E

PBPA�

(p

2

) su
h that E

E

1

\E

E

2

= ;. We

assume Pr(p

i

) = (P

i

;

a

!

p

i

; s

i

; l

i

) to be the pro
ess stru
tures for p

i

, with i = 1; 2. By the indu
tion

hypothesis, there are isomorphisms f

i

: C(E

i

)!P

i

, with i = 1; 2. By the 
onstru
tion of E

PBPA�

(p), it

is easy to see that C(E) = fC [ C

0

jC 2 C(E

1

); C

0

2 C(E

2

)g. Sin
e E

E

1

\ E

E

2

= ;, ea
h 
on�guration

C 2 C 
an be represented as C = C

1

[C

2

in the only way, where C 2 C(E

1

) and C 2 C(E

2

). Therefore,

one 
an take C(E) = f[C

1

; C

2

℄jC

1

2 C(E

1

); C

2

2 C(E

2

)g = C(E

1

)� C(E

2

). Let us 
onsider the mapping

f : C(E) ! P = P

1

� P

2

su
h that f(C

1

; C

2

) = (f

1

(C

1

); f

2

(C

2

)). We need to show that f is an iso-

morphism. Sin
e f

1

and f

2

are surje
tive and inje
tive, it is obvious that f = f

1

� f

2

is also surje
tive

and inje
tive.

We suppose that C

a

!

E

C

0

. We have to show f(C)

a

!

p

f(C

0

). By de�nition of the relation

a

!

E

, we have

C

0

n C = feg and l

E

(e) = a. We assume that C

0

= (C

0

1

; C

0

2

) and e 2 C

0

1

(the 
ase e 2 C

0

2

is proved

in a similar way). Then C

0

2

= C

2

, where C = (C

1

; C

2

). Hen
e, C

0

1

n C

1

= feg, where l

E

1

(e) = a,

f(C

0

) = (f

1

(C

0

1

); f

2

(C

2

)), f(C) = (f

1

(C

1

); f

2

(C

2

)) and C

1

a

!

E

1

C

0

1

. Sin
e f

1

preserves the transi-

tion relation, f

1

(C

1

)

a

!

p

1

f

1

(C

0

1

). A

ording to (TR4) we have (f

1

(C

1

); f

2

(C

2

))

a

!

p

(f

1

(C

0

1

); f

2

(C

2

)), i.e.

f(C)

a

!

p

f(C

0

).

We now assume that f(C)

a

!

p

f(C

0

). We need to show that C

a

!

E

C

0

. We suppose f(C

0

) = (v

0

1

; v

0

2

) 2

P and f(C) = (v

1

; v

2

) 2 P. A

ording to (TR4), we get (v

1

a

!

p

1

v

0

1

& v

2

= v

0

2

) or (v

2

a

!

p

2

v

0

2

& v

1

= v

0

1

).

Let us 
onsider the 
ase v

2

= v

0

2

& v

1

a

!

p

1

v

0

1

(the remained 
ase is proved in the similar way). Suppose

that C = (C

1

; C

2

) and C

0

= (C

0

1

; C

0

2

). Sin
e f

2

is an isomorphism, C

2

= C

0

2

. Sin
e f

1

preserves

the transition relation, (C

1

a

!

E

1

C

0

1

), i.e. C

0

1

= C

1

[ feg and l

E

1

(e) = a. Then C

0

= C

0

1

[ C

0

2

=

(C

1

[ feg) [ C

2

= C [ feg and l

E

(e) = a, whi
h means that C

a

!

E

C

0

.

5. p = p

1

� p

2

: Let us take a 
ountable set of event stru
tures E

0

1

, E

0

2

, : : :, E

i

1

, E

i

2

, : : : su
h that

E

i

1

= E

PBPA

�

(p

1

), E

i

2

= E

PBPA

�

(p

2

), and (E

i

E

1

T

E

j

E

1

)

S

(E

i

E

2

T

E

j

E

2

)

S

(E

k

E

1

T

E

l

E

2

) = ; with i 6= j and

8k; l 2 N.

Let us 
onsider E =

S

i�0

(E

E

i

1

[E

E

i

2

), �=

S

i�0

(�

E

i

1

[ �

E

i

2

) [ f(e; e

0

)je 2 E

E

i

1

& e

0

2

S

j>i

(E

E

j

1

[E

E

j

2

),

with i � jg, # =

S

i�0

#

E

i

2

[ f(e; e

0

); (e

0

; e)je 2 E

E

i

2

& e

0

2 E

E

i

1

S

j>i

(E

E

j

1

[ E

E

j

2

)g, l =

S

i�0

(l

E

i

1

[ l

E

i

2

).

Then E = (E;�;#; l) = E

PBPA�

(p).

We denote

b

C(0) = ;,

b

C(n) =

b

C(n� 1) [ E

E

n

1

, for n � 1, and [n; C(E

i

)℄ =

b

C(n) [ fC

j

jC

j

2 C(E

n+1

i

)g,

for i = 1; 2: Then C(E) =

S

i�0

([i; C(E

1

)℄ [ [i; C(E

2

)℄). By the indu
tion hypothesis for p

i

and pro
ess

stru
tures Pr(p

i

) = (P

i

;

a

!

p

i

; s

i

; l

i

), with i = 1; 2, there are isomorphisms f

1

: C(E

PBPA�

(p

1

))!P

1

and

f

2

: C(E

PBPA�

(p

2

))!P

2

. Let us 
onsider the mappings f

i

1

: [i; C(E

1

)℄!P

i

1

and f

i

2

: [i; C(E

2

)℄!P

i

2

su
h
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that f

i

1

(C) = f

1

(C) n

b

C(i) and f

i

2

(C) = f

2

(C) n

b

C(i), with i � 0. It is easy to see that f

i

1

and f

i

2

are

isomorphisms for i � 0. Sin
e E

E

1

\E

E

2

= ;, C(E

j

i

)\ C(E

l

k

) = f;g, if i 6= k or j 6= l. Therefore, we get

the following: [i; C(E

1

)℄ \ [i; C(E

2

)℄ =

b

C(i),

[i; C(E

1

)℄ \ [i+ 1; C(E

1

)℄ =

b

C(i+ 1) = [i; C(E

1

)℄ \ [i+ 1; C(E

2

)℄ for i � 0;

[i; C(E

2

)℄ \ [j; C(E

2

)℄ = ; for i 6= j;

[i; C(E

1

)℄ \ [j; C(E

1

)℄ = ; for i < j � 1 or i > j + 1;

[i; C(E

1

)℄ \ [j; C(E

2

)℄ 6= ; for i 6= j and i 6= j � 1.

We 
onstru
t the mapping f : C(E)! P as follows. We set f(C) = f

j

i

(C) if C 2 [j; C(E

i

)℄ for i = 1; 2

and j � 0. A

ording to TR5 and the 
onstru
tion of E , we see that f is an isomorphism. 2

Sin
e Pr(p) = (P

p

;!

p

; s

p

; l

p

) 
an be viewed as a transition system for ea
h p 2 PBPA

�

(A
t), we


an apply the bisimulation notion to it. So, we 
all two pro
ess stru
tures Pr(p) and Pr(q) bisimilar

(denoted by Pr(p)$Pr(q)) if there is a bisimulation B between (P

p

;!

p

; s

p

) and (P

q

;!

q

; s

q

) su
h

that s

p

Bs

q

.

The following proposition shows that, although the pro
edure of 
onstru
ting a pro
ess stru
ture


hanges the stru
ture of a transition system for a PBPA

�

-term, the bisimulation between the pro
ess

stru
tures remains to be 
orresponding to the algebrai
 one.

Proposition 4.2. Let p; q 2 PBPA

�

(A
t). Then Pr(p)$Pr(q) , p$ q.

Proof. ()). It follows dire
tly from Proposition 4.1.

((). Assume that p$ q, and R � PBPA

�

(A
t)�PBPA

�

(A
t) to be an algebrai
 bisimulation su
h

that pRq. We 
onstru
t a relation B � P

p

�P

q

as follows. For v 2 P

p

and v

0

2 P

q

, we set (v; v

0

) 2 B

if l

p

(v)Rl

q

(v

0

). We have to show that B is a bisimulation.

Let (v

1

; v

0

1

) 2 B and v

1

a

!

p

v

2

. By Proposition 4.1, we have l

p

(v

1

)

a

�!

PBPA

�

l

p

(v

2

). By 
onstru
tion

of B, we get l

p

(v

1

)Rl

q

(v

0

1

). Then, by de�nition of the relation R, we get 9r 2 PBPA

�

(A
t) �

l

q

(v

0

1

)

a

�!

PBPA

�

r. By de�nition of the transition relation in PBPA

�

(A
t), we have that the transition

l

q

(v

0

1

)

a

�!

PBPA

�

r is obtained from one of the rules (Ax),(A1)-(A7) or (B1)-(B7), whi
h depends on

the stru
ture of the term l

q

(v

0

1

). Obviously, q = l

q

(s

q

) = l

q

(v

1

)

a

1

! : : :

a

n�1

�!

PBPA

�

l

q

(v

n

) = r, where

l

q

(v

(n�1)

) = l

q

(v

0

1

). Then, by 
onstru
tion of Pr(q), we get v

0

2

= v

n

and v

0

1

a

!

p

v

0

2

, where v

0

1

= v

(n�1)

.

The 
ase v

0

1

a

!

q

v

0

2


an be 
onsidered similarly to the previous one.

By 
onstru
tion of B, it is obvious that (s

p

; s

q

) 2 B, sin
e l

p

(s

p

) = p, l

q

(s

q

) = q, and pRq. Therefore,

Pr(p)$Pr(q). 2

Now we 
an establish the main result of the paper.

Theorem 4.2. Let p; q 2 PBPA

�

(A
t). Then E

PBPA

�

(p) �

i

E

PBPA

�

(q), p$q.

Proof. We have from Theorem 4.1. and Proposition 4.2, E

PBPA

�

(p) �

i

E

PBPA

�

(q), Pr(p)$Pr(q),

sin
e the 
orresponding transition systems are isomorphi
. Due to Proposition 4.2, this means that

E

PBPA

�

(p) �

i

E

PBPA

�

(q), p$q. 2

5. Con
lusion

In this paper we have investigated an algebrai
 spe
i�
ation of a behavioural equivalen
e. We have in-

trodu
ed a pro
ess algebra with iteration and operations 
orresponding to all relations between events

in a stru
ture. By proposing the event stru
ture semanti
s to algebrai
 terms, we have established

the 
orresponden
e between algebrai
 and behavioural bisimulations. We have 
onsidered the pro
ess

algebra BPA

�

as a starting point, sin
e it seems to be ni
e to spe
ify a 
lass of event stru
tures with

�nite representations, whi
h is needed for investigation of de
idability of bisimulation notions de�ned

over event stru
tures. The de
idability problem is an important question in the study of an equivalen
e

notion. As an example, it is easy to noti
e that for the 
lass of �nite event stru
tures bisimulations

are de
idable, and in the general 
ase of in�nite event stru
tures it is obviously unde
idable, whether
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two stru
tures are bisimilar or not. The aim of our further resear
h is to obtain nontrivial results for


lasses of event stru
tures.
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