
Joint NCC & IIS Bull., Comp. Siene, 13 (2000), 76{87



 2000 NCC Publisher

Algebrai haraterization of behavioural equivalenes

over event strutures

�

A. Votintseva

We onsider the proess algebra BPA

�

proposed by Bergstra, Bethke, and Ponse, sine it niely de�nes a lass of

in�nite proesses. Investigation of representation of event strutures for this lass of proesses is presented in this artile.

We extend the algebra BPA

�

by a parallel omposition and modify its sequential operation. For the obtained algebra,

named PBPA

�

, we get a orrespondene between an algebrai bisimulation de�ned using the transition systems over

PBPA

�

-proesses and a behavioural one de�ned over event strutures. This gives us better understanding of the plae

of event strutures among other models of parallelism.

1. Introdution

The development of methods for the design of onurrent/distributed systems and investigation of their

properties are arried out by means of di�erent formal models (Petri nets, trae languages, transition

systems, event strutures, proess algebras, et.) varying aordingly to the lass of systems, the level

of abstration for strutures and behaviours, and the kind of problems under onsideration. When

verifying di�erent properties of proesses and establishing a transition from one abstrat model to

another, one an demand the sublasses of systems with equivalent behaviours to be spei�ed. At

the time, there have been designed a lot of equivalene notions for di�erent models of onurrent

and distributed systems. With the aim to lassify the variety of their semanti representations, it is

neessary to hoose a ommon model of proesses and establish its orrespondene to other ones (e.g.,

in [7℄).

Event strutures are a well-known formalism of \true onurreny" whih provides a very detailed

model for onurrent and distributed systems. All the main issues attendant the onurrent ompu-

tations are presented therein. The notion of event strutures was proposed by Nielsen, Plotkin and

Winskel in [10℄ to establish the orrespondene between ourrene nets (a lass of Petri nets) and

Sott domains (a lass of partial orders). An event struture is a partially ordered set of event our-

renes together with a symmetri onit relation. The ordering relation models ausality, whereas the

onit relation expresses alternative hoies between events. Two event ourrenes that are neither

ausally omparable nor in onit may our onurrently. In this sense, event strutures provide

expliit and distint representations of ausality, hoie, and onurreny. Computations in an event

struture are modelled by onit-free and left-losed sets of event ourrenes.

The notion of a bisimulation equivalene was introdued in [14℄. The importane of bisimulations in

the onurrent systems theory is widely aknowledged. A bisimilarity of two systems means that they

an model the behaviours of eah other in the branhing-time semantis, i.e., starting with equivalent

states, the bisimilar systems must be able to perform the same moves, whih leads to the next pair

of equivalent states. Initially, the bisimulation notion was introdued over transition systems, and

later it was extended to other formal models suh as event strutures, Petri nets, proess algebras,

and others. For �nite state automata, it was shown that a bisimulation equivalene is deidable with

the time omplexity O(m logn), where m is the number of transitions and n is the number of states.

In [5℄ the variants of bisimulations over event strutures were investigated, namely, interleaving, step,

pomset, and history-preserving ones. In forth-and-bak variants of bisimulations ([9℄), two systems

model the behaviour of eah other not only in the future but also in the past. The forth-and-bak

bisimulations are interesting beause of their orrespondene to equivalenes indued by temporal and

�
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modal logis with past operators. In [11℄ a number of bisimulations expliitly reeting onit and

onurreny have been proposed, and all their interrelations have been established.

Correspondenes between bisimulation notions de�ned over di�erent domains attrat a lot of si-

enti� interests. A possible approah to study of behavioural equivalenes is to haraterize them

by means of proess algebras. Several results in deidability and (full or partial) axiomatization of

equivalenes have been obtained for algebrai systems. As an example, deidability of weak bisimilari-

ties between BPA (Basi Proess Algebra), BPP (Basi Parallel Proesses) and �nite-state proesses

has been investigated in [6℄, and axiomatization and its ompleteness have been established for a

bisimulation over BPA

�

(BPA enrihed with an iteration) in [2, 15℄. In this paper, we extend the

algebra BPA

�

to its parallel variant PBPA

�

by adding a new operator and adapting another one,

whih allows us to relate it to prime event strutures. We establish the orrespondene between an

interleaving bisimulation earlier introdued over event strutures and \algebrai" one, i.e. that de�ned

over the transition systems of PBPA

�

-terms spei�ed by transition rules.

The paper is organized as follows. In Setion 2, we remind the basi de�nitions from the event

strutures theory. In Setion 3, an extension PBPA

�

of the proess algebra BPA

�

and its operational

semantis are presented. Setion 4 proposes the event struture semantis for PBPA

�

-terms and es-

tablishes the orrespondene between the interleaving bisimulation over event strutures and algebrai

one. Conlusion resumes the main ahievements and gives some prospets for further researh.

2. Basi notions of event strutures

A prime event struture (event struture for brevity) onsists of a set of event ourrenes partially

ordered by a ausality relation. In addition, the struture ontains a onit relation between the

events. Two events that are neither ausally related nor in onit are alled onurrent.

De�nition 2.1. A (labeled) event struture over an alphabet At is a quadruple E = (E;�;#; l),

where

� E is a ountable set of events;

� � � E �E is a partial order (the ausality relation) satisfying the priniple of �nite auses:

8e 2 E � fd 2 E j d � eg is �nite;

� # � E �E is a symmetri and irreexive relation (the onit relation) satisfying the priniple

of onit heredity:

8e

1

; e

2

; e

3

2 E � e

1

� e

2

& e

1

#e

3

) e

2

#e

3

;

� l : E ! At is a labeling funtion. 2

The omponents of an event struture E are denoted as E

E

; #

E

; �

E

and l

E

. The index E an be

omitted if lear from the ontext. For E = (E;�;#; l), we denote: id = f(e; e) j e 2 Eg; <=� nid;

�

2

�� (transitivity); <� =< n <

2

(immediate ausal dependeny); ^= (E � E) n (� [ � [#)

(onurreny); e #

m

d () e # d & 8e

1

; d

1

2 E � (e

1

� e & d

1

� d & e

1

# d

1

)) (e

1

= e & d

1

= d)

(minimal onit).

In the gra� representations of an event struture, only minimal onits (not the inherited ones)

are pitured. The immediate ausal dependenies are represented by direted ars, omitting those

derivable by transitivity. A trivial example of an event struture is shown in Fig. 2.1, where e

1

^ e

2

and e

2

^ e

3

.
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Figure 2.1.

An event struture E is alled empty if E

E

= ;; �nite if E

E

is �nite; onit-free if #

E

= ;; a

substruture of an event struture F (E v F) if E

E

� E

F

, �

E

��

F

, #

E

� #

F

and l

E

= l

F

j

E

E

. Two

event strutures E and F are alled isomorphi (E

�

=

F) if there is a bijetion between the sets E

E

and E

F

preserving the relations �, # and labeling.

The states of an event struture are alled on�gurations. A on�guration de�nes the set of events

ourred at a point of time. An event an our in a on�guration if all preeded events have already

ourred in it. Two events related by a onit an not our in the same on�guration.

De�nition 2.2. A on�guration of an event struture E is a subset C � E

E

suh that

(i) 8e; e

0

2 C � :(e #

E

e

0

) (onit-freeness);

(ii) 8e; e

0

2 E

E

� e 2 C & e

0

�

E

e) e

0

2 C (left-losedness).

By C(E) we denote the set of all on�gurations in E . 2

A on�guration C 2 C(E) is alled maximal if the following holds: C

0

2 C(E) & C � C

0

) C = C

0

,

i.e. C is maximal w.r.t. the set inlusion.

The set of on�gurations for the event struture shown on Fig. 2.1 inludes the following elements:

;, fe

1

g, fe

2

g, fe

1

; e

3

g, fe

1

; e

2

g, fe

1

; e

2

; e

3

g, fe

1

; e

2

; e

4

g.

Let C

0

� C 2 C(E). ThenC

0

is a step if 8e

1

; e

2

2 C

0

� :(e

1

<

E

e

2

); the restrition of E to C

0

is de�ned

as E d C

0

= (C

0

; �

E

\ (C

0

�C

0

); #

E

\ (C

0

�C

0

); l

E

j

C

0

); we use pom

E

(C) = f(E d (C

00

nC))=

�

=

j C � C

00

2 C(E)g to denote the set of pomsets of C. We denote by C

0

not only the set itself, but also the labeled

partial order it indues by restriting �

E

and l

E

to C

0

. It will, hopefully, be lear from the ontext

what is meant. In addition, we de�ne ausal relations over the set of on�gurations as follows. Let

C; C

0

2 C(E). Then C !

E

C

0

i� C � C

0

; C

p

!

E

C

0

i� C !

E

C

0

and C

0

nC = p, where p 2 pom

E

(C).

We use 7!

E

= fC

a

!

E

C

0

2!

E

j a 2 At, C;C

0

2 C(E)g to denote the immediate ausality relation

between on�gurations.

We introdue a behavioural bisimulation equivalene de�ned over the sets of on�gurations of event

strutures.

De�nition 2.3. Let E and F be event strutures, B � C(E) � C(F). Then B is an interleaving

bisimulation between E and F i� (;; ;) 2 B and for any (C;D) 2 B the following holds:

{ if C

a

!

E

C

0

suh that a 2 At and C

0

2 C(E), then there is D

0

2 C(F) suh that D

a

!

F

D

0

and

(C

0

;D

0

) 2 B;

{ if D

a

!

F

D

0

suh that a 2 At and D

0

2 C(F), then there is C

0

2 C(E) suh that C

a

!

E

C

0

and

(C

0

;D

0

) 2 B.

E and F are interleaving bisimilar (denoted by E �

i

F) if there exists an interleaving bisimulation

between E and F . 2

3. Operational semantis of algebra PBPA

�

In this setion we onsider an extension of a well-known algebra BPA

�

(standing for Basi Proess

Algebra with the binary Kleene star operator, due to [15℄) with a parallel operator. Moreover, we

modify the operator of sequential omposition. We take the proess algebra BPA

�

as a starting point,
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beause it is apable to represent in�nite proesses in a very natural way and, after being extended

with additional operations, it seems to be �ne to �t the event struture model. The extended algebra

PBPA

�

here onsidered reets all basi relations between the proesses: ausality, onurreny and

hoie.

We now de�ne the syntax of PBPA

�

over a �xed alphabet At:

PBPA

�

f

(At) : r = aj(pjjq)j(p; q)

is the set of onit-free terms, where a 2 At and p; q 2 PBPA

�

f

(At);

PBPA

�

(At) : s = aj(pjjq)j(p + q)j(r; q)j(r � q)

is the set of all PBPA

�

-terms, where a 2 At, p; q 2 PBPA

�

(At), and r 2 PBPA

�

f

(At).

The semantis of the proess algebras are often given using the notion of a labeled transition

system. A (labeled) transition system over an alphabet At is a triple Tr = (V;!; s), where V is a set

of states;!� V �At�V is a transition relation and s 2 V is the initial state. Two transition systems

Tr

1

= (V

1

;!

1

; s

1

) and Tr

2

= (V

2

;!

2

; s

2

) are alled isomorphi if there is a bijetion f : V

1

! V

2

suh that f(s

1

) = s

2

and f preserves the transition relation, i.e. for all v; v

0

2 V

1

and a 2 At the

following holds: v

a

!

1

v

0

, f(v)

a

!

2

f(v

0

).

We present the operational semantis of PBPA

�

by means of a transition system assoiated with

eah proess represented by a PBPA

�

-term. Over the set PBPA

�

(At) we de�ne a transition relation

�!

PBPA

�

� PBPA

�

(At)�At� (PBPA

�

(At)[f

p

g), where

p

=2 PBPA

�

(At) is used to denote a

suessful termination. We write p

a

�!

PBPA

�

q to denote the transition from the proess (represented

by the term) p to the proess q, when performing the ation a 2 At given by the transition rules

shown in Table 3.1.

Table 3.1.

(Ax) If a 2 At, then a

a

�!

PBPA

�

p

x

a

�!

PBPA

�

p

x

a

�!

PBPA

�

x

0

(A1) x+ y

a

�!

PBPA

�

p

(B1) x+ y

a

�!

PBPA

�

x

0

(A2) y + x

a

�!

PBPA

�

p

(B2) y + x

a

�!

PBPA

�

x

0

(A3) x;y

a

�!

PBPA

�

y (B3) x;y

a

�!

PBPA

�

x

0

;y

(A4) xjjy

a

�!

PBPA

�

y (B4) xjjy

a

�!

PBPA

�

x

0

jjy

(A5) yjjx

a

�!

PBPA

�

y (B5) yjjx

a

�!

PBPA

�

yjjx

0

(A6) x � y

a

�!

PBPA

�

x � y (B6) x � y

a

�!

PBPA

�

x

0

;(x � y)

(A7) y � x

a

�!

PBPA

�

p

(B7) y � x

a

�!

PBPA

�

x

0

We de�ne a bisimulation equivalene over the obtained algebrai system (PBPA

�

(At);�!

PBPA

�

)

of transitions.

De�nition 3.1. An algebrai bisimulation is a relation R � PBPA

�

(At)�PBPA

�

(At) suh that:

| pRq and p

a

�!

PBPA

�

p

0

2 PBPA

�

(At) ) 9q

0

2 PBPA

�

(At) � q

a

�!

PBPA

�

q

0

and p

0

Rq

0

;

| pRq and q

a

�!

PBPA

�

q

0

2 PBPA

�

(At) ) 9p

0

2 PBPA

�

(At) � p

a

�!

PBPA

�

p

0

and p

0

Rq

0

;

| pRq ) (p

a

�!

PBPA

�

p

, q

a

�!

PBPA

�

p

). 2

We all two PBPA

�

-terms p and q equivalent (p$q) if there is an algebrai bisimulation R suh

that pRq.

As an example, one an observe that the following term equivalenes hold:
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(x;y);z $ x;(y;z)

x � y $ x;(x � y) + y

x+ y $ y + x

xjjy $ yjjx

(x+ y) + z $ x+ (y + z)

(xjjy)jjz $ xjj(yjjz)

x+ x $ x

Hene, the proess (a � b) for ations a and b an be depited by:

#

"!

-

6

a � b

b

p

a

4. Event struture semantis for PBPA

�

Now we wish to give the event struture semantis of PBPA

�

-terms, where eah PBPA

�

-term de�nes

an event struture up to isomorphism. For a given term p 2 PBPA

�

(At) we onstrut the event

struture E

PBPA

�

(p) = (E;�;#; l) by indution on the struture of p as follows:

1. Let p = a 2 At. Then E = (feg; ;; ;; f(e; a)g).

2. Let p = p

1

jjp

2

, E

1

= E

PBPA

�

(At)

(p

1

) and E

2

= E

PBPA

�

(At)

(p

2

) suh that E

E

1

\E

E

2

= ;.

Then E = (E

E

1

[E

E

2

;�

E

1

[ �

E

2

;#

E

1

[#

E

2

; l

E

1

[ l

E

2

).

3. Let p = p

1

+ p

2

, E

1

= E

PBPA

�

(At)

(p

1

) and E

2

= E

PBPA

�

(At)

(p

2

) suh that E

E

1

\E

E

2

= ;.

Then E = (E

E

1

[E

E

2

;�

E

1

[ �

E

2

;#

E

1

[#

E

2

[ f(e

1

; e

2

); (e

2

; e

1

)je

1

2 E

E

1

; e

2

2 E

E

2

g; l

E

1

[ l

E

2

).

4. Let p = p

1

; p

2

, E

1

= E

PBPA

�

(At)

(p

1

) and E

2

= E

PBPA

�

(At)

(p

2

) suh that E

E

1

\E

E

2

= ;.

Then E = (E

E

1

[E

E

2

;�

E

1

[ �

E

2

[f(e

1

; e

2

)je

1

2 E

E

1

; e

2

2 E

E

2

g;#

E

1

[#

E

2

; l

E

1

[ l

E

2

).

5. Let p = p

1

� p

2

. We assume p

(0)

= p

1

+ p

2

and p

(i+1)

= p

1

; p

(i)

+ p

2

for all i � 0.

Then E is de�ned as the minimal struture suh that E

PBPA

�

(At)

(p

(n)

) v E for all n 2N.

Here event strutures present iteration as unfolding. By onstrution, E

PBPA

�

(p) is a prime event

struture for all p 2 PBPA

�

.

Before establishing the orrespondene between a bisimulation de�ned over event strutures and

an algebrai one, we introdue for eah term p 2 PBPA

�

(At) the notion of a proess struture whih

is a quadruple Pr(p) = (P;!

p

; s; l), where P is the set of subproesses of the initial proess s 2 P,

!

p

is a transition relation between proesses over the alphabet At and l : P ! PBPA

�

(At) [ f

p

g

is a labeling funtion. The proess struture Pr(p) is onstruted aording to the following rules:

(TR1) Let p = a 2 At. Then P = fv; sg, !

p

= fs

a

!

p

vg, l(s) = a and l(v) =

p

.

(TR2) Let p = p

1

;p

2

and Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

) have been onstruted

so that P

1

\P

2

= fs

2

g and l

1

(s

2

) =

p

. Then P = P

1

[P

2

; !

p

=!

p

1

[ !

p

2

; s = s

1

; l(v) = l

2

(v)

for all v 2 P

2

, and l(v) = l

1

(v);p

2

for all v 2 P

1

n fs

2

g.

(TR3) Let p = p

1

+ p

2

and Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

) have been on-

struted so that P

1

\ P

2

= fs

1

g = fs

2

g. Then P = P

1

[ P

2

; !

p

=!

p

1

[ !

p

2

; s = s

1

(and

s = s

2

); l(v) = l

1

(v) for all v 2 P

1

n fsg, l(v) = l

2

(v) for all v 2 P

2

n fsg and l(s) = l

1

(s) + l

2

(s).

(TR4) Let p = p

1

jjp

2

and Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

) have been already

onstruted. Then P = P

1

�P

2

; (v

1

; v

2

)

a

!

p

(v

0

1

; v

0

2

), ((v

1

a

!

p

1

v

0

1

& v

2

= v

0

2

) _ (v

2

a

!

p

2

v

0

2

&
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v

1

= v

0

1

)); s = (s

1

; s

2

);

l(v; v

0

) =

8

>

<

>

:

l

2

(v

0

) if l

1

(v) =

p

,

l

1

(v) if l

2

(v

0

) =

p

,

l

1

(v)jjl

2

(v

0

) otherwise.

(TR5) Let p = p

1

�p

2

. For 0 � i we assume Pr

i

(p

1

) = (P

i

1

;!

i

p

1

; s

i

1

; l

i

1

) and Pr

i

(p

2

) = (P

i

2

;!

i

p

2

; s

i

2

; l

i

2

) to

be proess strutures suh that (P

i

1

;!

i

p

1

; s

i

1

)

�

=

(P

j

1

;!

j

p

1

; s

j

1

) and (P

i

2

;!

i

p

2

; s

i

2

)

�

=

(P

j

2

;!

j

p

2

; s

j

2

)

for all i and j, and the following holds: s

i

1

= s

i

2

(= s

i

), P

i

1

\ P

i

2

= fs

i

g, P

i

1

\ P

i+1

1

= fs

i+1

g =

P

i

1

\P

i+1

2

, where l

i

1

(s

i+1

) =

p

; P

i

2

\P

j

2

= ;, with i 6= j; P

i

1

\P

j

1

= ;, with i � j�1 and j+1 � i;

P

i

1

\P

j

2

= ;, with i 6= j and i 6= j�1. Then P =

S

i�0

(P

i

1

[P

i

2

); s = s

0

; !

p

=

S

i�0

(!

i

p

1

[ !

i

p

2

);

l(v) =

8

>

<

>

:

l

i

2

(v) if v 2 P

i

2

n fs

i

g for 0 � i,

l

i

1

(v);(p

1

� p

2

) if v 2 P

i

1

n fs

i

; s

i+1

g for 0 � i,

l

i

1

(v) � l

i

2

(v) if v = s

i

for 0 � i.

In a proess struture, two di�erent proesses an be labeled by the same PBPA

�

-term, whih means

that these proesses behave in the same way while ourring in di�erent possible omputations of the

modeled system. Fig. 4.1 (a) shows the transition system of PBPA

�

(At) taking the proess p =

(b; a)� (a+b) as the initial states, whereas Fig. 4.1 (b) reets the �nite fragment of the orresponding

proess struture Pr(p).

?�

�

�

�� �

�

�

��

A

A

A

AU

(b; a) � (a+ b)

a; ((b; a) � (a+ b))

bb

p

aa

a)

?

�

�

�

��

A

A

A

AU

A

A

A

AU

(b; a) � (a+ b)

a; ((b; a) � (a+ b))

b b

p p

a

a

b)

?

�

�

�

��

A

A

A

AU

A

A

A

AU

(b; a) � (a+ b)

a; ((b; a) � (a+ b))

b b

p p

a

a

: : :

Figure 4.1.

Lemma 4.1. Let Pr(p) = (P;!

p

; s; l) be a proess struture for p 2 PBPA

�

(At). (TR1)-(TR5).

Then

(i) l(s) = p;

(ii) if p 2 PBPA

�

f

(At), then jfv 2 Pjl(v) =

p

gj = 1;

(iii) l(v) =

p

) fv

0

2 Pj9a 2 At : v

a

!

p

v

0

g = ;.

Proof. We prove (i) by indution on the struture of the term p.

� p = a 2 At. Aording to (TR1), we have l(s) = a = p.
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� p = p

1

jjp

2

. Let, for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

), it be proved

that l

1

(s

1

) = p

1

and l

2

(s

2

) = p

2

. Aording to (TR4), we have s = (s

1

; s

2

) and l(s

1

; s

2

) =

l

1

(s

1

)jjl

2

(s

2

) = p

1

jjp

2

= p, sine l

1

(s

1

) 6=

p

and l

2

(s

2

) 6=

p

.

� p = p

1

+ p

2

. Let, for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

), it be proved that

l

1

(s

1

) = p

1

and l

2

(s

2

) = p

2

. Aording to (TR3), we have s = s

1

= s

2

and l(s) = l

1

(s) + l

2

(s) =

l

1

(s

1

) + l

2

(s

2

) = p

1

+ p

2

= p.

� p = p

1

;p

2

. Let, for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

), it be proved that l

1

(s

1

) = p

1

. Aording to (TR2),

we have s = s

1

and l

1

(s

2

) =

p

, where s

2

is the initial state in Pr(p

2

). Hene, s 2 P n fs

2

g and,

aording to (TR2), we get l(s) = l

1

(s);p

2

= l

1

(s

1

);p

2

= p

1

;p

2

= p.

� p = p

1

� p

2

. Let, for Pr

0

(p

1

) = (P

0

1

;!

0

p

1

; s

0

1

; l

0

1

) and Pr

0

(p

2

) = (P

0

2

;!

0

p

2

; s

0

2

; l

0

2

), it be proved

that l

0

1

(s

0

1

) = p

1

and l

0

2

(s

0

2

) = p

2

. Aording to (TR4), we have s = s

0

= s

0

1

= s

0

2

) and

l(s) = l

0

1

(s

0

) � l

0

2

(s

0

) = p

1

� p

2

= p.

We prove (ii) by indution on the struture of the term p.

� p = a 2 At. Obvious, due to (TR1).

� p = p

1

;p

2

. Let, for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

), it be proved that

there are the only node v 2 P

1

and the only node v

0

2 P

2

labeled by

p

. Aording to (TR2),

we have v = s

2

and l(v) = l

2

(s

2

) = p

2

2 PBPA

�

; 8

�

v

2 P

1

n fvg � l(

�

v

) = l

1

(

�

v

);p

2

2 PBPA

�

and

8

�

v

2 P

2

� l(

�

v

) = l

2

(

�

v

). It is obvious that there is the only node v

0

in P = P

1

[P

2

labeled by

p

.

� p = p

1

jjp

2

. Let, for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

), it be proved that

there are the only node v 2 P

1

and the only node v

0

2 P

2

suh that l

1

(v) =

p

and l

2

(v

0

) =

p

.

Aording to (TR4), we have l(v

1

; v

2

) =

p

, (l

1

(v

1

) =

p

and l

2

(v

2

) =

p

). This is possible only

if v

1

= v and v

2

= v

0

. So, there is the only node (v; v

0

) 2 P suh that l(v; v

0

) =

p

.

We prove (iii) by indution on the struture of the term p.

� p = a 2 At. Obvious, aording to (TR1).

� p = p

1

;p

2

. By the point (ii) of the lemma, we have that there is the only node v

0

2 P

1

suh that l

1

(v

0

) =

p

, sine p

1

2 PBPA

�

f

. Aording to (TR2), we have v

0

= s

2

2 P

2

and

8v

0

2 P

1

n fv

0

g � l(v

0

) = l

1

(v

0

);p

2

2 PBPA

�

, sine l

1

(v

0

) 6=

p

. For v

0

2 P

2

we have l(v) = l

2

(v).

Hene, l(v) =

p

, (v 2 P

2

& l

2

(v) =

p

). Let

�

v

2 P

2

be suh that l

2

(

�

v

) =

p

. Then, by the

indution hypothesis, we get fv

0

2 P

2

j9a 2 At �

�

v

a

!

p

2

v

0

g = ;. Sine !

p

1

\ !

p

2

= ; implied

from (TR2), we have 8v 2 P

2

� fv

0

2 P

2

j9a 2 At � v

a

!

p

2

v

0

g = fv

0

2 Pj9a 2 At �

�

v

a

!

p

v

0

g.

Therefore, fv

0

2 Pj9a 2 At �

�

v

a

!

p

v

0

g = ;.

� p = p

1

+ p

2

. Let v 2 P be suh that l(v) =

p

. We assume v 2 P

1

(the ase \v 2 P

2

" an be

proved in the similar way). Sine !

p

1

\ !

p

2

= ; implied from (TR3), we have fv

0

2 Pj9a 2

At � v

a

!

p

v

0

g = fv

0

2 P

1

j9a 2 At � v

a

!

p

1

v

0

g = ;, due to the indution hypothesis.

� p = p

1

jjp

2

. Let (v

1

; v

2

) 2 P be suh that l(v

1

; v

2

) =

p

. Aording to (TR4), this is possible

if l

1

(v

1

) =

p

and l

2

(v

2

) =

p

. Let us onsider (

�

v

1

;

�

v

2

) 2 P suh that l

1

(

�

v

1

) =

p

and l

2

=

(

�

v

2

) =

p

. Then, aording to (TR4), we get f(v

1

; v

2

) 2 Pj9a 2 At � (

�

v

1

;

�

v

2

)

a

!

p

(v

1

; v

2

)g

= f(

�

v

1

; v

2

) 2 Pj9a 2 At � (

�

v

1

;

�

v

2

)

a

!

p

(

�

v

1

; v

2

)g [f(v

1

;

�

v

2

) 2 Pj9a 2 At � (

�

v

1

;

�

v

2

)

a

!

p

(v

1

;

�

v

2

)g

= f(

�

v

1

; v

2

) 2 Pj9a 2 At �

�

v

2

a

!

p

2

v

2

g [f(v

1

;

�

v

2

) 2 Pj9a 2 At �

�

v

1

a

!

p

1

v

1

g = ; [ ; = ;.

� p = p

1

� p

2

. Let Pr

i

(p

1

) = (P

i

1

;!

i

p

1

; s

i

1

; l

i

1

) and Pr

i

(p

2

) = (P

i

2

;!

i

p

2

; s

i

2

; l

i

2

) be the proess

strutures onstruted aording to (TR5) for 0 � i. We onsider v

0

2 P suh that l(v

0

) =

p

.

Then v

0

62 P

i

1

for all i � 0, sine for v 2 P

i

1

nfs

i

; s

i+1

g the following holds: l(v) = l

i

1

(v);(p

1

�p

2

) 2

PBPA

�

and l(s

i

) = l(s

i+1

) = p

1

�p

2

for 0 � i, due to the point (i) of the lemma. Hene, v

0

2 P

i

2

for some 0 � i. Aording to (TR5), we have that!

i

p

j

are disjoint for j = 1; 2 and 0 � i and, so,

fv 2 Pj9a 2 At � v

a

!

p

v

0

g = fv 2 P

i

2

j9a 2 At � v

a

!

i

p

2

v

0

g = ; by the indution hypothesis. 2
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The following proposition shows that the proess strutures adequately present the transition

system of the algebra PBPA

�

, i.e. that de�ned by the rules (Ax), (A1)-(A7) and (B1)-(B7).

Proposition 4.1. Let p 2 PBPA

�

(At) and Pr(p) = (P;!

p

; s; l) be the proess struture for p.

Then, for any v

1

; v

2

2 P, it holds that v

1

a

!

p

v

2

) l(v

1

)

a

!

PBPA

�

l(v

2

).

Proof. We prove by indution on the struture of the term p.

1. p = a 2 At. If v

1

a

!

p

v

2

, then l(v

1

) = a and l(v

2

) =

p

, aording to (TR1). And a

a

!

PBPA

�

p

is a transition in PBPA

�

(At), due to (Ax).

2. p = p

1

;p

2

. Let the proposition be proved for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

). Aording to (TR2), we have P = P

1

[ P

2

. We assume that v

1

a

!

p

v

2

. Sine

a

!

p

=

a

!

p

1

[

a

!

p

2

, it is easy to see that fv

1

; v

2

g � P

1

or fv

1

; v

2

g � P

2

. If fv

1

; v

2

g � P

2

, then l(v

1

) = l

2

(v

1

),

l(v

2

) = l

2

(v

2

) and, by the indution hypothesis, l

2

(v

1

)

a

!

PBPA

�

l

2

(v

2

). If fv

1

; v

2

g � P

1

, then

l(v

1

) = l

1

(v

1

);p

2

,

l(v

2

) =

(

p

2

if v

2

= s

2

;

l

1

(v

2

);p

2

otherwise.

Let v

2

= s

2

. Then l

1

(v

2

) =

p

, due to Lemma 4.1 (i) and aording to (TR2). By the indution

hypothesis, we have l

1

(v

1

)

a

!

PBPA

�

p

. Aording to (A3), we get l

2

(v

1

);p

2

a

!

PBPA

�

p

2

. We

assume that v

2

6= s

2

. Then l

1

(v

2

) 2 PBPA

�

(At). By the indution hypothesis, l

1

(v

1

)

a

!

PBPA

�

l

1

(v

2

). Then, aording to (B3), we have l

1

(v

1

);p

2

a

!

PBPA

�

l

1

(v

2

);p

2

.

3. p = p

1

+ p

2

. Let the proposition be proved for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

). Let us onsider v

1

; v

2

2 P suh that v

1

a

!

p

v

2

. Sine

a

!

p

=

a

!

p

1

[

a

!

p

2

, it is easy to see

that fv

1

; v

2

g � P

1

or fv

1

; v

2

g � P

2

. We assume that fv

1

; v

2

g � P

1

(the ase fv

1

; v

2

g � P

2

is

proved in the similar way). Let us onsider two possible ases. We suppose that v

1

2 P

1

n fs

1

g,

then l(v

1

) = l

1

(v

1

) and l(v

2

) = l

1

(v

2

). By the indution hypothesis, l

1

(v

1

)

a

!

PBPA

�

l

1

(v

2

) and,

hene, l(v

1

)

a

!

PBPA

�

l(v

2

). Assume that v

1

= s

1

. Then l

1

(v

1

) = p

1

, due to Lemma 3.1 (i), and

l(v

1

) = p

1

+ p

2

, aording to (TR3). By the indution hypothesis, we have p

1

a

!

PBPA

�

l

1

(v

2

).

Then, aording to (B2) (or (A2) if l

1

(v

2

) =

p

), we have p

1

+ p

2

a

!

PBPA

�

l

1

(v

2

). Therefore,

l(v

1

)

a

!

PBPA

�

l(v

2

).

4. p = p

1

jjp

2

. Let the proposition be proved for Pr(p

1

) = (P

1

;!

p

1

; s

1

; l

1

) and Pr(p

2

) = (P

2

;!

p

2

; s

2

; l

2

). Aording to (TR4), we have P = P

1

� P

2

. Let us onsider (v

1

; v

0

1

); (v

2

; v

0

2

) 2 P suh

that (v

1

; v

0

1

)

a

!

p

(v

2

; v

0

2

). Aording to (TR4), we suppose that v

0

1

= v

0

2

and v

1

a

!

p

1

v

2

(the

ase of v

1

= v

2

and v

0

1

a

!

p

1

v

0

2

is proved in the similar way). By the indution hypothesis, we

have l(v

1

)

a

!

PBPA

�

l(v

2

), l

2

(v

0

1

) = l

2

(v

0

2

) = q 2 PBPA

�

[ f

p

g. Aording to (TR4), we get

l(v

1

; v

0

1

) = l

1

(v

1

)jjq and l(v

2

; v

0

2

) = l

1

(v

2

)jjq if q 6=

p

, and l(v

1

; v

0

1

) = l

1

(v

1

), l(v

2

; v

0

2

) = l

1

(v

2

)

if q =

p

. Then q =

p

, and we get l(v

1

; v

0

1

) = l

1

(v

1

)

a

!

PBPA

�

l(v

2

) = l(v

2

; v

0

2

). For q 6=

p

,

aording to (B4), we get l(v

1

; v

0

1

) = l

1

(v

1

)jjq

a

!

PBPA

�

l(v

2

)jjq.

5. p = p

1

�p

2

. Let the proposition be proved for Pr

i

(p

1

) = (P

i

1

;!

i

p

1

; s

i

1

; l

i

1

) and Pr

i

(p

2

) = (P

i

2

;!

i

p

2

; s

i

2

; l

i

2

) (with i � 0). Let us onsider v

1

; v

2

2 P suh that v

1

a

!

p

v

2

. Aording to (TR5), we

have

a

!

p

=

S

i�0

(

a

!

i

p

1

[

a

!

i

p

2

). Therefore, fv

1

; v

2

g � P

i

1

or fv

1

; v

2

g � P

i

2

for some i � 0. Two

ases are worth to be onsidered:

1) fv

1

; v

2

g � P

i

1

. Four ases are possible:

{ Let v

1

= s

i

(with s

i

= s

i

1

= s

i

2

) and v

2

= s

i+1

. This means that P

i

1

= fv

1

; v

2

g. Aording

to (TR5), it implies that p

1

= a 2 At, sine v

1

a

!

p

1

v

2

. We have l(v

1

) = p

1

� p

2

= a � p

2

and l(v

2

) = p

1

� p

2

= a � p

2

, sine p

1

= a

a

!

PBPA

�

p

, due to the axiom (Ax). Aording to

(A6), we get l(v

1

)

a

!

PBPA

�

l(v

2

).
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{ Let v

1

= s

i

and v

2

6= s

i+1

. By the indution hypothesis, p

1

= l

i

1

(v

1

)

a

!

PBPA

�

l

i

1

(v

2

).

Aording to (TR5), we get l(v

1

) = p

1

� p

2

and l(v

2

) = l

i

1

(v

2

);(p

1

� p

2

). Then, aording to

(B6), we get l(v

1

)

a

!

PBPA

�

l(v

2

).

{ Let v

1

6= s

i

and v

2

= s

i+1

. Aording to (TR5), we have l(v

1

) = l

i

1

(v

2

);(p

1

� p

2

) and

l(v

1

) = (p

1

�p

2

), due to Lemma 4.1. By the indution hypothesis, we have l(v

i

1

)

a

!

PBPA

�

p

.

Then, aording to (A3), we get l

i

(v

1

);(p

1

� p

2

) = l(v

1

)

a

!

PBPA

�

l(v

2

) = (p

1

� p

2

).

{ Let v

1

6= s

i

and v

2

6= s

i+1

. Then l(v

1

) = l

i

(v

1

);(p

1

� p

2

) and l(v

2

) = l

i

(v

2

);(p

1

� p

2

). By the

indution hypothesis, l

i

(v

1

)

a

!

PBPA

�

l

i

(v

2

) and, aording to (B3), we get l(v

1

)

a

!

PBPA

�

l(v

2

).

2) fv

1

; v

2

g � P

i

2

. Aording to (TR5), we get v

2

6= s

i

. Therefore, l(v

2

) = l

i

2

(v

2

). Let us onsider

two possible ases:

{ Let v

1

= s

i

(with s

i

= s

i

1

= s

i

2

). Aording to (TR5) and Lemma 4.1 (i), we have

l(v

1

) = p

1

� p

2

and l

i

2

(v

1

) = p

2

. By the indution hypothesis, l

i

(v

1

)

a

!

PBPA

�

l

i

(v

2

), i.e.

p

2

a

!

PBPA

�

l

i

(v

2

). Then, aording to (B7) (or (A7) if l

i

2

(v

2

) =

p

), we have l(v

1

) =

(p

1

� p

2

)

a

!

PBPA

�

l(v

2

).

{ Let v

1

6= s

i

. Then l(v

1

) = l

i

2

(v

1

). By the indution hypothesis, l

i

2

(v

1

)

a

!

PBPA

�

l

i

2

(v

2

),

whih means that l(v

1

)

a

!

PBPA

�

l(v

2

). 2

The following theorem establishes the orrespondene between the transition system for a proess

de�ned by a PBPA

�

(At)-term and the transition system de�ned over the set of on�gurations of the

event struture onstruted for the PBPA

�

(At)-term.

Theorem 4.1. For p 2 PBPA

�

(At), let Pr(p) = (P;!

p

; s; l) be the proess struture and E =

E

PBPA

�

(p). Then (C(E); 7!

E

; ;)

�

=

(P;!

p

; s).

Proof. We prove the theorem by indution on the struture of p.

1. p = a 2 At. Then C(E) = f;; fegg, where l

E

(e) = a; 7!

E

= f;

a

!

E

fegg. Aording to (TR1),

we have P = fv

1

; v

2

g, !

p

= fv

1

a

!

p

v

2

g; s = v

1

. Let us onsider the mapping f : C(E) ! P suh

that f(;) = v

1

and f(feg) = v

2

. It is easy to see that f is an isomorphism between (C(E); 7!

E

; ;) and

(P;!

p

; s).

2. p = p

1

;p

2

. Let us onsider E

1

= E

PBPA

�

(p

1

) and E

2

= E

PBPA

�

(p

2

) suh that E

E

1

\ E

E

2

=

;. Let Pr(p

i

) = (P

i

;!

p

i

; s

i

; l

i

) be the proess struture for p

i

, with i = 1; 2. By the indution

hypothesis, there are isomorphisms f

i

: C(E

i

) ! P

i

, with i = 1; 2. By onstrution of E

PBPA

�

(p)

and by de�nition of a PBPA

�

(At)-term, it is easy to see that E

1

is a onit-free event struture.

Therefore, E

E

1

2 C(E

1

) is the maximal on�guration in E

1

. By onstrution of E

PBPA

�

(p), we get

C(E) = C(E

1

) [ fE

E

1

[ C

0

jC

0

2 C(E

2

)g. Sine f

1

preserves the transition relation, due to Lemma

4.1 (ii,iii) we get l

1

(f

1

(E

E

1

)) =

p

and 8v 2 P

1

� l

1

(v) =

p

) v = f

1

(E

E

1

). Aording to (TR2), we

have f

1

(E

E

1

) = s

2

. Then the mapping f : C(E) ! P, suh that f(C) = f

1

(C) for C 2 C(E

1

) and

f(C) = f

2

(C nE

E

1

) for C 2 fE

E

1

[ C

0

jC

0

2 C(E

2

)g, is bijetive.

We assume that C

a

!

E

C

0

. Two ases are worth to be onsidered.

{ Let C

0

2 C(E

1

). Then, obviously, C 2 C(E

1

). So, f(C) = f(C

1

) and f(C

0

) = f

1

(C

0

). Sine f

1

preserves the transition relation, f(C)

a

!

p

f(C

0

).

{ Let C

0

2 fE

E

1

[ CjC 2 C(E

2

)g n C(E

1

). Then C

0

6= E

E

1

, whih means that C

0

= E

E

1

[ C and

C 2 C(E

2

) n f;g. By de�nition of the relation

a

!

E

, we have C = C

0

n feg for some e 2 E

E

suh

that l

E

= a. Hene, f(C) = f

2

(C nE

E

1

), f(C

0

) = f

2

(C

0

nE

E

1

), and C nE

E

1

a

!

E

2

C

0

nE

E

1

. Sine

f

2

preserves the transition relation, f(C)

a

!

p

f(C

0

).

We assume that f(C)

a

!

p

f(C

0

). If f(C

0

) 2 P

1

then, aording to (TR2), we get f(C) 2 P

1

.

Hene, f(C)

a

!

p

1

f(C

0

), f(C) = f

1

(C) and f(C

0

) = f

1

(C

0

). Sine f

1

preserves the transition relation,



Algebrai haraterization of behavioural equivalenes over event strutures 85

C

a

!

E

1

C

0

. Sine !

E

=!

E

1

[ !

E

2

, C

a

!

E

C

0

. If f(C

0

) 2 P

2

n P

1

then, aording to (TR2), we have

f(C) 2 P

2

. Hene, f(C)

a

!

p

2

f(C

0

) and f(C) = f(C n E

E

1

) and f(C) = f

2

(C

0

n E

E

1

). Sine f

2

preserves the transition relation, C nE

E

1

a

!

E

2

C

0

nE

E

1

, by de�nition of the relation

a

!

E

2

. This means

that C = C

0

n feg for some e 2 E

E

2

suh that l

E

2

(e) = a. Sine E

E

= E

E

1

[ E

E

2

and l

E

= l

E

1

[ l

E

2

,

e 2 E

E

and l

E

(e) = a. Therefore, C

a

!

E

C

0

.

3. p = p

1

+p

2

. Let us onsider E

1

= E

PBPA

�

(p

1

) and E

2

= E

PBPA

�

(p

2

) suh that E

E

1

\E

E

2

= ;. Let

Pr(p

i

) = (P

i

;

a

!

p

i

; s

i

; l

i

) be the proess strutures for p

i

, with i = 1; 2. By the indution hypothesis,

there are isomorphisms f

i

: C(E) = C(E

1

) [ C(E

2

) and C(E

1

) \ C(E

2

) = f;g. Aording to (TR3), we

have s

1

= s

2

. Therefore, f

1

(;) = f

2

(;). Hene, the mapping f = f

1

[ f

2

: C(E)! P = P

1

[ P

2

, suh

that f(C) = f

1

(C) with C 2 C(E

1

) and f(C) = f

2

(C) with C 2 C(E

2

), is a bijetion.

We assume that C

a

!

E

C

0

and C

0

2 C(E

1

) (the ase C

0

2 C(E

2

) is proved in a similar way). Then,

obviously, C 2 C(E

1

) and, hene, C

a

!

E

1

C

0

. Sine f

1

preserves the transition relation, f

1

(C)

a

!

p

1

f

1

(C

0

). Sine

a

!

p

=

a

!

p

1

[

a

!

p

2

aording to (TR3), f

1

(C)

a

!

p

f

1

(C

0

).

We now assume that f

1

(C)

a

!

p

f

1

(C

0

). We have to show C

a

!

E

C

0

. Aording to (TR3), we

have f(C)

a

!

p

f(C)

0

() (f(C)

a

!

p

1

f(C

0

) _ f(C)

a

!

p

2

f(C

0

)). We suppose that f(C)

a

!

p

1

f(C

0

) (the

remained ase is proved analogously), then f(C); f(C

0

) 2 P

1

. Sine f is a bijetive funtion, C and

C

0

2 C(E

1

). Moreover, f(C) = f

1

(C) and f(C

0

) = f

1

(C

0

). Sine f

1

preserves the transition relation,

C

a

!

E

1

C

0

and, hene, C

a

!

E

C

0

(sine

a

!

E

=

a

!

E

1

[

a

!

E

2

), by onstrution of E

PBPA

�

(p).

4. p = p

1

jjp

2

. Let us onsider E

1

= E

PBPA�

(p

1

) and E

2

= E

PBPA�

(p

2

) suh that E

E

1

\E

E

2

= ;. We

assume Pr(p

i

) = (P

i

;

a

!

p

i

; s

i

; l

i

) to be the proess strutures for p

i

, with i = 1; 2. By the indution

hypothesis, there are isomorphisms f

i

: C(E

i

)!P

i

, with i = 1; 2. By the onstrution of E

PBPA�

(p), it

is easy to see that C(E) = fC [ C

0

jC 2 C(E

1

); C

0

2 C(E

2

)g. Sine E

E

1

\ E

E

2

= ;, eah on�guration

C 2 C an be represented as C = C

1

[C

2

in the only way, where C 2 C(E

1

) and C 2 C(E

2

). Therefore,

one an take C(E) = f[C

1

; C

2

℄jC

1

2 C(E

1

); C

2

2 C(E

2

)g = C(E

1

)� C(E

2

). Let us onsider the mapping

f : C(E) ! P = P

1

� P

2

suh that f(C

1

; C

2

) = (f

1

(C

1

); f

2

(C

2

)). We need to show that f is an iso-

morphism. Sine f

1

and f

2

are surjetive and injetive, it is obvious that f = f

1

� f

2

is also surjetive

and injetive.

We suppose that C

a

!

E

C

0

. We have to show f(C)

a

!

p

f(C

0

). By de�nition of the relation

a

!

E

, we have

C

0

n C = feg and l

E

(e) = a. We assume that C

0

= (C

0

1

; C

0

2

) and e 2 C

0

1

(the ase e 2 C

0

2

is proved

in a similar way). Then C

0

2

= C

2

, where C = (C

1

; C

2

). Hene, C

0

1

n C

1

= feg, where l

E

1

(e) = a,

f(C

0

) = (f

1

(C

0

1

); f

2

(C

2

)), f(C) = (f

1

(C

1

); f

2

(C

2

)) and C

1

a

!

E

1

C

0

1

. Sine f

1

preserves the transi-

tion relation, f

1

(C

1

)

a

!

p

1

f

1

(C

0

1

). Aording to (TR4) we have (f

1

(C

1

); f

2

(C

2

))

a

!

p

(f

1

(C

0

1

); f

2

(C

2

)), i.e.

f(C)

a

!

p

f(C

0

).

We now assume that f(C)

a

!

p

f(C

0

). We need to show that C

a

!

E

C

0

. We suppose f(C

0

) = (v

0

1

; v

0

2

) 2

P and f(C) = (v

1

; v

2

) 2 P. Aording to (TR4), we get (v

1

a

!

p

1

v

0

1

& v

2

= v

0

2

) or (v

2

a

!

p

2

v

0

2

& v

1

= v

0

1

).

Let us onsider the ase v

2

= v

0

2

& v

1

a

!

p

1

v

0

1

(the remained ase is proved in the similar way). Suppose

that C = (C

1

; C

2

) and C

0

= (C

0

1

; C

0

2

). Sine f

2

is an isomorphism, C

2

= C

0

2

. Sine f

1

preserves

the transition relation, (C

1

a

!

E

1

C

0

1

), i.e. C

0

1

= C

1

[ feg and l

E

1

(e) = a. Then C

0

= C

0

1

[ C

0

2

=

(C

1

[ feg) [ C

2

= C [ feg and l

E

(e) = a, whih means that C

a

!

E

C

0

.

5. p = p

1

� p

2

: Let us take a ountable set of event strutures E

0

1

, E

0

2

, : : :, E

i

1

, E

i

2

, : : : suh that

E

i

1

= E

PBPA

�

(p

1

), E

i

2

= E

PBPA

�

(p

2

), and (E

i

E

1

T

E

j

E

1

)

S

(E

i

E

2

T

E

j

E

2

)

S

(E

k

E

1

T

E

l

E

2

) = ; with i 6= j and

8k; l 2 N.

Let us onsider E =

S

i�0

(E

E

i

1

[E

E

i

2

), �=

S

i�0

(�

E

i

1

[ �

E

i

2

) [ f(e; e

0

)je 2 E

E

i

1

& e

0

2

S

j>i

(E

E

j

1

[E

E

j

2

),

with i � jg, # =

S

i�0

#

E

i

2

[ f(e; e

0

); (e

0

; e)je 2 E

E

i

2

& e

0

2 E

E

i

1

S

j>i

(E

E

j

1

[ E

E

j

2

)g, l =

S

i�0

(l

E

i

1

[ l

E

i

2

).

Then E = (E;�;#; l) = E

PBPA�

(p).

We denote

b

C(0) = ;,

b

C(n) =

b

C(n� 1) [ E

E

n

1

, for n � 1, and [n; C(E

i

)℄ =

b

C(n) [ fC

j

jC

j

2 C(E

n+1

i

)g,

for i = 1; 2: Then C(E) =

S

i�0

([i; C(E

1

)℄ [ [i; C(E

2

)℄). By the indution hypothesis for p

i

and proess

strutures Pr(p

i

) = (P

i

;

a

!

p

i

; s

i

; l

i

), with i = 1; 2, there are isomorphisms f

1

: C(E

PBPA�

(p

1

))!P

1

and

f

2

: C(E

PBPA�

(p

2

))!P

2

. Let us onsider the mappings f

i

1

: [i; C(E

1

)℄!P

i

1

and f

i

2

: [i; C(E

2

)℄!P

i

2

suh



86 A. Votintseva

that f

i

1

(C) = f

1

(C) n

b

C(i) and f

i

2

(C) = f

2

(C) n

b

C(i), with i � 0. It is easy to see that f

i

1

and f

i

2

are

isomorphisms for i � 0. Sine E

E

1

\E

E

2

= ;, C(E

j

i

)\ C(E

l

k

) = f;g, if i 6= k or j 6= l. Therefore, we get

the following: [i; C(E

1

)℄ \ [i; C(E

2

)℄ =

b

C(i),

[i; C(E

1

)℄ \ [i+ 1; C(E

1

)℄ =

b

C(i+ 1) = [i; C(E

1

)℄ \ [i+ 1; C(E

2

)℄ for i � 0;

[i; C(E

2

)℄ \ [j; C(E

2

)℄ = ; for i 6= j;

[i; C(E

1

)℄ \ [j; C(E

1

)℄ = ; for i < j � 1 or i > j + 1;

[i; C(E

1

)℄ \ [j; C(E

2

)℄ 6= ; for i 6= j and i 6= j � 1.

We onstrut the mapping f : C(E)! P as follows. We set f(C) = f

j

i

(C) if C 2 [j; C(E

i

)℄ for i = 1; 2

and j � 0. Aording to TR5 and the onstrution of E , we see that f is an isomorphism. 2

Sine Pr(p) = (P

p

;!

p

; s

p

; l

p

) an be viewed as a transition system for eah p 2 PBPA

�

(At), we

an apply the bisimulation notion to it. So, we all two proess strutures Pr(p) and Pr(q) bisimilar

(denoted by Pr(p)$Pr(q)) if there is a bisimulation B between (P

p

;!

p

; s

p

) and (P

q

;!

q

; s

q

) suh

that s

p

Bs

q

.

The following proposition shows that, although the proedure of onstruting a proess struture

hanges the struture of a transition system for a PBPA

�

-term, the bisimulation between the proess

strutures remains to be orresponding to the algebrai one.

Proposition 4.2. Let p; q 2 PBPA

�

(At). Then Pr(p)$Pr(q) , p$ q.

Proof. ()). It follows diretly from Proposition 4.1.

((). Assume that p$ q, and R � PBPA

�

(At)�PBPA

�

(At) to be an algebrai bisimulation suh

that pRq. We onstrut a relation B � P

p

�P

q

as follows. For v 2 P

p

and v

0

2 P

q

, we set (v; v

0

) 2 B

if l

p

(v)Rl

q

(v

0

). We have to show that B is a bisimulation.

Let (v

1

; v

0

1

) 2 B and v

1

a

!

p

v

2

. By Proposition 4.1, we have l

p

(v

1

)

a

�!

PBPA

�

l

p

(v

2

). By onstrution

of B, we get l

p

(v

1

)Rl

q

(v

0

1

). Then, by de�nition of the relation R, we get 9r 2 PBPA

�

(At) �

l

q

(v

0

1

)

a

�!

PBPA

�

r. By de�nition of the transition relation in PBPA

�

(At), we have that the transition

l

q

(v

0

1

)

a

�!

PBPA

�

r is obtained from one of the rules (Ax),(A1)-(A7) or (B1)-(B7), whih depends on

the struture of the term l

q

(v

0

1

). Obviously, q = l

q

(s

q

) = l

q

(v

1

)

a

1

! : : :

a

n�1

�!

PBPA

�

l

q

(v

n

) = r, where

l

q

(v

(n�1)

) = l

q

(v

0

1

). Then, by onstrution of Pr(q), we get v

0

2

= v

n

and v

0

1

a

!

p

v

0

2

, where v

0

1

= v

(n�1)

.

The ase v

0

1

a

!

q

v

0

2

an be onsidered similarly to the previous one.

By onstrution of B, it is obvious that (s

p

; s

q

) 2 B, sine l

p

(s

p

) = p, l

q

(s

q

) = q, and pRq. Therefore,

Pr(p)$Pr(q). 2

Now we an establish the main result of the paper.

Theorem 4.2. Let p; q 2 PBPA

�

(At). Then E

PBPA

�

(p) �

i

E

PBPA

�

(q), p$q.

Proof. We have from Theorem 4.1. and Proposition 4.2, E

PBPA

�

(p) �

i

E

PBPA

�

(q), Pr(p)$Pr(q),

sine the orresponding transition systems are isomorphi. Due to Proposition 4.2, this means that

E

PBPA

�

(p) �

i

E

PBPA

�

(q), p$q. 2

5. Conlusion

In this paper we have investigated an algebrai spei�ation of a behavioural equivalene. We have in-

trodued a proess algebra with iteration and operations orresponding to all relations between events

in a struture. By proposing the event struture semantis to algebrai terms, we have established

the orrespondene between algebrai and behavioural bisimulations. We have onsidered the proess

algebra BPA

�

as a starting point, sine it seems to be nie to speify a lass of event strutures with

�nite representations, whih is needed for investigation of deidability of bisimulation notions de�ned

over event strutures. The deidability problem is an important question in the study of an equivalene

notion. As an example, it is easy to notie that for the lass of �nite event strutures bisimulations

are deidable, and in the general ase of in�nite event strutures it is obviously undeidable, whether
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two strutures are bisimilar or not. The aim of our further researh is to obtain nontrivial results for

lasses of event strutures.
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