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Algebraic characterization of behavioural equivalences
over event structures”

A. Votintseva

We consider the process algebra BPA* proposed by Bergstra, Bethke, and Ponse, since it nicely defines a class of
infinite processes. Investigation of representation of event structures for this class of processes is presented in this article.
We extend the algebra BPA™ by a parallel composition and modify its sequential operation. For the obtained algebra,
named PBPA™, we get a correspondence between an algebraic bisimulation defined using the transition systems over
PBP A*-processes and a behavioural one defined over event structures. This gives us better understanding of the place
of event structures among other models of parallelism.

1. Introduction

The development of methods for the design of concurrent /distributed systems and investigation of their
properties are carried out by means of different formal models (Petri nets, trace languages, transition
systems, event structures, process algebras, etc.) varying accordingly to the class of systems, the level
of abstraction for structures and behaviours, and the kind of problems under consideration. When
verifying different properties of processes and establishing a transition from one abstract model to
another, one can demand the subclasses of systems with equivalent behaviours to be specified. At
the time, there have been designed a lot of equivalence notions for different models of concurrent
and distributed systems. With the aim to classify the variety of their semantic representations, it is
necessary to choose a common model of processes and establish its correspondence to other ones (e.g.,
in [7]).

Event structures are a well-known formalism of “true concurrency” which provides a very detailed
model for concurrent and distributed systems. All the main issues attendant the concurrent compu-
tations are presented therein. The notion of event structures was proposed by Nielsen, Plotkin and
Winskel in [10] to establish the correspondence between occurrence nets (a class of Petri nets) and
Scott domains (a class of partial orders). An event structure is a partially ordered set of event occur-
rences together with a symmetric conflict relation. The ordering relation models causality, whereas the
conflict relation expresses alternative choices between events. Two event occurrences that are neither
causally comparable nor in conflict may occur concurrently. In this sense, event structures provide
explicit and distinct representations of causality, choice, and concurrency. Computations in an event
structure are modelled by conflict-free and left-closed sets of event occurrences.

The notion of a bisimulation equivalence was introduced in [14]. The importance of bisimulations in
the concurrent systems theory is widely acknowledged. A bisimilarity of two systems means that they
can model the behaviours of each other in the branching-time semantics, i.e., starting with equivalent
states, the bisimilar systems must be able to perform the same moves, which leads to the next pair
of equivalent states. Initially, the bisimulation notion was introduced over transition systems, and
later it was extended to other formal models such as event structures, Petri nets, process algebras,
and others. For finite state automata, it was shown that a bisimulation equivalence is decidable with
the time complexity O(mlogn), where m is the number of transitions and n is the number of states.
In [5] the variants of bisimulations over event structures were investigated, namely, interleaving, step,
pomset, and history-preserving ones. In forth-and-back variants of bisimulations ([9]), two systems
model the behaviour of each other not only in the future but also in the past. The forth-and-back
bisimulations are interesting because of their correspondence to equivalences induced by temporal and
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modal logics with past operators. In [11] a number of bisimulations explicitly reflecting conflict and
concurrency have been proposed, and all their interrelations have been established.

Correspondences between bisimulation notions defined over different domains attract a lot of sci-
entific interests. A possible approach to study of behavioural equivalences is to characterize them
by means of process algebras. Several results in decidability and (full or partial) axiomatization of
equivalences have been obtained for algebraic systems. As an example, decidability of weak bisimilari-
ties between BP A (Basic Process Algebra), BPP (Basic Parallel Processes) and finite-state processes
has been investigated in [6], and axiomatization and its completeness have been established for a
bisimulation over BPA* (BPA enriched with an iteration) in [2, 15]. In this paper, we extend the
algebra BPA* to its parallel variant PBPA* by adding a new operator and adapting another one,
which allows us to relate it to prime event structures. We establish the correspondence between an
interleaving bisimulation earlier introduced over event structures and “algebraic” one, i.e. that defined
over the transition systems of PBP A*-terms specified by transition rules.

The paper is organized as follows. In Section 2, we remind the basic definitions from the event
structures theory. In Section 3, an extension PBP A* of the process algebra BP A* and its operational
semantics are presented. Section 4 proposes the event structure semantics for PBPA*-terms and es-
tablishes the correspondence between the interleaving bisimulation over event structures and algebraic
one. Conclusion resumes the main achievements and gives some prospects for further research.

2. Basic notions of event structures

A prime event structure (event structure for brevity) consists of a set of event occurrences partially
ordered by a causality relation. In addition, the structure contains a conflict relation between the
events. Two events that are neither causally related nor in conflict are called concurrent.

Definition 2.1. A (labeled) event structure over an alphabet Act is a quadruple & = (E, <,#,1),
where

e F is a countable set of events;

e < C E x E is a partial order (the causality relation) satisfying the principle of finite causes:
Ve€ E+{d€ E|d<e} is finite;

e # C E X F is a symmetric and irreflexive relation (the conflict relation) satisfying the principle
of conflict heredity:
Vei,ez,e3 € Eoep < ey & er#tes = exffes;

e | : E — Act is a labeling function. O

The components of an event structure £ are denoted as E;, #., <. and l;. The index £ can be
omitted if clear from the context. For & = (E, <,#,l), we denote: id = {(e,e) | e € E}; <=< \id;
<2C< (transitivity); < =< \ <? (immediate causal dependency); —= (E x E)\ (< U > U#)
(concurrency); e #p, d < e# d & Vey,di EEs (e <e& di <d& e1# di) = (e1 =e & dy = d)
(minimal conflict).

In the grafic representations of an event structure, only minimal conflicts (not the inherited ones)
are pictured. The immediate causal dependencies are represented by directed arcs, omitting those
derivable by transitivity. A trivial example of an event structure is shown in Fig. 2.1, where e; — es
and ey — e3.
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Figure 2.1.

An event structure £ is called empty if E; = 0; finite if E, is finite; conflict-free if #. = (); a
substructure of an event structure F (£ C F) if E; C Er, <,C<z, #¢ C #r and Iz = Iz |g,. Two
event structures £ and F are called isomorphic (€ = F) if there is a bijection between the sets E;
and Er preserving the relations <, # and labeling.

The states of an event structure are called configurations. A configuration defines the set of events
occurred at a point of time. An event can occur in a configuration if all preceded events have already
occurred in it. Two events related by a conflict can not occur in the same configuration.

Definition 2.2. A configuration of an event structure £ is a subset C' C E, such that
(i) Ve,e' € C o (e #¢ €') (conflict-freeness);
(i) Ve,e € Ecoe€cC & e <, e= € € C (left-closedness).
By C(€) we denote the set of all configurations in &. O

A configuration C € C(€) is called mazimal if the following holds: C' € C(£) & C C C' = C = (',
i.e. C'is maximal w.r.t. the set inclusion.

The set of configurations for the event structure shown on Fig. 2.1 includes the following elements:
0, {e1}, {e2}, {e1, es}, {e1, ea}, {e1, e2, es}, {e1, €2, e}

Let C' C C € C(€). Then C"isa stepif Ve, ey € C' o =(e1<c€2); the restriction of € to C' is defined
asE [ C' = (C', <N (C')C"), #: N (C')C"), 1 |or); we use pom(C) = {(E [ (C"\O))/~| C CC"
€ C(&)} to denote the set of pomsets of C. We denote by C' not only the set itself, but also the labeled
partial order it induces by restricting <. and I to C'. Tt will, hopefully, be clear from the context
what is meant. In addition, we define causal relations over the set of configurations as follows. Let
C, "€ C(E). Then C -, C'iff C C C; C B, C"iff C =, C' and C'\ C = p, where p € pomg(C).
We use = {C 5: C' €—¢| a € Act, C,C" € C(£)} to denote the immediate causality relation
between configurations.

We introduce a behavioural bisimulation equivalence defined over the sets of configurations of event
structures.

Definition 2.3. Let £ and F be event structures, B C C(€) x C(F). Then B is an interleaving
bisimulation between £ and F iff (0, 0) € B and for any (C, D) € B the following holds:

— if C %, C" such that a € Act and C" € C(E), then there is D' € C(F) such that D %, D’ and
(C', D) € B;

— if D %, D' such that a € Act and D’ € C(F), then there is C' € C(£) such that C %, C" and
(C',D") € B.

& and F are interleaving bisimilar (denoted by &£ =; F) if there exists an interleaving bisimulation
between £ and F. O

3. Operational semantics of algebra PBPA*

In this section we consider an extension of a well-known algebra BPA* (standing for Basic Process
Algebra with the binary Kleene star operator, due to [15]) with a parallel operator. Moreover, we
modify the operator of sequential composition. We take the process algebra BPA* as a starting point,
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because it is capable to represent infinite processes in a very natural way and, after being extended
with additional operations, it seems to be fine to fit the event structure model. The extended algebra
PBPA* here considered reflects all basic relations between the processes: causality, concurrency and
choice.

We now define the syntax of PBPA* over a fixed alphabet Act:

PBPA;(Act) : r=al(pllg)|(p; q)
is the set of conflict-free terms, where a € Act and p,q € PBPAzf(Act);

PBPA*(Act) : s =al(pll9)|(p + q)|(r; )|(r * q)

is the set of all PBP A*-terms, where a € Act, p,q € PBPA*(Act), and r € PBPAzf(Act).

The semantics of the process algebras are often given using the notion of a labeled transition
system. A (labeled) transition system over an alphabet Act is a triple Tr = (V, —, s), where V is a set
of states; =C V x Act x V is a transition relation and s € V' is the initial state. Two transition systems
Try = (Vi,—1,81) and Try = (Va, —9, 89) are called isomorphic if there is a bijection f : V3 — V,
such that f(s1) = s and f preserves the transition relation, i.e. for all v,v' € V; and a € Act the
following holds: v =1 v & f(v) S f(v').

We present the operational semantics of PBPA* by means of a transition system associated with
each process represented by a PBP A*-term. Over the set PBPA*(Act) we define a transition relation
—pppa+C PBPA*(Act) x Act x (PBPA*(Act)U{\/}), where \/ ¢ PBPA*(Act) is used to denote a
successful termination. We write p —pppa- q to denote the transition from the process (represented
by the term) p to the process ¢, when performing the action a € Act given by the transition rules
shown in Table 3.1.

Table 3.1.

(Ax) If a € Act, then a —~pppa- \/

T i>PBPA* \/ z i>PBPA* 7’
Al)z+y —Spppa- v | (Bl) z+y —pppa- 2’
A2) y-l—:z: i>poAv« \/ (B2) y+xi>poA* II
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We define a bisimulation equivalence over the obtained algebraic system (PBPA*(Act), — pppa~)
of transitions.

Definition 3.1. An algebraic bisimulation is a relation R C PBPA*(Act) x PBPA*(Act) such that:
— pRq and p s pppa p' € PBPA*(Act) = 3¢’ € PBPA*(Act) « ¢ —=pppa+ ¢ and p'Rq;
— pRq and ¢ = pppa+ ¢ € PBPA*(Act) = Ip' € PBPA*(Act) o p —pppa- p’ and p'Ry;

— pRq = (p S pprac V& ¢ ——ppra- \/). O

We call two PBP A*-terms p and q equivalent (p«>q) if there is an algebraic bisimulation R such

that pRq.
As an example, one can observe that the following term equivalences hold:
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(z3y);2 & 3(y;2)
rxy & xi(zry) +y
rt+yeytx
z|ly & y|lz
(z+y)+zez+(y+2)
(zlly)llz & =|(y]|2)
r+T

Hence, the process (a * b) for actions a and b can be depicted by:

b

a*xb—m—m

4. Event structure semantics for PBPA*

Now we wish to give the event structure semantics of PBP A*-terms, where each PBP A*-term defines
an event structure up to isomorphism. For a given term p € PBPA*(Act) we construct the event
structure Epgpa~(p) = (F,<,#,1) by induction on the structure of p as follows:

1. Let p=a € Act. Then & = ({e},0,0,{(e,a)}).

2. Let p =p1||p2, 51 = 5PBPA*(Act)(p1) and 52 = 5PBPA*(Act)(p2) such that Egl ﬂEsz = @
Then € = (Eg, U Eg,, <g, U <g,, #e, Uts,,le, Uls,).

3. Let p=p1 +p2, &1 = Epppa=(act)(P1) and E = Epppa-(act)(p2) such that Eg, N Ee, = 0.
Then & = (Egl u E52, Sgl U §527 #51 U #52 U {(617 62)7 (627 61)|61 € E51,€2 € E52}7l51 u l82)-

4. Let p = p1;p2, &1 = Epppa-(ac)(P1) and &2 = Epppas(ac)(p2) such that Fy N Ee, = (.
Then £ = (Egl UPFEg,,<g U<g, U{(61,62)|61 € Eg,,e9 € EgQ}, #He, UHe,,le, U 152).

5. Let p = p1 * pp. We assume p(®) = p; + py and plit!) = py;p@ 4 p, for all i > 0.
Then £ is defined as the minimal structure such that Epppa«(ac) (p(™) C € for all n € N.

Here event structures present iteration as unfolding. By construction, Epppa+(p) is a prime event
structure for all p € PBPA*.

Before establishing the correspondence between a bisimulation defined over event structures and
an algebraic one, we introduce for each term p € PBPA*(Act) the notion of a process structure which
is a quadruple Pr(p) = (P,—p,s,l), where P is the set of subprocesses of the initial process s € P,
— is a transition relation between processes over the alphabet Act and [ : P — PBPA*(Act) U {\/}
is a labeling function. The process structure Pr(p) is constructed according to the following rules:

(TR1) Let p=a € Act. Then P = {v, s}, =,= {5 5, v}, I(s) = a and I(v) = /.

(TR2) Let p = pi;p2 and Pr(p1) = (P1,—p,, S1,01) and Pr(p2) = (P2, —p,, S2,12) have been constructed
so that Py NPy = {s2} and 1 (s2) = /. Then P =Py UPo; =p=—3p, U —=py; s = 515 [(v) = l2(v)
for all v € Py, and [(v) = I1(v);p2 for all v € Py \ {s2}.

(TR3) Let p = p1 + p2 and Pr(p1) = (P1,—p;,51,01) and Pr(ps) = (P2, —p,, S2,12) have been con-
structed so that Py NPy = {s1} = {s2}. Then P = P; UPy; —p=—p, U —p,; s = 51 (and
s = s92); l(v) =1l (v) for all v € Py \ {s}, l(v) = l2(v) for all v € Py \ {s} and I(s) = l1(s) + l2(s).

(TR4) Let p = pi||p2 and Pr(pi) = (Pi,—p,, S1,01) and Pr(p2) = (P2, —p,, S2,12) have been already
constructed. Then P = Py x Py; (v1,v2) p (v],05) & ((v1 p, V] & va = vh) V (vg Sp, vh &
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v1 =v1)); s = (s1,52);
lQ('U,) if ll(v) = \/,

l(v, ") =< [1(v) if I(v") =/,
[1(v)||l2(v")  otherwise.

Let p = p1 *py. For 0 <7 we assume Pri(pl) = (Pl, pl,sl,li) and P’I“.(pg) (Pﬁ, p2,32,ll) to
be process structures such that (P}, —¢ | s%) = (P] pl,sl) and (P§, — p2’ sb) = (P, =58 s3)
for all 7 and j, and the following holds st = 52(— sh), PiNPs = {s'}, PinPit! = {51} =
PIQPZH where [t (s'T1) = \/; PLNP) —@ with i # j; PinP] =0, w1thz <j—landj+1<y;
PinPy =0, withi # j and i # j—1. Then P = U;5(P} UP3); s = % —=p= Uiso(—=h, U =,);

15 (v) if v e Pi\ {s'} for 0 <,
I(v) =< L(w);(pr*p2) ifvePi\{s st} for 0 <4,
15 (v) * 15(v) if v = s’ for 0 < 4.

In a process structure, two different processes can be labeled by the same PBP A*-term, which means
that these processes behave in the same way while occurring in different possible computations of the
modeled system. Fig. 4.1 (a) shows the transition system of PBPA*(Act) taking the process p =

(b; a)

(a+b) as the initial states, whereas Fig. 4.1 (b) reflects the finite fragment of the corresponding

process structure Pr(p).

b;a) * (a + b)

b
-
v

a; ((b; a) * (a + b))

/( (b;a) * (a4 b)

a) * (a+))

<

(bs0) % (a+ )

Figure 4.1.

Lemma 4.1. Let Pr(p) = (P, —p,s,l) be a process structure for p € PBPA*(Act). (TR1)-(TR5).

Then

(i) I(s

) = p;

(ii) if p € PBPAy;(Act), then [{v € Pli(v) =V} = 1;
(iii) I(v) = v/ = {v' € P|Fa € Act : v 5, 0"} = 0.
Proof. We prove (i) by induction on the structure of the term p.

e p=a € Act. According to (TR1), we have [(s) = a = p.
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p = pi|lp2. Let, for Pr(p1) = (P1,—p,,s1,0) and Pr(ps) = (P2, —=p,, S2,12), it be proved
that I1(s1) = p1 and l2(s2) = pe. According to (TR4), we have s = (s1,82) and I(s1,892) =
ll(Sl)HlQ(Sg) :p1||p2 =D, since ll(Sl) 75 \/ and 12(32) 75 \/

p = p1 + p2. Let, for Pr(p;) = (P1, —=p,, s1,01) and Pr(pz) = (P2, —p,, S2,12), it be proved that
l1(s1) = p1 and l5(s2) = pa. According to (TR3), we have s = s1 = s9 and I(s) = [1(s) + l2(s) =
l1(s1) + la(s2) = p1 +p2 = p.

p = p1;p2. Let, for Pr(p1) = (P1, =p., 51,01), it be proved that [;(s;) = p1. According to (TR2),
we have s = s; and l1(s2) =/, where s is the initial state in Pr(py). Hence, s € P\ {s2} and,
according to (TR2), we get I(s) = l1(s);p2 = l1(s1);p2 = p1;p2 = p.

p = p1 * pa. Let, for Pro(p)) = (P?,%gl,sg,l?) and Pr¥(py) = (Pg,—>g2,sg,lg), it be proved
that 19(s}) = p; and I3(s3) = pe. According to (TR4), we have s = 50 = s = s9) and
1(s) = 8(s%) * 15(s°) = p1 ¥ p2 = p.

We prove (ii) by induction on the structure of the term p.

p =a € Act. Obvious, due to (TR1).

p = pi;p2. Let, for Pr(p1) = (P1,—p,,s1,01) and Pr(p:) = (P2, —p,, S2,l2), it be proved that
there are the only node v € P; and the only node v’ € Ps labeled by /. According to (TR2),
we have v = s5 and [(v) = lo(sp) = p» € PBPA*; Y ve Py \ {v} « 1(v) = [;(v);po € PBPA* and
VY ve Py o l(v) = I5(v). It is obvious that there is the only node v’ in P = P; U P; labeled by /.
p = p1||lp2. Let, for Pr(p;) = (P1, —=p,, s1,01) and Pr(ps) = (P2, —p,, S2,12), it be proved that
there are the only node v € P; and the only node v' € Py such that [1(v) =/ and l2(v') = /.
According to (TR4), we have [(vy,v2) = / < (I1(v1) = +/ and l2(v2) = /). This is possible only
if vy = v and vy = v'. So, there is the only node (v,v') € P such that I(v,v") = /.

We prove (iii) by induction on the structure of the term p.

p = a € Act. Obvious, according to (TR1).

p = p1;pe. By the point (ii) of the lemma, we have that there is the only node vy € Py
such that [1(vg) = /, since pi € PBPAY,. According to (TR2), we have vg = s € P> and
Vo' € Py \ {vo} o l(v') =11 (v");pe € PBPA*, since 11(v') # /. For v' € Py we have [(v) = l2(v).
Hence, [(v) = v/ & (v € Py & lo(v) = /). Let v€ Py be such that I5(v) = /. Then, by the
induction hypothesis, we get {¢v' € Po|da € Act 0%, v'} = 0. Since —p, N —,,= @ implied
from (TR2), we have Yo € Py o {v' € Py|a € Act o v 5, '} = {v' € P|Fa € Act 205, v'}.
Therefore, {v' € P|Ta € Act 0%, v'} = 0.

p = p1 + p2. Let v € P be such that I(v) = /. We assume v € Py (the case “v € Py” can be
proved in the similar way). Since —,, N —p,= 0 implied from (TR3), we have {v' € P|Ja €
Act sv 5, 0"} = {v' € P1|Fa € Act o v ,, v'} = ), due to the induction hypothesis.

p = p1||p2. Let (vi,v2) € P be such that I(vi,v2) = /. According to (TR4), this is possible
if I (v]) = / and Io(vy) = /. Let us consider (vq,v) € P such that [;(v,) = / and I, =
(v9) = /. Then, according to (TR4), we get {(vi,v9) € P|Fa € Act o (v1,v2) %, (v1,v2)}
= {(v1,v2) € P|3a € Act - (v1,v2) %) (V1,02)} U{(v1,v2) € P|Ta € Act » (v1,V3) %, (v1,09)}
= {(v1,v2) € P|Fa € Act o035, v2} U{(v1,02) € P|Fa € Act 015, v1} =D UD = 0.

p = p1 * pa. Let Pri(p)) = (P{,—)él,s’i,lﬁ) and Pri(py) = (P%,—ﬂ,?,sé,lé) be the process
structures constructed according to (TR5) for 0 < i. We consider vy € P such that [(vg) = /.
Then vy ¢ P} for all i > 0, since for v € P} \ {s*, 51} the following holds: I(v) = I (v);(p1 *p2) €
PBPA* and I(s') = I(s"t!) = py xpy for 0 < 4, due to the point (i) of the lemma. Hence, vy € P}
for some 0 < i. According to (TR5), we have that —>;j are disjoint for 7 = 1,2 and 0 < ¢ and, so,

{vePFac Actov 5, v} = {v € PiFa € Act o v 3;2 vo} = 0 by the induction hypothesis. O
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The following proposition shows that the process structures adequately present the transition
system of the algebra PBPA*, i.e. that defined by the rules (Ax), (A1)-(A7) and (B1)-(B7).

Proposition 4.1. Let p € PBPA*(Act) and Pr(p) = (P,—p,s,l) be the process structure for p.
Then, for any vy,vy € P, it holds that v; ip vy = 1(v1) Bpppa- 1(vs).

Proof. We prove by induction on the structure of the term p.

1. p=a € Act. If v; 5, vy, then [(v1) = a and I(ve) = v/, according to (TR1). And a %pgppa /
is a transition in PBPA*(Act), due to (Ax).

2. p = p1;p2. Let the proposition be proved for Pr(pi) = (Pi, —=p,,s1,01) and Pr(p:) = (P2, —=p,
,82,12). According to (TR2), we have P = P; U Pe. We assume that vy i>p v9. Since gpzﬂpl
U i>p2, it is easy to see that {vi,ve} C Py or {vy,v2} C Py. If {v1,v9} C Po, then [(v1) = lo(vy),
I(v2) = I2(v2) and, by the induction hypothesis, Iy(v1) = pppa+ l2(v2). If {vy,v9} C Py, then
I(v1) = l1(v1);p2,
2 if vg =89
H(v2) = ;;)1(1)2);;02 otherwise.
Let vy = s9. Then I1(v2) =/, due to Lemma 4.1 (i) and according to (TR2). By the induction
hypothesis, we have [;(v1) = pppa- /. According to (A3), we get la(v1);p2 L pepa- p2. We
assume that vy # so. Then [;(vy) € PBPA*(Act). By the induction hypothesis, I, (v;) % pppa-
I1(ve). Then, according to (B3), we have I (v1);p2 = pppa+ 11 (v2);pa.

3. p =p1 +po. Let the proposition be proved for Pr(pi) = (Pi,—=p,, s1,01) and Pr(p2) = (P2, —=p,
,82,02). Let us consider vy, v2 € P such that vy ﬁ>;,, v9. Since i>p=i>p1 U ﬁ>;,,2, it is easy to see
that {v,v2} C Py or {v1,v2} C Py. We assume that {vi,v9} C Py (the case {v1,v2} C Po is
proved in the similar way). Let us consider two possible cases. We suppose that v € Py \ {s1},
then I(v1) = I (v) and I(vs) = [;(vz). By the induction hypothesis, I;(v1) = pppa- l1(ve) and,
hence, [(v1) = pppa+ [(v2). Assume that v; = s;. Then [;(v;) = py, due to Lemma 3.1 (i), and
I(v1) = p1 + p2, according to (TR3). By the induction hypothesis, we have p; —pppa- I1(v2).
Then, according to (B2) (or (A2) if I1(v3) = /), we have p; + ps —pppa- l1(ve). Therefore,
l(’Ul) ngpA* l(vg).

4. p = p1||p2. Let the proposition be proved for Pr(pi) = (P1, —=p,, s1,01) and Pr(p2) = (P2, —p,
,82,12). According to (TR4), we have P = P; x Py. Let us consider (vq,v}), (v2,v5) € P such
that (vi,v}) %, (v2,v}). According to (TR4), we suppose that vf = v} and vy 5, vy (the
case of v1 = v9 and v} ﬁ>;,,1 vl is proved in the similar way). By the induction hypothesis, we
have 1(v1) Sppa- (v2), l2(v]) = lo(vh) = ¢ € PBPA* U {\/}. According to (TR4), we get
I(v1,v1) = li(v1)llg and (va,v3) = li(v2)llg if ¢ # /, and I(v1,v]) = l1(v1), I(v2,v3) = li(v2)
if ¢ = \/. Then ¢ =/, and we get I(v1,v}) = l1(v1) Sppa l(v2) = I(ve,v}). For q¢ # +/,
according to (B4), we get I(vy,v}) = Iy (v1)|lg S pBpa- [(12)]|q.

5. p = p1 *pa. Let the proposition be proved for Pri(p;) = (P%, —>§Jl, st,1%) and Pri(ps) = (P3, —>§,2
, 85, 18) (with i > 0). Let us consider v1,v2 € P such that v; %, v2. According to (TR5), we
have —,= Uigo(g;l U i>;2). Therefore, {vi,v2} C P} or {vy,v2} C P4 for some i > 0. Two
cases are worth to be considered:

1) {v1,v2} C Pi. Four cases are possible:

— Let v; = s' (with s = s} = s%) and vy = st!. This means that P} = {v;,vs}. According
to (TR5), it implies that p1 = a € Act, since vy i>p1 vg. We have [(v1) = p1 * p2 = a * po
and I(v9) = p1 * py = a * py, since p; = a S pppa+ 1/, due to the axiom (Ax). According to
(AG), we get l(vl) g>1DBP,4* l(vg).
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— Let v; = s' and vy # s*!. By the induction hypothesis, p; = I} (vy) L pBp A It (vg).

According to (TR5), we get [(v1) = p1 * po and I(vs) = I%(v2);(p1 * p2). Then, according to
(BG), we get l(vl) i>poAv« l(’Ug).

— Let v; # s* and vy = 1. According to (TR5), we have I(v1) = I} (vq); (p1 * po) and
I(v1) = (p1%p2), due to Lemma 4.1. By the induction hypothesw we have [(v}) S pppac v/.
Then, according to (A3), we get I’ (v1);(p1 * p2) = l(v1) Spppa- [(v2) = (p1 * p2).

— Let v; # s" and vy # s'T1. Then I(vy) = I'(v1);(p1 * p2) and I(ve) = I*(v9);(p1 * p2). By the
induction hypothesis, I*(v1) = pppa- I*(v2) and, according to (B3), we get I(vy) > pppa-
l(’UQ).

2) {v1,v2} C Pi. According to (TR5), we get vy # s°. Therefore, [(vg) = I5(vs). Let us consider
two possible cases:

— Let vy = s' (with s' = st = s3). According to (TR5) and Lemma 4.1 (i), we have
I(v1) = p1 * py and I5(v;) = po. By the induction hypothesis, I*(v1) L pppa- U(v), ie.
p2 —pppa- 1Y(v2). Then, according to (B7) (or (A7) if li(vy) = /), we have I(v) =
(p1 * p2) = pppar L(v2).

— Let v; # s'. Then I(v;) = I4(v;). By the induction hypothesis, /4 (v;) L o ppas I (v9),
which means that I(v)) S pppa- [(vs). O

The following theorem establishes the correspondence between the transition system for a process
defined by a PBP A*(Act)-term and the transition system defined over the set of configurations of the
event structure constructed for the PBPA*( Act)-term.

Theorem 4.1. For p € PBPA*(Act), let Pr(p) = (P,—p,s,l) be the process structure and £ =
EPBPA* (p) Then (C(E)a e, Q)) = (Pa _>p7 S)'

Proof. We prove the theorem by induction on the structure of p.

1. p=a € Act. Then C(£) = {@ {e}}, where lg(e) = a; —e= {0 ¢ {e}}. According to (TR1),
we have P = {vi,v2}, —p= {v: —>p va},s = vy. Let us consider the mapping f : C(£) — P such
that f(0) = vy and f({e}) = vo. It is easy to see that f is an isomorphism between (C(€),+¢,0) and
(P, —p, 5).

2. p = pi;p2. Let us consider & = Epppa-(p1) and & = Epppa~(p2) such that Eg, N Eg, =
0. Let Pr(p;) = (Pi,—p,;,si,li) be the process structure for p;, with ¢ = 1,2. By the induction
hypothesis, there are isomorphisms f; : C(&;) — P;, with 7 = 1,2. By construction of Epgpa«(p)
and by definition of a PBPA*(Act)-term, it is easy to see that & is a conflict-free event structure.
Therefore, Eg, € C(£1) is the maximal configuration in &. By construction of Epppa+(p), we get
C(E) = C(&1) U{Eg UC'IC" € C(&)}. Since fi preserves the transition relation, due to Lemma
4.1 (ii,iil) we get [1(f1(Eg,)) =/ and Yv € P1 o l1(v) = v/ = v = fi1(Fs,). According to (TR2), we
have fi(Eg,) = s2. Then the mapping f : C(€) — P, such that f(C) = fi(C) for C € C(&) and
f(C) = f2(C\ Eg,) for C € {Eg, UC'|C" € C(E3)}, is bijective.

We assume that C' %¢ C’. Two cases are worth to be considered.

— Let C'" € C(&). Then, obviously, C' € C(£1). So, f(C) = f(Cy) and f(C") = f1(C"). Since f;
preserves the transition relation, f(C) <, f(C").

— Let C' € {Eg, UC|C € C(&2)} \ C(&1). Then C' # Eg,, which means that ¢’ = Eg, UC and
C € C(&) \ {0}. By definition of the relation %¢, we have C' = C' \ {e} for some e € E such
that l¢ = a. Hence, f(C) = f2(C \ Eg,), f(C") = f2(C"\ Eg,), and C'\ Eg, ¢, C'\ Eg,. Since
f2 preserves the transition relation, f(C) %, f(C").

We assume that f(C) =, f(C'). If f(C') € Py then, according to (TR2), we get f(C) € P;.
Hence, f(C) %,, f(C"), f(C) = f1(C) and f(C") = f1(C"). Since f; preserves the transition relation,
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C B¢, C'. Since —g=—¢, U —g,, C B¢ C'. If f(C') € Py \ Py then, according to (TR2), we have
f(C) € Py. Hence, f(C) %,, f(C") and f(C) = f(C\ Eg) and f(C) = fo(C"\ Eg,). Since fo
preserves the transition relation, C'\ Eg, ¢, C'\ Eg,, by definition of the relation %¢,. This means
that C = C"\ {e} for some e € Eg, such that lg,(e) = a. Since Eg = Eg¢, U Eg, and lg = g, Ulg,,
e € B¢ and lg(e) = a. Therefore, C S¢ C".

3. p=p1+po. Let us consider & = Epppa-(p1) and & = Epppa-(p2) such that Eg, NEg, = (). Let
Pr(p;) = (P;, i>p“ Si,l;i) be the process structures for p;, with 4 = 1,2. By the induction hypothesis,
there are isomorphisms f; : C(£) = C(&1) UC(&) and C(E1) NC(E2) = {0}. According to (TR3), we
have s; = sy. Therefore, f1() = f2(). Hence, the mapping f = f1 U fo: C(£) — P = Py U Py, such
that f(C) = f1(C) with C € C(&;) and f(C) = f2(C) with C € C(&2), is a bijection.

We assume that C' %, C" and C' € C(€) (the case C" € C(&>) is proved in a similar way). Then,
obviously, C' € C(&;) and, hence, C %, C’. Since fi preserves the transition relation, f(C) <%,
f1(C"). Since %,=5%, U -%,, according to (TR3), f1(C) =, f1(C").

We now assume that fi1(C) -, fi1(C'). We have to show C-%¢C’. According to (TR3), we
have f(C)%,f(C) <= (f(C)5,, f(C") V f(C)%,,f(C"). We suppose that f(C)-%,, f(C) (the
remained case is proved analogously), then f(C), f(C") € P;. Since f is a bijective function, C' and
C' € C(&1). Moreover, f(C) = f1(C) and f(C") = f1(C'). Since f; preserves the transition relation,
C%¢, C" and, hence, C-%¢C" (since %¢ = B¢, U-5¢,), by construction of Epgpa«(p).

4. p = p1||p2- Let us consider & = Epppa«(p1) and & = Epppas(p2) such that Eg, N Eg, = (. We

assume Pr(p;) = (P;, i>p“ si,l;) to be the process structures for p;, with 4 = 1,2. By the induction
hypothesis, there are isomorphisms f; : C(&;)—P;, with i = 1,2. By the construction of Epppa«(p), it
is easy to see that C(€) = {CUC'|C € C(&1),C" € C(€2)}. Since Eg, N Eg, = (), each configuration
C € C can be represented as C' = C7 UCs in the only way, where C' € C(£1) and C € C(&;). Therefore,
one can take C(&) = {[Cy, Cy]|Cy € C(&1),C € C(E2)} = C(E1) x C(E2). Let us consider the mapping
f:C(E) = P =P1 x Py such that f(Ci,C2) = (fi(C1), f2(C2)). We need to show that f is an iso-
morphism. Since f; and fo are surjective and injective, it is obvious that f = f; X fs is also surjective
and injective.
We suppose that C-%¢C". We have to show f(C)-%,f(C"). By definition of the relation ¢, we have
C'\ C = {e} and lg(e) = a. We assume that C' = (C],C%) and e € C] (the case e € C} is proved
in a similar way). Then C4 = Cs, where C = (C;,C3). Hence, C] \ C1 = {e}, where g, (e) = a,
F(CY = (f1(CY), f2(C2)), f(C) = (f1(Ch), f2(Cy)) and C1%¢ Cl. Since fi preserves the transi-
tion relation, f1(C1)-%p, f1(C}). According to (T'R4) we have (f1(C1), f2(C2))—,(f1(C}), f2(C2)), i.e.
F(O)=pf(C).

We now assume that f(C)-%,f(C"). We need to show that C-%zC". We suppose f(C") = (v},v}) €
P and f(C) = (v1,v2) € P. According to (T'R4), we get (v1-5p, v} & vy = v}) or (va-p, v & v1 = v}).
Let us consider the case vo = v} & vlgmv’l (the remained case is proved in the similar way). Suppose
that C = (C1,C3) and C' = (Cf,C%). Since fo is an isomorphism, Cy = C4. Since f; preserves
the transition relation, (C;-%¢ C1), ie. C} = C; U {e} and lg,(¢) = a. Then C' = C, UC) =
(C1 U {e})UCy =CU{e} and Ilg(e) = a, which means that C%¢C".

5. p = p1 * p2. Let us take a countable set of event structures £, &0, ..., & &L ... such that
El = Epppa-(p1), € = Epppa-(p2), and (Ef, N Bf ) U(EE, N EBL,) U(EE NEE,) = 0 with ¢ # j and
Vk,l € N.

Let us consider E = UiZO(ES{ UEgg), <= Uizo(ggi- U 355) U{(e,e)le € E; & e e Uj>i(E5{- U Egg),
with i > j}, # = UiZO #E;U {(e, ), (¢ e)le € ES% & e e E‘sf Uj>i(Eg{ U Eg%‘)}, I = UiZO(lS{ U 155)
Then £ = (lz,g,#,l) fngp,@\*(p). R

We denote C(0) =0, C(n) = C(n — 1) U Egn, for n > 1, and [n,C(&;)] = C(n) U{C;|C; € c(EMH,
for i = 1,2. Then C(€) = U;>o([i,C(E1)] U [i,C(E2)]). By the induction hypothesis for p; and process
structures Pr(p;) = (P;, ﬁm, siyli), with 4 = 1,2, there are isomorphisms f; : C(Epppas«(p1))—P1 and
fo : C(EpBpa«(p2))—Pa. Let us consider the mappings f} : [i,C(£1)] =P} and fi : [i,C(E2)]—Ps such
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that f1(C) = f1(C)\ C(é) and fi(C) = ( )\6’( ), with 4 > 0. It is easy to see that f} and fi are
isomorphisms for ¢ > 0. Since Eg, N Eg, =0, 0, C(E)NC(EL) = {0}, if i # k or j # . Therefore, we get
the following: [i,C(&1)] N [i,C(E2)] = C(4),

[i,C(EN]NTi +1,C(&)] = Ci + 1) = [i,C(E)] N [i + 1,C(&)] for i > 0;

,C(E2)] N [7,C(E2)] = 0 for i # j

[i,C(EN)]N[J,C&)])=0fori<j—1ori>j+1;

[, CE)] N [, C(Ea)] £ D for i #j and i £ — 1. |

We construct the mapping f : C(£) — P as follows. We set f(C) = f/(C) if C € [§,C(&;)] for i = 1,2
and j > 0. According to TR5 and the construction of £, we see that f is an isomorphism. O

Since Pr(p) = (Pp, —p, Sp, lp) can be viewed as a transition system for each p € PBPA*(Act), we
can apply the bisimulation notion to it. So, we call two process structures Pr(p) and Pr(q) bisimilar
(denoted by Pr(p)<Pr(q)) if there is a bisimulation B between (Pp, —p,sp) and (Py, —4,4) such
that s,Bs,.

The following proposition shows that, although the procedure of constructing a process structure
changes the structure of a transition system for a PBP A*-term, the bisimulation between the process
structures remains to be corresponding to the algebraic one.

Proposition 4.2. Let p,q € PBPA*(Act). Then Pr(p)<Pr(q) & pe q.

Proof. (=). Tt follows directly from Proposition 4.1.
(«<). Assume that p < ¢, and R C PBPA*(Act) x PBPA*(Act) to be an algebraic bisimulation such
that pRq. We construct a relation B C P, x P, as follows. For v € P, and v’ € Py, we set (v,v") € B
if 1,(v)Rl4(v"). We have to show that B is a bisimulation.

Let (vy,v]) € B and vlgpvg. By Proposition 4.1, we have lp(vl)LpoA*lp(vg). By construction
of B, we get I,(v1)Rly(v]). Then, by definition of the relation R, we get Ir € PBPA*(Act) o
1,(v))—% pppa~r. By definition of the transition relation in PBPA*(Act), we have that the transition
l,(v))—%>pppa~r is obtained from one of the rules (Ax),(A1)-(A7) or (B1)-(B7), which depends on

Qn—1

the structure of the term I,(v}). Obviously, ¢ = l,(sy) = l,(T1) = ... —>poA* l4(v,) = r, where

lq@(n—1)) = lg(v}). Then, by construction of Pr(q), we get vy =, and v] <, v}, where v} =7, ).
The case v}-%,v) can be considered similarly to the previous one.

By construction of B, it is obvious that (sp, sq) € B, since l,(sp) = p, l4(sq) = ¢, and pRq. Therefore,

Pr(p)=Pr(q). O

Now we can establish the main result of the paper.
Theorem 4.2. Let p,q € PBPA*(Act). Then Epppa-(p) =i Epppa+(q) < pe2q.

Proof. We have from Theorem 4.1. and Proposition 4.2, Epppa<(p) =; Epppa-(q) < Pr(p)<Pr(q),
since the corresponding transition systems are isomorphic. Due to Proposition 4.2, this means that
Epppa-(p) =i Eppra+(q) & p2yg. 0

5. Conclusion

In this paper we have investigated an algebraic specification of a behavioural equivalence. We have in-
troduced a process algebra with iteration and operations corresponding to all relations between events
in a structure. By proposing the event structure semantics to algebraic terms, we have established
the correspondence between algebraic and behavioural bisimulations. We have considered the process
algebra BPA* as a starting point, since it seems to be nice to specify a class of event structures with
finite representations, which is needed for investigation of decidability of bisimulation notions defined
over event structures. The decidability problem is an important question in the study of an equivalence
notion. As an example, it is easy to notice that for the class of finite event structures bisimulations
are decidable, and in the general case of infinite event structures it is obviously undecidable, whether
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two structures are bisimilar or not. The aim of our further research is to obtain nontrivial results for
classes of event structures.
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