Joint NCC & IIS Bull., Comp. Science, 13 (2000), 88-104
© 2000 NCC Publisher

Algebraic specifications for dataflow computations
design*

A. Votintseva, A. Yakovlev

1. Introduction

Dataflow networks are a well-known mathematical tool extensively used for representing, analyzing
and modelling concurrent computing systems and their software. Formal dataflow models reported in
the literature may be divided in two groups — static and dynamic. Static models [4] admit at most
one token on an arc. This assumption severely limits the possibilities of concurrency. Dynamic models
are free from this restriction due to program code copying [10] and token coloring [2, 11].

To get better understanding of the nature of concurrent computations, different approaches to
representation of the semantics of dataflow networks presented in the literature have been studied. In
the classical work by Kahn [6], the denotational semantics of dataflow computations was represented
by fixed point equations. Using the Kahn principle, article [12] set forth the denotational semantics
of real-time dataflow networks. The operational semantics in terms of firing sequences was given
for static dataflow networks in [4] and for dynamic ones in [2, 11]. The possibility of modelling the
operational semantics of static dataflow networks by ACP-terms was presented in [3]. Modularity and
the Kahn principle were investigated in [8, 9] for dataflow networks whose semantics was represented
by pomsets and trace languages. A fully abstract trace-model for dataflow networks was given in [5].
In paper [1] the event structure semantics was developed for a class of colored dataflow networks and
formal relationships were established between a number of semantics notions, such as firing sequences,
trace languages, dependence graphs and event structures. Our aim is to establish a full correspondence
between these two models. We use algebraic specifications for this purpose. In [1] the class of well-
formed colored dataflow networks was defined using algebraic operations. For the model of event
structures we take the process algebra BPA (Basic Process Algebra) as a starting point. We consider
an extension of BPA with a parallel operation || and a binary Kleene star x, and denote it as PBPA*.
We adapt operators from PBPA* to prime event structures and obtain a class of well-formed event
structures which is shown to be corresponding to well-formed colored dataflow networks.

The paper is organized as follows. In Section 2, we present the basic terminology concerning event
structures. Section 3 defines the structure of a coloured dataflow network (for brevity, c-network).
Then the operational semantics of a marked c-network in terms of firing sequences is given. In Section
4, we introduce a notion of decorated event structures, taking into account a context presented in
computations, e.g., colors, time or something else. Further the notion of well-formed event structures
is presented and the correspondence between the model just mentioned and well-formed c-networks is
established. In the final section, some concluding remarks are given.

2. Basic notions of the event structures theory

Event structures have been firstly introduced in [7] being represented via sets of events with relations
expressing causal dependences and conflicts between them. The subsets of events representing exe-
cutions in the event structure are called configurations. They have to be conflict-free and left-closed
with respect to the causality relation (all prerequisites for any event occurring in the execution must
also occur).

*This work is supported by the RFBR (grant No 00-01-00898) and the youth grant 2000 of SB RAS

Algebraic specifications for dataflow computations design 89

Definition 2.1. A [abeled prime event structure over an alphabet Act (event structure for brevity) is
a quadruple S = (E, <,#,1), where

(i) E is a countable set of events;

(ii) < C E x E is a partial order (the causality relation) satisfying the principle of finite causes:
Ve€ E . {d € E |d< e} is finite;

(iii) # C E x E is a symmetric and irreflexive relation (the conflict relation) satisfying the principle
of conflict heredity:
Vei,eq,e3 € B : (61 <e &el # 63) = (62 # 63);

(iv) I : E — Act is a labeling function.

For an event structure S = (F, <,#,[), we assume that
id ={(e,e) | e € E};
< =< \id;
<2C< (transitivity);
< =<\ <? (immediate neighbourhood);
e#r1d < eH#d&Ve,di €EE . (e <e&d <d),e1# dy = (e1 = e & dy = d) (minimal conflict);
w=CEXE\(U<TUidU#), e ={/c€E|e<e},e={ cE|e <e}
Two event structures are called isomorphic (£ = F) iff there is a bijection between their sets of events
E¢ and Er preserving the relations < and # and labeling [.
The restriction of £ to C C Eg is defined as £[C = (C,<g N (C x C),# N (C x C),lglp).

We consider an algebraic specification to select a class of event structures corresponding to a class
of colored dataflow networks. As a representative we introduce a variant PBPA* of the known system
BPA (Basic Process Algebra from [13]) with the parallel operator || and the binary Kleene star .
We choose the process algebra BP A, since it has been proved in [14] that the axioms of BPA* (i.e.,
BPA extended by the binary Kleene star) can completely characterize bisimilarity between processes.
The PBPA* terms specify structures with all basic relations inherent in concurrent systems that can
be represented by the model of event structures. Thus,

e the operator “||” means that all events in the first component are concurrent to all events in the
second one;

e the operator “+” means that all events of one system are in conflict with all events of another
one;

“w.

e the operator “;” means that all events of the first component are causally precedent to all events
of the second one;

e the operator “x” means infinite iteration of two conflicting components with fixpoint semantics.

We define a set of conflict-free terms over an alphabet Act as follows:
PBPA}(Act) =a | (a || B) | (o; B), where a € Act,«, 8 € PBPAy;(Act)
Then the following rules specify the set of PBPA*-terms over the alphabet Act:

PBPA*(Act) = a | (al|B) | (a+B) | (v;B) | (v *B),

where a € Act, o, f € PBPA*(Act) and v € PBPAf(Act).
Now we can define the event structure Epppa<(p) = (E,<,#,1l) for a term p € PBPA*(Act) by
induction on the term construction:

1. Let p=a € Act. Then Epppa~(p) = ({e},0,0,{(e,a)};
2. Let pP=p1 || P2 with 51 = EPBPA* (pl) and 52 = EPBPA* (pQ). Then

90 A. Votintseva, A. Yakovlev

Epppa(p) = (Bey U Eey, <y U Zgp, ey, UHey, le;, Uley;
3. Let p = py + po with & = Epppa-(p1) and & = Epppa~(p2). Then
Epppa<(p) = (Be, U By, <gy U <g,, #e, Ude, U{(e1,e2), (e2,61) | €1 € Fgy,e0 € Egy 1y Uley;
4. Let p = p1;py with & = Epppa<(p1) and E = Epppa-(p2). Then

gPBPA* (p) = (E£1 U Efgagil U SEQ U{(elaeQ) | €1 € E£1762 S E€2}7#51 U #Ezalfl Uliz;

5. Let p = p1 * pa, p(O = pi + po and pitY) = p;;p) + py. Then Epppa-(p) is defined as the

minimal event structure such that Epppa~ (p(")) C&pppa-(p) for all n € N.

By construction of PBPA*-terms it is clear that Epgpa+(p) is a prime event structure for all
p € PBPA*(Act). Further we establish a correspondence between a class of PBP A*-event structures
(i.e., event structures constructed for PBPA*-terms with the above rules) and the class of colored
dataflow networks introduced in [1].

Definition 2.2. A configuration of an event structure S = (F, <,#,1) is a subset X C F such that:
(i) Ve, € X o —(e # €') (conflict-free);
(i) Ve, € E s e X & e <e=¢€ € X (left-closed).

We shall denote by C(S) the set of configurations of an event structure S.

In the grafical representation of an event structure, only immediate conflicts — not the inherited
ones — are pictured. The immediate neighbourhood relation is represented by arcs, omitting those
derivable by transitivity. Following these conventions, an example of an event structure is shown in
Fig. 2.1.

er:a_—__ ,e3:a
7

ea:b__ L eq:c

Figure 2.1.

3. Coloured dataflow networks

In this section, we consider coloured dataflow networks [1] and their operational semantics in terms
of firing sequences.

A dataflow network (a network) is characterized by nodes and arcs. The nodes consist of links
and actors. There are four kinds of actor nodes (operators, deciders, gates and colour actors) and two
kinds of link nodes (data and control links). The arcs connecting links with actors and actors with
links are called data and control arcs according to the type of link. The nodes and arcs are represented
by two sets N and F which have to be nonempty, finite and disjoint.

Definition 3.1. A network is a pair N = (N, E), where

(i) N is a set of nodes consisting of a subset A of actors and a subset L of links with ANL = (). The
actors are of the following types: operators (A"), deciders (A%), gates (A“) and colour actors
(A® = New U Next U Old). The links are of two types: data links (L) and control links (L7);

(ii) EC((AUw)x L) U (Lx (AUw)) is a set of arcs consisting of a subset E' of data arcs and a
subset BT of control arcs. Here w € N and E' N ER = .

Fig. 3.1(a) shows the types of links. The types of actors are shown in Fig. 3.1(b):

Algebraic specifications for dataflow computations design 91

data link

operator

gate

colour actors

Figure 3.1.

control link

decider

old

At least one data (control) arc must terminate on and at least one data (control) arc must originate
at each data (control) link. An operator has an ordered set of input data arcs and a single output
data arc. A decider has an ordered set of input data arcs and a single output control arc. A gate has
one input data arc and one input control arc and two output data arcs labelled by ‘4’- and ‘—’-signs.
A colour actor: either new € New or next € Next or old € Old (allowing loop computations to be
modelled). A colour actor has a single input data arc and a single output data arc.

For a node n € N, we use in(n) and out(n) to denote the set of its input arcs and the set of its
output arcs, respectively. We suppose In = {(w,l) € E |l € L} (the set of input arcs of N) and
Out = {(I,w) € E |1 € L} (the set of output arcs of N'). We also fix L'" = {l € L | (w,l) € In} (the
set of input link nodes of V') and LO% = {I € L | (I,w) € Out} (the set of output link nodes of N).

92 A. Votintseva, A. Yakovlev

For two nodes n,n’ € A, we shall write n < n', iff there exists [€ L such that out(n) Nin(l) #
0 & out(l) Nin(n') # 0. By n <> n' we denote the following fact: n < ny & ... & ny, < n', where
n,n' € (A¥ UAR), {ny,...,n,} =+ C A\ (A" U AR) and m > 0.

The components of a network N' = (N, E) are subscribed by the index N, for example: Ny and
E). If clear from the context, the index N is omitted.

In order to get a class of networks suitable for our purpose, we introduce a notion of a well-formed
network. Before doing so we need to define some additional notions and notations.
We consider the following elementary networks: operational (o-networks) f, alternative (a-networks)
*

7 and iterative (i-networks) 7’ shown in Fig. 3.2. a), b) and c¢), respectively.

>

o lg
5
C.
Figure 3.2.

Let O denote the set of all o-networks, A denote the set of all a-networks and Z denote the set of
all s-networks.

Now we can specify operations over nets:

(1) ||-operation (parallel composition)
Let N7 and N> be networks such that (Na, N Nas,) = 0 and (Ep, N Ey;,) = 0. Then
(M1]| N2) = (N, E) is defined as: N = Ny, U Np; E = En, U Ey,.

Algebraic specifications for dataflow computations design 93

(i) p-operation (merging of links)
Let N7 be a network and L = {ly,...,l,} C LM Let | = <li,...,l;,> be a link such that
in(l) = Un(l;) | l; € L) and out(l) = U(out(l;) | l; € L). Then u(Ny, L) = (N, E,T,C) is
defined as:
N = (Ax; U (L \ D) U D)
E = (En;, \ (in(l) Uout(l)))U
{(n,)) |In€ Ny, &3l € L. (n,;) € Ex;)}U
{U,n) [ne€ Ny, &3l; € L . (I;;n) € Ey,)}U
{(w,1) |Vl € L. (w,1;) € Bx;)}U
{(l,w) |Vl; € L . (I,w) € Ex,)}
(iii) ;-operation (sequential composition)
Let N7 and N, be networks such that (Ny, N Ny,) = 0, (En, N Ep,) = 0 and | Outyy, | = |

Iny, | =1.
Then (N3 N2) = u((N1 [| N2), (LG U LER)).-

(iv) +-operation (alternative composition)
Let N7 and Ny be networks and 7 be an a-network with a decider 7 such that (Na, N Ny,) U
(N, ON}L) U (Ny, ﬂN;ﬂr) =0, (En, NEn,)U(Epn, ﬂEﬁ) U (En, ﬂEﬁ) =0, | Iny, |=| Inp, |=1
and | Outyy, |=| Outy, |= 1. Let g € AY and I5,1; € LI be such that (g, %) is the output ‘+’-arc
and (g,1}) is the output ‘~’-arc of g. ' '
Then (M} +N2)" = p(u(u((N7 || No) |17, (LR U {81), (LR U {51), (B U L),
(v) *-operation (iterative composition)
Let N be a network and 7’ be an i-network with a decider 7' such that (N, N N;,) = 0,
(BExy NE,) =0, | Iny, | =] Outn, | = 1. Let g € A , next € A?, 5L e L; be such that
(g,15) is the output ‘+-arc of g and (", next) is the output arc of next.
Then (+N1)" = p(u((N || 7)), (TR U {5), (B U {I5'}).

The examples of applying the operations (i)—(v) to nets are shown in Appendix.
We call a net N well-formed if it is defined as follows:
N =F] V|| N2) | (N5 N2) | (N1 +N2)™ | (#M1))™, where
N1, N, are well-formed networks, f € O, re A ;’E T
We are now ready to define a notion of a coloured network.
Definition 3.2. A coloured network (c-network for brevity) is a quadruple CN = (N, T, %, C), where

(i) N is a well-formed network;
(ii) T is a set of tokens consisting of two disjoint subsets T (data tokens) and T® (control tokens)
(TTNTE = 0);
(iii) X is a set of colours. Each colour is a triple ¢ = (z,y, z), where c.z is the unique name of the
loop, c.y is the number of the loop iteration, and c.z is the context that may be a colour itself;
(iv) C: T — ¥ is a colour function.
The components of a c-network CN' = (N, T,%,C) are subscribed by the index CN. If clear

from the context, the index CA is omitted. As an example, the well-formed network CAp (with
New, = ((%f1)7; f2)) is shown in Fig. 3.3.

94 A. Votintseva, A. Yakovlev

<z >
f2
T is the set of fishes; + 152
¥ is the set of colours;
C:T — ¥ is a function of colouring.
Figure 3.3.

For the sake of convenience, we fix a c-network CN' = (N, T,%,C) (with N = (N, E)) and work
with it throughout the paper.

A marking of CN is a function M defined from E into 27 such that the tokens must have a type
identical to the type of the arc. A marking M is called initial (denoted as Mj,), iff
(i) Vee InVt,t' e M(e) « (t#£t = C(t) #£C(t));
(ii) Ve € (E\ In) o M(e) = 0.
Let a pair (CN, M;;,) denote the initially marked c-network.

We further specify an interpretation for (CA, M;;,) in order to provide a complete representation
of the modelled computation.

Definition 3.3. An interpretation I of (CN', My,) is defined as follows:

(i) a domain D of values,
(ii) an assignment of a total function ¢ : D™ — D to each operator f € A", where m =| in(f) |,

(iii) an assignment of a total predicate ¢ : D™ — {true,false} to each decider r € A¥ where
m =|in(r) |.

Besides we introduce a valuation function V' that assigns a value V(¢t) € D (V(¢) € {true, false},
respectively) to each token t € T' (t € T®, respectively). Let I denote the set of all possible interpre-
tations of (CN, M;;,). We use a triple (CN', M;y,, I) to denote the interpreted (CN, M;y,).

Algebraic specifications for dataflow computations design 95

For (CN', My, I), we define the firing rule associated with a node n as follows:

(1) An actor (a link) n is enabled with a colour ¢ in a marking M if there is a token with a colour ¢
on each (at least one) input arc of n.

(ii) An actor (a link) n enabled with a colour ¢ in a marking M may be choosen to fire with a colour
c yielding a new marking M’ specified as follows:

1. One token with a colour ¢ is removed from each (one) input arc of an actor (a link) n.
2. The tokens are added to the output arcs of n in the following way:

2.1. For a data (control) link n, one data (control) token with the colour U(n,c) and the value
V() is added to each output arc of n, where ¢ is the data (control) token removed from an input
arc of n.

2.2. For an operator (a decider) n, one data (control) token with the colour U (n,c) and the value
o(V(t1), ..., V(tm)) (¢ (V(t1), ..., V(tm))) is added to the output arc of n, where ¢,... ¢,
are the data tokens removed from the input arcs of n and m =| in(n) |.

2.3. For a gate n, one data token with the colour U(n,c) and the value V (¢;) is added to the
‘+’-arc, if V (t3) = true, or to the ‘“-arc, if V(t3) = false, where #; and ¢y are respectively the
data and control tokens removed from the input arcs of n.

2.4. For a colour actor n, one data token with the colour U(n,c) and the value V() is added to
the output arc of n, where ¢ is the data token removed from the input arc of n.

Here
(n,0,c), if n € New,
) (cx,ey+1,c2), ifne Next,
Uln, c) = c.z, if n € Old,
otherwise.

)

For (CN, M;y,I), a firing with a colour ¢ of a node n is defined as a triple M ™8 M7 such that a
transition from the marking M to the marking M’ is consistent with the firing rule associated with n.
We shall denote a firing with a colour ¢ of a node n as just a pair (n, ¢), if information about markings
M and M’ is not significant.

From now on, we shall use R = (N x ¥) and R’ = ((A" U A%) x ©0).
A firing sequence in (CN', My, I) is a string p over the alphabet R defined as:

(i) p = A is a firing sequence in (CN, My, I) and M;, LN My,

(ii) Suppose p' is a firing sequence in (CA, M, I), My, 2 M and M () M', then p = p'(n,c) is a

firing sequence in (CN, M;,,, I) and M;, pﬁf) M.
Let R(CN, My, I') denote the set of all firing sequences in (CN', My, I), and R = UR(CN, My,) |
Iel).

The specification of the behaviour of an initially marked c-net (CN, M;,) by means of a labeled
prime event structure has been described in [1]. To sketch it out, we first need to introduce the notion
of a dependence graph and its projection defined for a firing sequence.

Definition 3.4. _ L
Let p € R. Then the D-graph associated with p is the triple G, = (V,, E,,[,) such that:

p=A. Then G, = (0,0,0).

96 A. Votintseva, A. Yakovlev

p#A. Let p = p/(n,c) and assume that CNT',,/ = (‘N/p/,Ep/,le/) is defined. Then G, = (V,,E,,l,) for
V, =Vy U{ (n,c),X)N}, where
X = {((n',), X') € Vy | out(n') Min(n) # 0 i U(n', ') = c},
E,=Ey;U(X x{((n,c),X)}) and
V((n',), X") €V, L,(((n',¢), X)) = (n',).

In order to generalize some insignificant dependences in a d-graph, we define the notion of its
projection onto R’.

Definition 3.5. _ o
Let p € R. Then the projection of D-graph G, = (V,, E,,[,) on the set R’ is the triple G, = (V,, E,,,)

such that:
= {((n,¢),X) €V, | (n,c) € R'}; .

C V, x V, such that (((n,c), X), ((n',¢),X")) € E, < N
A((n, o), X (115), K1), - (s)y Xom)s (0,), X)) €E,
such that (n,g),(ni, d)eR, (ni,c1),...,(Nm,cm)€ R\ R') if m > 1,

V((n',d),X") e V,o 1,(((n',), X)) = (n,).

Now we can give the event structure semantics for c-networks from [1].

Vo
B,

Definition 3.6.
The event structure for (CN, My,) is a quadruple E((CN, M;y,)) = (E, <,#,1), where

e V((n,c), X),(
{((n,), X), ((n',), X")} V)3
o Y((n,c),X) € E o lgn)(((n,¢), X)) = (n,¢)

Let us consider the initially marked c-net (CAgo, M;;,) (shown on Fig. 3.4), where M, ((w
{t}. Fig. 3.4 shows the final fragment of the event structure for (CNy, M;,), where ¢y = (
¢1 = (new,0,cq), ca = (new, 1,¢p) and ¢z = (new, 2, ¢p).

(f2, co) (f2; co) (f2, co)

S e S

(r, c1) (f1,¢1) (r, c2) (f1,co) (r, c3) (f1,c3)

Figure 3.4.

4. Well-formed event structures

In this section we introduce a new version of event structures, namely, the context event structures
over a separated alphabet Act = Act/ U Act” U {\/}, where Act! N Act™ = (). Actions from Act! are
called basic and actions from Act” are auxiliary for constructing well-formed event structures. We
superinduce the notion of a context which is a countable set. When modeling a data domain by event
structures, the context plays the role of an additional attribute, for example, time limitation or the
set of colours.

Algebraic specifications for dataflow computations design 97

Definition 4.1. A contert event structure (over an alphabet Act = Act! U Act” U {\/} with a context
K) is a b-tuple £ = (E, <,#,l,¢), where

e [is a countable set of events;

e <C E x F is a (nonreflexive) partial order causality relation;

e # C E x E is a symmetric nonreflexive relation (conflict relation);
e |:E— Actisa labeling function;

e c: E — K is a context assigning function.

We use EL = {e € Eg | lg(e) =/} to denote the set of terminate events, E2* = E¢ \ E} to denote
the set of nonterminate events, and min€ = {e € E; | *e = 0} to denote the set of minimal elements.

We now introduce the notions of a free term p, the set of its actions Var(p), and the class of
isomorphic context event structures [p] determined by this term. Let Term™(Act) denote the set of
free terms over the alphabet Act = Act™ U Act” with the context K constructed as follows.

1. p=0 € Term"(Act), Var(p) = 0 and € € [p] = € = ({e}, 0,0, {(e,)}, {(e, ko)}).
2. p=a € Act! = p € TermX(Act), Var(p) = {a} and

£ e [p] = ({ea e,}a {(e= e,)}a ®7 {(e,a), (ela \/)}a {(ea kO)a (ela kO)})

Let p,q € Term®(Act) such that Var(p)NVar(g) = 0. Then the following operators are used to build
terms :

(A) Parallel composition.
p || ¢ € TermX(Act), Var(p || q) = Var(p) UVar(q) and € € [p || q] = 3& € [p|,& € [q] :
E, NE;, = 0 and E, = B UE;,, <¢=<g U<gy, #e=HFe, UFtey, lg =1g Ulg,, ce = cg, Uce,
(B) Sequential composition.
p;q € Term’C(Zc\t), Var(p;q) = Var(p) UVar(q) and € € [p;q] =
= 3& € [p],&1,E2,...,En € [q], where n =| Eﬁo |, such that Eéo = {e1,e,...,en}, min&; =
{ei}, forall 0 < i <n, B, NE;, = Ofor0 < i # j <mn, EeygNEe, ={e;} for 1 <i <n and
E, = Uogz’gn E;,. Then:
<e=Up<icn <e; U{(e,€') | e € By e’ € Ec V1 <i<n},
#e = Uo<icn #e; U{(e,€), (€'se) | e € Egy e’ € Ee, and eftgoei, 1 < i < njlU{(e,€) | e €
Ee,e' € Ee; for 1 <i,j <n,i# j}, le = Ui<icn le; Ulgg |Egéa ce = Ui<icn ¢ U Ceg |Eg3-
(C) Alternative composition.
P ¥ q € Term®(Act) with a € Act"\(Var(p) UVar(q));
Var(p ¥ q) = Var(p) UVar(q) U {a} and € € [p ¥ ql = 3& € [p],& € [q],d & E., UE,, :
Ee, NEg, = @,
| min&y |=| min&; |=1 and
E; =E; UE., U{d},
<e=<g U<, U{(de) | e € Eg, UEg,},
#e = He, UHe, U{(e,e) | e € Eg, e € Egy,i # j},
le =1¢, Ulg, U{(d,a)},
ce = cg, Ucg, U{(d, ko)}-
(D) Context substitution.
p =q[k, k1, ... k. [kn] € TermX(Act), where ki, ki € K for 1 <14 < n. Then Var(p) = Var(q)
and £ € [p] = 3&' € [q] : €= (Eg’, <g’,#g’,lg’,c),
with
e(e) = ki, if cer(e) = k; for some 1 <4 < n ;
cer(e), otherwise.
for all e € E,r.

98 A. Votintseva, A. Yakovlev

(E) Iterative composition.
p %€ TermX(Act), where a € Act"\Var(p); Var(p ¥) = Var(p)U{a} and E € [p x| = E is a
minimal context event structure such that ¥n € N3&,, € [p(")]: En C &, (&, is a substructure of
&), where the term p(™ is built inductively as follows :
p% =0,
P = (O (pip™ D))kt ko K2 /kbs.. k2[R .

In the set of free terms we consider a subset of basic terms TerméC(Zc\t) C TermX (Act):

Termf§(Act) = b | (plla) | (pia) | (p+q) | (p%), where

L~

be Act!, a € Act”, p,q € Termf (Act).

Definition 4.2. A context event structure & is called a well-formed event structure if £ € [p] for some
p € TermX(Act).

Two context event structures £; and £ with contexts 1 and Ko, respectively, are called isomorphic
(&1 =2 &) iff there is an isomorphism f between £ and & with a substitution A : K1 — Ko, ie. f:
E¢, — Eg, is a bijection such that Ve,d € F¢, : (e <g, d & f(e) <g, f(d)) & (e#s,d < f(e)#e,f(d))
and Ve € Eg,,d € Eg,: d = f(e) = (lg,(e) = lg,(d)) & cg,(e) = h(cg,(d))) It can be noted that the
isomorphism just introduced for context event structures correlates with that considered in Section 2
for prime event structures, assuming that prime event structures have the null context Ky, = {O}
(i.e., ki =ky= 0O for all i € N and a € Act” s.t. ki € K,,y;). Thus, we can consider an isomorphism
between a context event structure £ and a prime event structure &' (£ = ') with the substitution
h: K¢ — Kuun- In other words, we can consider such isomorphisms simply without a substitution.

Proposition 4.1. Let & be a well-formed event structure (over the alphabet Zc\t) Then there is
qec PBPA*(ACt) such that Epgpa- (q) = &).

Proof. We prove it by induction on the structure of a term p. Assume p € Termﬁc(z@) to be such
that & € [p]. We construct the corresponding PBP A*-term ¢ (considering an isomorphism without
substitution by induction on the number of ;-operator used in the term p).

1. Suppose that the term p does not include a sequential composition. We prove the case by
induction on the structure of p.
Four cases are possible:

p=a € Act!. Then clearly q = (a;+/) € PBPA*(Act). Tt is easy to see that Epgpa-(q) = &.
p = (p1||p2). Assume q1,q2 € PBPA*(Zc\t) to be constructed so that Epppa+(q1) = F1 = &1 € [p1]

and Fo = Epppa+(q2) = &2 € [pa]. Then obviously ¢ = (qi1||q2) € PBPA* (Zc\t) It is necessary
to show Epppa+(q) = &. Let fi and fy be an isomorphism between F» and £. We can take
F1,Fa, & and & such that Ex, NEx, = (0 and Eg, NEg, = (). Tt is clear that fiUfy : Ex,UEx, —

E¢, U Eg, is an isomorphism between F = Epgpa+(q) and &.

p = p1;p2. Assume qi,qo € PBPA*(Zc\t) to be constructed so that Epgpa<(q1) = F1 = &1 € [p1]
and Fy = Epppa-(q2) = & € [p2] and a € Act” C Act. Then q = a; (g1 +¢q2) € PBPA*(Zc\t).
It is necessary to show that Epppa<(q) = &. Let fi be an isomorphism between F; and
&1 and fo be an isomorphism between Fy and &. We consider Fi,Fs,& and £ such that
Er, NEf, = Eg, N Eg, = 0 and d ¢ Eg¢, U Eg,, where d € Eg, such that lgo(d) = a. Let
e ¢ Ex, U Ex, be such that lg, . .(g)(e) = a. Then it is clear that f = f1 U fo U {(e,d)} is an
isomorphism between Epppa+(q) and &.

p=(p1 ¥). Assume ¢ € PBPA*(é/Et) to be constructed so that Epppa(q1) = F1 = &1 € [p1]. Then
q=a;(q1;ax+/) € PBPA*(Act). Tt is necessary to show that Epppa-(q) = . Let us consider
the sequence of PBP A*-terms:

Algebraic specifications for dataflow computations design 99

L
C
I

~

¢ = a; (q1;v/ + V),

q? = a(q; (e (v + V) + V) =
q = limp00q™ and Epppa-(q¥) = 5n [(n)
structure such that Epgpa<(q) = &..

a; (Q1;q("_1) ++/). It is easy to see that
]. Hence, Epppa=(gq) is the minimal event

2. Let p = (p1;p2). Since the term n po includes less sequential composition operators than p, we
can construct the term ¢ € PBPA* (Act) such that Epppa+(q2) = & € [p2]. We build the term g €
PBPA*(Act) corresponding to p € Term} (Act) by induction on the structure of p;. It is clear from
the definition of the sequential composition that (py;p2);p3 = p1; (p2; p3)Vp1, pe,p3 € Terml (Act).
Thus, the following four cases are only worth to be considered.

p1=a € Act!. Then q = (a;¢2) € PBPA*(Act)

p1 =p'; || p”1. This case is invalid since V& € [p1]: | min&; |> 2 due to the definition of the parallel
composition. This contradicts the sequential composition for Term{ (Act).

p = (P ¥ p",). Since p'; and p”, are less than p1, we can construct the terms ¢';, ¢, € PBPA*(Act)
such that Epppa-(q¢'y) = &1 € [p'1;p2] and Epppa-(q"y) = &1 € [p”1;p2]. Let us consider the
term q = a; (¢, + ¢",) € PBPA*(Act). By the reasoning analogous to that in case 1(c) of the
present proof, one can establish that Epgpa-(q) = &.

p1 = (po i) Since the term py € Termk (Act) is less than p;, we can construct the term ¢y €
PBPA*(Act) such that Epgpa<(qo) = &1 € [(po;a)]. Let us consider the term ¢ = a; (g * g2).
By the reasoning analogous to that in case 1(d) (replacing ¢y instead of /) of the present proof,
one can establish that Epppa(q) = &. O

From Proposition 4.1 it obviously follows that a well-formed event structure is a prime event
structure, since Epppa+(p) is a prime event structure for all p € PBPA*(Act).

The action 4/ is not significant indeed, since it is only used to denote a possible exit from an iterative
cycle in a well-formed event structure. By this reason we consider the notion of weak isomorphism
defined as follows: £ 22, F (this means that £ and F are weakly isomorphic) if &| mpt = F | Bty what
means that this equivalence notion takes into consideration only non-terminate events.

Theorem 4.1.

(i) Let (CN, M;,) be an initially marked c-network such that Ve € In : t € My, (e) = C(t) = ¢p. Then
there is a well-formed event structure & such that & =, £(CN, M;,,).

(ii) Let & be a well-formed event structure over the alphabet Act with a context K. Then there
is an initially marked c-network (CA, M;,), where Ve € In : t € M;,(e) = C(t) = ¢y such that
E(CN, Mm) =, &o-

Proof.

(i) We take the following alphabet Act”™ = A%, Act! = A" and a substitution h such that ko = h(cp)
and k! = h(new(a),i,c), where new(a) € New such that new(a) < a. We prove the case by induction
on the structure of the formula for Ng:

1. Let N = f. Then for any £ € [f] it is obvious that & =, E(CN, Myy,).

2. Let N' = New, || New,- By the induction hypothesis, there are terms p (for Near,) and g
(for Newr,) and well-formed event structures £ € [p] and & € [q] such that Eg, N Eg, = () and
& =2, E(CN 1, M), E =, E(CN 2, M;y,). Then, clearly, € = & U& € [p || q] € Term’C(Zc\t) built
according to the rule (A) satisfies the following: & =2, E(CN'1, Myy,) U E(CN o, Myy,) = E(CN, Myy,).

3. Let N = Neary;iNew,. By the induction hypothesis, there are terms p (for Newr,) and g (for
Newr,) and well-formed event structures & € [p] and &1, ..., &, € [q] such that Eg,N Eg; = 0, while i #
jand & =, E(CN1, Min), & =y E(CNa, Myy) for 1 < i < n. Then, clearly, £ € [p;q] € TermX (Act)
built according to the rule (B) satisfies the following: & =2, E(CN, M;y,).

100 A. Votintseva, A. Yakovlev

4. Let N = (Near, + New,)". By the induction hypothesis, there are terms p (for Near,) and
q (for Ney,) and well-formed event structures £ € [p] and & € [g] such that Eg, N Eg, = () and

& 2, E(CN 1, Myy), E 2, E(CN2, Myy,). Then, clearly, £ € [p T q] € Term’C(Zc\t) built according to
the rule (C) satisfies the following £ =, £(CN, M;,).

5. N'= (xNca,)". By the induction hypothesis, there is a term p (for Neyr,) and a well-formed
event structure £ € [p] such that & 22, E(CN1, M;,). Then, clearly, £ € [p ;] € Term’c(@) built
according to the rule (D) satisfies the following: & =, E(CN, My,).

(ii) We take A" =Act/, AR = Act” and a substitution built as follows: h(c) = ko, h(new;, j,c) = kI
with new; = a. We prove the case by induction on the structure of p:

1. Let p = a. Then Ngy = a. From the definition of o-nets we have
R(CN, Min) = {(I{, c0)(a, co) (I3, co) }-

Then, by construction of £(CN, My,), we get the following Egcarar;,) = {((a,¢0),0)}, <een,min)= 0,
#een M) =0, leen) (a5 c0),) = (a, cp). Obviously, £(CN, M;n) =, &.

2. Let p = py || p2. Then we have Near = Newr, || Newr,, where Near, is a c-network for py and
New, is a c-network fpr po. By the definition of the ||-operation for networks, it follows that

R(CN, Mm) = R(CNI, Mm) U R(CNQ, Mm)

Therefore,
Esen,)y = Eeeni i) YU Esens i)
<geN M) = <&CN1,M;n) Y <e(CNs,Min)»
HeeN M) = FHe(eNi M) Y HeCN,Min)>
leen M) = leens M) Yleens,min)-

By construction, it is easy to see that £(CN, M;,) =2, &.

3. Let p = p1;p2. Then we have Neyr = Newr,; New,, where Ney, is a c-network for py and Ny,
is a c-network fpr ps. By the definition of the ;-operation for networks, it follows that

R(CN, M) = mazR(CN 1, Myy,) o R(CN o, Myy,) = {PPI | p € mazR(CN1, M;), p' € R(CN 3, Min)},
where
mazR(CN1, My,) = {p € R(CN'1,M;y,) | Vo' € R(CN1, M) o p' = pp" = p" = A}
and | mazR(CN1, My,) |=n =| Eg, | for & € [p1]. Therefore,
Eeenmin) = Beenymi) U U Beyena,mn)s

1<i<n

where Egi(CNQ,Mi) ﬂEgj(CN2,Min) = @Withi 75 j and gl(CNQ, Mm) = gj(CNQ, Mi) forall 1 < ’i,j < n;

<eeN M) = <eenim Y U <eenonnn) V(e €) | e € Beeni)€ € Eeenra,my,) and
1<i<n
€ <g(CN'1,Miy) di € mang(CNl,Min)}5

#een) = HFeenvimm Y U #Heaenomnn) V(e €) | e € Beengun) € € Bey(cnamin)s
1<i<n

i# 7 U{(e€), (e e) | ee Eg(cNhMm),e' € Eg,(cnrs,M;,) and
eFe(en Min)di € MazEgcn, ai) b

leen) = leenimn U U leensmin)-
1<i<n

Algebraic specifications for dataflow computations design 101

By construction, it is easy to see that £(CN, M;,) =, &.

4. Let p = py T p2. Then we have Nenr = (Near, + News,)”, where Moy, is a c-network for py and
Newr, is a c-network fpr po. By the definition of the +-operation for networks, it follows that

R(CN, M) ={(I],¢c)(r,c)(l5,¢)(g,c)(l,c)p | p € R(CN1, My,) UR(CN 2, Myy,)

and N N

Le{< N > <50 >
Therefore,
Eeeny)y = Eeenimn) YU Esens vy UL e), X))},

HeeN M) = Feeni,min) UFeens, vy Ullee), (€ e) | e € Egeny min)r € € Egenra,min) s

()
<E(CN M) = <E(CN1,Min) U <e(eNaMin) Y€ €) [€ € Egenr nin) U Beenrs,minys € = ((r,6), X) 1,
()
leen iy = leen, M) Yleens,m,) YL(((rc), X), (r,0))}

By construction, it is easy to see that £(CN, M;,) =2, &.

5. Let p = p; # Then we have Noy = («xNewr,)", where Neyr, is a c-network for p;. By the
definition of the x-operation for networks, it follows that

1EN

where p° = A, p" = pp™~'. Therefore,

Beenag) = U Beien i),

1EN
where
Eg,(cny Min) O Egjeni) =0, i #7
and
Ei(CN 1, M) = E;(CN1, M) Vi €N,
<€(C/\f,Mm) = U <5i(C/\f1,Mm) U U {(e7 e’) | ee Efi(C/\fl Min)s e'e Efj(C/\flaMm)}’
1EN 1<j
#eenmn) = U #eeni i)
iEN
leen)y = U leiensn,)-
iEN
By construction, it is easy to see that £(CN, M;,) =2, &. 0

5. Conclusion

In this paper we have formalized a possibility for algebraic specification to establish a correspondence
between event structures and c-networks. We propose a new variation of the event structure model.
We have enriched this well-known formal model by adding a notion of context. This allows us to
increase the expressiveness of the event structure model. Moreover, we define a number of algebraic
operations over recently introduced context event structures which are shown to be corresponding to
the operations of the earlier known algebra BPA* defined over event structures. The main result
of the paper establishes a mutual correspondence between the classes of these two models (coloured
dataflow networks and context event structures) defined by algebraic operations.

102

A. Votintseva, A. Yakovlev

It is worth remarking that the obtained results have been formulated in terms of finite objects (finite
algebraic formulas representing infinite systems). Such investigations allow us to classify and unify
different abstract models of concurrent processes. Further research could include different equivalence
notions over c-networks and their relations to the similar ones over event structures.

References

[1]

I. Virbitskaite, A. Votintseva, D. Chkliaev, Investigating Semantic Notions for Coloured Dataflow Networks,
Hildesheimer Informatik-Bericht, 27/96, Institut fiir Informatik, Universitit Hildesheim, Hildesheim, Germany,
August 1996, 31 p.

Arvind, K.P. Gostelow, U-interpretator, Computer, 15, No 2, 1982, 42-49.

J.A. Bergstra, J.W. Klop A process algebra for the operational semantics of static data flow networks, Tech. Report
IW 222/83, CWI, Amsterdam, 1983.

J.B. Dennis, Data flow schemata, Lect. Notes Comput. Sci., 5, 1972, 187-216.
B.A. Jonson, A fully abstract trace model for dataflow networks, POPL’89, 1989, 155-165.

G. Kahn, D.B. McQueen, Coroutines and Networks of Parallel Processes, Information Processing 77, Proc. of IFIP
Congress 77, Toronto, August 8-12, 1977, North-Holland, 1977, 993-998.

M. Nielsen, G. Plotkin, G. Winskel, Petri nets, event structures and domains, Theoret. Comput. Sci., 13, No 1,
1981, 85-108.

A. Rabinovich, Pomset semantics is consistent with data flow semantics, Bull. of EATCS, 32, 1987.
A. Rabinovich, B.A. Trakhtenbrot, Nets of processes and data flow, Lect. Notes Comput. Sci., 354, 1988, 574-602.

J. Rumbaugh, A parallel asynchronous computer architecture for data flow programs, Tech. Report TR-150, MIT,
Project MAC, May 1975.

A.H. Veen, A formal model for data flow programs with token coloring, Tech. Report IW 179, CWI, Amsterdam,
1981.

R.K. Yetes, G.R. Gao, A Kahn principle of networks of nonmonotonic real-time processes, Lect. Notes Comput.
Sci., 694, 1993, 209-227.

J.C.M. Baeten, W.P. Weijland, Process algebra, Cambridge Tracts in Theor. Comput. Sci., Cambridge University
Press, 18, 1990.

W.J. Fokkink, H. Zantema, Basic process algebra with iteration: completeness of its equational axioms, Comput.
J., 87, No 4, 1994, 259-267.

Algebraic specifications for dataflow computations design

6. Appendix
The examples of the algebraic operations over dataflow networks.

(a) ||-operation (parallel composition)
An example of using the ||-operation to o-net f; and f:

%l{l %{2

fill fa fi f2

+l§1 +l{2

(b) p-operation (merging of links)
An example of using the y-operation to net (f1 || f2) and set (L

it i

alfill fo (200 LO) | fo

\T</l2f1,lg2 >

(c) ;-operation (sequential composition)
An example of using the ;-operation to o-net f; and fo:

fi

fi; f2 +<l£1,l{2>

f2

Out U L]%ut) .

103

104 A. Votintseva, A. Yakovlev

(d) +-operation (alternative composition)

An example of using the +-operation to o-net fl, fg and a-net 7:

<>

(e) x-operation (iterative composition)
~ *
An example of using the *-operation to o-net f and i-net 7':

