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1. Introdu
tion

Data
ow networks are a well-known mathemati
al tool extensively used for representing, analyzing

and modelling 
on
urrent 
omputing systems and their software. Formal data
ow models reported in

the literature may be divided in two groups | stati
 and dynami
. Stati
 models [4℄ admit at most

one token on an ar
. This assumption severely limits the possibilities of 
on
urren
y. Dynami
 models

are free from this restri
tion due to program 
ode 
opying [10℄ and token 
oloring [2, 11℄.

To get better understanding of the nature of 
on
urrent 
omputations, di�erent approa
hes to

representation of the semanti
s of data
ow networks presented in the literature have been studied. In

the 
lassi
al work by Kahn [6℄, the denotational semanti
s of data
ow 
omputations was represented

by �xed point equations. Using the Kahn prin
iple, arti
le [12℄ set forth the denotational semanti
s

of real-time data
ow networks. The operational semanti
s in terms of �ring sequen
es was given

for stati
 data
ow networks in [4℄ and for dynami
 ones in [2, 11℄. The possibility of modelling the

operational semanti
s of stati
 data
ow networks by ACP-terms was presented in [3℄. Modularity and

the Kahn prin
iple were investigated in [8, 9℄ for data
ow networks whose semanti
s was represented

by pomsets and tra
e languages. A fully abstra
t tra
e-model for data
ow networks was given in [5℄.

In paper [1℄ the event stru
ture semanti
s was developed for a 
lass of 
olored data
ow networks and

formal relationships were established between a number of semanti
s notions, su
h as �ring sequen
es,

tra
e languages, dependen
e graphs and event stru
tures. Our aim is to establish a full 
orresponden
e

between these two models. We use algebrai
 spe
i�
ations for this purpose. In [1℄ the 
lass of well-

formed 
olored data
ow networks was de�ned using algebrai
 operations. For the model of event

stru
tures we take the pro
ess algebra BPA (Basi
 Pro
ess Algebra) as a starting point. We 
onsider

an extension of BPA with a parallel operation jj and a binary Kleene star �, and denote it as PBPA

�

.

We adapt operators from PBPA

�

to prime event stru
tures and obtain a 
lass of well-formed event

stru
tures whi
h is shown to be 
orresponding to well-formed 
olored data
ow networks.

The paper is organized as follows. In Se
tion 2, we present the basi
 terminology 
on
erning event

stru
tures. Se
tion 3 de�nes the stru
ture of a 
oloured data
ow network (for brevity, 
-network).

Then the operational semanti
s of a marked 
-network in terms of �ring sequen
es is given. In Se
tion

4, we introdu
e a notion of de
orated event stru
tures, taking into a

ount a 
ontext presented in


omputations, e.g., 
olors, time or something else. Further the notion of well-formed event stru
tures

is presented and the 
orresponden
e between the model just mentioned and well-formed 
-networks is

established. In the �nal se
tion, some 
on
luding remarks are given.

2. Basi
 notions of the event stru
tures theory

Event stru
tures have been �rstly introdu
ed in [7℄ being represented via sets of events with relations

expressing 
ausal dependen
es and 
on
i
ts between them. The subsets of events representing exe-


utions in the event stru
ture are 
alled 
on�gurations. They have to be 
on
i
t-free and left-
losed

with respe
t to the 
ausality relation (all prerequisites for any event o

urring in the exe
ution must

also o

ur).

�
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De�nition 2.1. A labeled prime event stru
ture over an alphabet A
t (event stru
ture for brevity) is

a quadruple S = (E;�;#; l), where

(i) E is a 
ountable set of events;

(ii) � � E �E is a partial order (the 
ausality relation) satisfying the prin
iple of �nite 
auses:

8e 2 E : fd 2 E j d � eg is �nite;

(iii) # � E �E is a symmetri
 and irre
exive relation (the 
onfli
t relation) satisfying the prin
iple

of 
on
i
t heredity:

8e

1

; e

2

; e

3

2 E : (e

1

� e

2

& e

1

# e

3

)) (e

2

# e

3

);

(iv) l : E ! A
t is a labeling fun
tion.

For an event stru
ture S = (E;�;#; l), we assume that

id = f(e; e) j e 2 Eg;

< = � nid;

<

2

�< (transitivity);

<� =< n <

2

(immediate neighbourhood);

e #

1

d () e # d & 8e

1

; d

1

2 E : (e

1

� e & d

1

� d); e

1

# d

1

) (e

1

= e & d

1

= d) (minimal 
on
i
t);

^=� E �E n (< [ <

�1

[id [#), e

.

= fe

0

2 E j e <�e

0

g,

.

e = fe

0

2 E j e

0

<� eg.

Two event stru
tures are 
alled isomorphi
 (E

�

=

F) i� there is a bije
tion between their sets of events

E

E

and E

F

preserving the relations � and # and labeling l.

The restri
tion of E to C � E

E

is de�ned as EdC = (C;�

E

\ (C � C);#

E

\ (C � C); l

E

j

C

).

We 
onsider an algebrai
 spe
i�
ation to sele
t a 
lass of event stru
tures 
orresponding to a 
lass

of 
olored data
ow networks. As a representative we introdu
e a variant PBPA* of the known system

BPA ( Basi
 Pro
ess Algebra from [13℄) with the parallel operator jj and the binary Kleene star �.

We 
hoose the pro
ess algebra BPA, sin
e it has been proved in [14℄ that the axioms of BPA* (i.e.,

BPA extended by the binary Kleene star) 
an 
ompletely 
hara
terize bisimilarity between pro
esses.

The PBPA* terms spe
ify stru
tures with all basi
 relations inherent in 
on
urrent systems that 
an

be represented by the model of event stru
tures. Thus,

� the operator \jj" means that all events in the �rst 
omponent are 
on
urrent to all events in the

se
ond one;

� the operator \+" means that all events of one system are in 
on
i
t with all events of another

one;

� the operator \;" means that all events of the �rst 
omponent are 
ausally pre
edent to all events

of the se
ond one;

� the operator \�" means in�nite iteration of two 
on
i
ting 
omponents with �xpoint semanti
s.

We de�ne a set of 
on
i
t-free terms over an alphabet A
t as follows:

PBPA

�


f

(A
t) = a j (� jj �) j (�;�), where a 2 A
t; �; � 2 PBPA

�


f

(A
t)

Then the following rules spe
ify the set of PBPA*-terms over the alphabet A
t:

PBPA

�

(A
t) = a j (�jj�) j (�+ �) j (
;�) j (
 � �);

where a 2 A
t; �; � 2 PBPA

�

(A
t) and 
 2 PBPA


f

(A
t).

Now we 
an de�ne the event stru
ture E

PBPA

�

(p) = (E;�;#; l) for a term p 2 PBPA

�

(A
t) by

indu
tion on the term 
onstru
tion:

1. Let p = a 2 A
t. Then E

PBPA

�

(p) = (feg; ;; ;; f(e; a)g;

2. Let p = p

1

jj p

2

with E

1

= E

PBPA

�

(p

1

) and E

2

= E

PBPA

�

(p

2

). Then
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E

PBPA

�

(p) = (E

E

1

[E

E

2

;�

E

1

[ �

E

2

;#

E

1

[#

E

2

; l

E

1

[ l

E

2

;

3. Let p = p

1

+ p

2

with E

1

= E

PBPA

�

(p

1

) and E

2

= E

PBPA

�

(p

2

). Then

E

PBPA

�

(p) = (E

E

1

[E

E

2

;�

E

1

[ �

E

2

;#

E

1

[#

E

2

[ f(e

1

; e

2

); (e

2

; e

1

) j e

1

2 E

E

1

; e

2

2 E

E

2

g; l

E

1

[ l

E

2

;

4. Let p = p

1

;p

2

with E

1

= E

PBPA

�

(p

1

) and E

2

= E

PBPA

�

(p

2

). Then

E

PBPA

�

(p) = (E

E

1

[E

E

2

;�

E

1

[ �

E

2

[f(e

1

; e

2

) j e

1

2 E

E

1

; e

2

2 E

E

2

g;#

E

1

[#

E

2

; l

E

1

[ l

E

2

;

5. Let p = p

1

� p

2

, p

(0)

= p

1

+ p

2

and p

(i+1)

= p

1

;p

(i)

+ p

2

. Then E

PBPA

�

(p) is de�ned as the

minimal event stru
ture su
h that E

PBPA

�

(p

(n)

)vE

PBPA

�

(p) for all n 2 N.

By 
onstru
tion of PBPA

�

-terms it is 
lear that E

PBPA

�

(p) is a prime event stru
ture for all

p 2 PBPA

�

(A
t). Further we establish a 
orresponden
e between a 
lass of PBPA

�

-event stru
tures

( i.e., event stru
tures 
onstru
ted for PBPA

�

-terms with the above rules) and the 
lass of 
olored

data
ow networks introdu
ed in [1℄.

De�nition 2.2. A 
on�guration of an event stru
ture S = (E;�;#; l) is a subset X � E su
h that:

(i) 8e; e

0

2 X � :(e # e

0

) (
on
i
t-free);

(ii) 8e; e

0

2 E � e 2 X & e

0

� e) e

0

2 X (left-
losed).

We shall denote by C(S) the set of 
on�gurations of an event stru
ture S.

In the gra�
al representation of an event stru
ture, only immediate 
on
i
ts | not the inherited

ones | are pi
tured. The immediate neighbourhood relation is represented by ar
s, omitting those

derivable by transitivity. Following these 
onventions, an example of an event stru
ture is shown in

Fig. 2.1.
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Figure 2.1.

3. Coloured data
ow networks

In this se
tion, we 
onsider 
oloured data
ow networks [1℄ and their operational semanti
s in terms

of �ring sequen
es.

A data
ow network (a network) is 
hara
terized by nodes and ar
s. The nodes 
onsist of links

and a
tors. There are four kinds of a
tor nodes (operators, de
iders, gates and 
olour a
tors) and two

kinds of link nodes (data and 
ontrol links). The ar
s 
onne
ting links with a
tors and a
tors with

links are 
alled data and 
ontrol ar
s a

ording to the type of link. The nodes and ar
s are represented

by two sets N and E whi
h have to be nonempty, �nite and disjoint.

De�nition 3.1. A network is a pair N = (N;E), where

(i) N is a set of nodes 
onsisting of a subset A of a
tors and a subset L of links with A\L = ;. The

a
tors are of the following types: operators (A

F

), de
iders (A

R

), gates (A

G

) and 
olour a
tors

(A

C

= New [Next [Old). The links are of two types: data links (L

I

) and 
ontrol links (L

R

);

(ii) E � ((A [!)�L) [ (L� (A[ !)) is a set of ar
s 
onsisting of a subset E

I

of data ar
s and a

subset E

R

of 
ontrol ar
s. Here ! 62 N and E

I

\E

R

= ;.

Fig. 3.1(a) shows the types of links. The types of a
tors are shown in Fig. 3.1(b):
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Figure 3.1.

At least one data (
ontrol) ar
 must terminate on and at least one data (
ontrol) ar
 must originate

at ea
h data (
ontrol) link. An operator has an ordered set of input data ar
s and a single output

data ar
. A de
ider has an ordered set of input data ar
s and a single output 
ontrol ar
. A gate has

one input data ar
 and one input 
ontrol ar
 and two output data ar
s labelled by `+'- and `{'-signs.

A 
olour a
tor: either new 2 New or next 2 Next or old 2 Old (allowing loop 
omputations to be

modelled). A 
olour a
tor has a single input data ar
 and a single output data ar
.

For a node n 2 N , we use in(n) and out(n) to denote the set of its input ar
s and the set of its

output ar
s, respe
tively. We suppose In = f(!; l) 2 E j l 2 Lg (the set of input ar
s of N ) and

Out = f(l; !) 2 E j l 2 Lg (the set of output ar
s of N ). We also �x L

In

= fl 2 L j (!; l) 2 Ing (the

set of input link nodes of N ) and L

Out

= fl 2 L j (l; !) 2 Outg (the set of output link nodes of N ).
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For two nodes n; n

0

2 A, we shall write n ,! n

0

, i� there exists l 2 L su
h that out(n) \ in(l) 6=

; & out(l) \ in(n

0

) 6= ;. By n

�

,! n

0

we denote the following fa
t: n ,! n

1

& : : : & n

m

,! n

0

, where

n; n

0

2 (A

F

[A

R

), fn

1

; : : : ; n

m

g = � � A n (A

F

[A

R

) and m � 0.

The 
omponents of a network N = (N;E) are subs
ribed by the index N , for example: N

N

and

E

N

. If 
lear from the 
ontext, the index N is omitted.

In order to get a 
lass of networks suitable for our purpose, we introdu
e a notion of a well-formed

network. Before doing so we need to de�ne some additional notions and notations.

We 
onsider the following elementary networks: operational (o-networks)

^

f , alternative (a-networks)

+

r

and iterative (i-networks)

�

r

0

shown in Fig. 3.2. a), b) and 
), respe
tively.
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Figure 3.2.

Let O denote the set of all o-networks, A denote the set of all a-networks and I denote the set of

all i-networks.

Now we 
an spe
ify operations over nets:

(i) jj-operation (parallel 
omposition)

Let N

1

and N

2

be networks su
h that (N

N

1

\N

N

2

) = ; and (E

N

1

\E

N

2

) = ;. Then

(N

1

jj N

2

) = (N;E) is de�ned as: N = N

N

1

[N

N

2

; E = E

N

1

[E

N

2

.
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(ii) �-operation (merging of links)

Let N

1

be a network and

b

L = fl

1

; : : : ; l

m

g � L

I

N

1

. Let l = <l

1

; : : : ; l

m

> be a link su
h that

in(l) = [(in(l

i

) j l

i

2

b

L) and out(l) = [(out(l

i

) j l

i

2

b

L). Then �(N

1

;

b

L) = (N;E; T;C) is

de�ned as:

N = (A

N

1

[ ((L

N

1

n

b

L) [ flg));

E = (E

N

1

n (in(l) [ out(l)))[

f(n; l) j n 2 N

N

1

& 9l

i

2

b

L : (n; l

i

) 2 E

N

1

)g[

f(l; n) j n 2 N

N

1

& 9l

i

2

b

L : (l

i

; n) 2 E

N

1

)g[

f(!; l) j 8l

i

2

b

L : (!; l

i

) 2 E

N

1

)g[

f(l; !) j 8l

i

2

b

L : (l

i

; !) 2 E

N

1

)g.

(iii) ;-operation (sequential 
omposition)

Let N

1

and N

2

be networks su
h that (N

N

1

\ N

N

2

) = ;, (E

N

1

\ E

N

2

) = ; and j Out

N

1

j = j

In

N

2

j = 1.

Then (N

1

;N

2

) = �((N

1

jj N

2

); (L

Out

N

1

[ L

In

N

2

)).

(iv) +-operation (alternative 
omposition)

Let N

1

and N

2

be networks and

+

r

be an a-network with a de
ider r su
h that (N

N

1

\ N

N

2

) [

(N

N

1

\N

+

r

)[ (N

N

2

\N

+

r

) = ;, (E

N

1

\E

N

2

)[ (E

N

1

\E

+

r

)[ (E

N

2

\E

+

r

) = ;, j In

N

1

j=j In

N

2

j= 1

and j Out

N

1

j=j Out

N

2

j= 1. Let g 2 A

G

+

r

and l

r

3

; l

r

4

2 L

I

+

r

be su
h that (g; l

r

3

) is the output `+'-ar


and (g; l

r

4

) is the output `{'-ar
 of g.

Then (N

1

+N

2

)

r

= �(�(�(((N

1

jj N

2

) jj

+

r

); (L

In

N

1

[ fl

r

3

g)); (L

In

N

2

[ fl

r

4

g)); (L

Out

N

1

[ L

Out

N

2

)).

(v) �-operation (iterative 
omposition)

Let N

1

be a network and

�

r

0

be an i-network with a de
ider r

0

su
h that (N

N

1

\ N�

r

0

) = ;,

(E

N

1

\ E�

r

0

) = ;, j In

N

1

j = j Out

N

1

j = 1. Let g 2 A

G

�

r

0

, next 2 A

C

�

r

0

, l

r

0

3

; l

r

0

5

2 L

I

�

r

0

be su
h that

(g; l

r

0

3

) is the output `+'-ar
 of g and (l

r

0

5

; next) is the output ar
 of next.

Then (�N

1

)

r

0

= �(�((N

1

jj

�

r

0

); (L

In

N

1

[ fl

r

0

3

g)); (L

Out

N

1

[ fl

r

0

5

g)).

The examples of applying the operations (i)|(v) to nets are shown in Appendix.

We 
all a net N well-formed if it is de�ned as follows:

N =

^

f j (N

1

jj N

2

) j (N

1

;N

2

) j (N

1

+N

2

)

r

j (�N

1

))

r

0

, where

N

1

;N

2

are well-formed networks,

^

f 2 O,

+

r

2 A

�

r

0

2 I.

We are now ready to de�ne a notion of a 
oloured network.

De�nition 3.2. A 
oloured network (
-network for brevity) is a quadruple CN = (N ; T; �; C), where

(i) N is a well-formed network;

(ii) T is a set of tokens 
onsisting of two disjoint subsets T

I

(data tokens) and T

R

(
ontrol tokens)

(T

I

\ T

R

= ;);

(iii) � is a set of 
olours. Ea
h 
olour is a triple 
 = (x; y; z), where 
:x is the unique name of the

loop, 
:y is the number of the loop iteration, and 
:z is the 
ontext that may be a 
olour itself;

(iv) C : T �! � is a 
olour fun
tion.

The 
omponents of a 
-network CN = (N ; T;�; C) are subs
ribed by the index CN . If 
lear

from the 
ontext, the index CN is omitted. As an example, the well-formed network CN

0

(with

N

CN

0

= ((�

b

f

1

)

r

;

b

f

2

)) is shown in Fig. 3.3.
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>
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T is the set of �shes;

� is the set of 
olours;

C : T ! � is a fun
tion of 
olouring.

Figure 3.3.

For the sake of 
onvenien
e, we �x a 
-network CN = (N ; T;�; C) (with N = (N;E)) and work

with it throughout the paper.

A marking of CN is a fun
tion M de�ned from E into 2

T

su
h that the tokens must have a type

identi
al to the type of the ar
. A marking M is 
alled initial (denoted as M

in

), i�

(i) 8e 2 In 8t; t

0

2M(e) � (t 6= t

0

) C(t) 6= C(t

0

));

(ii) 8e 2 (E n In) � M(e) = ;.

Let a pair (CN ;M

in

) denote the initially marked 
-network.

We further spe
ify an interpretation for (CN ;M

in

) in order to provide a 
omplete representation

of the modelled 
omputation.

De�nition 3.3. An interpretation I of (CN ;M

in

) is de�ned as follows:

(i) a domain D of values,

(ii) an assignment of a total fun
tion ' : D

m

�! D to ea
h operator f 2 A

F

, where m =j in(f) j,

(iii) an assignment of a total predi
ate  : D

m

�! ftrue; falseg to ea
h de
ider r 2 A

R

, where

m =j in(r) j.

Besides we introdu
e a valuation fun
tion V that assigns a value V (t) 2 D (V (t) 2 ftrue; falseg,

respe
tively) to ea
h token t 2 T

I

(t 2 T

R

, respe
tively). Let I denote the set of all possible interpre-

tations of (CN ;M

in

). We use a triple (CN ;M

in

; I) to denote the interpreted (CN ;M

in

).
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For (CN ;M

in

; I), we de�ne the �ring rule asso
iated with a node n as follows:

(i) An a
tor (a link) n is enabled with a 
olour 
 in a marking M if there is a token with a 
olour 


on ea
h (at least one) input ar
 of n.

(ii) An a
tor (a link) n enabled with a 
olour 
 in a marking M may be 
hoosen to �re with a 
olour


 yielding a new marking M

0

spe
i�ed as follows:

1. One token with a 
olour 
 is removed from ea
h (one) input ar
 of an a
tor (a link) n.

2. The tokens are added to the output ar
s of n in the following way:

2.1. For a data (
ontrol) link n, one data (
ontrol) token with the 
olour U(n; 
) and the value

V (t) is added to ea
h output ar
 of n, where t is the data (
ontrol) token removed from an input

ar
 of n.

2.2. For an operator (a de
ider) n, one data (
ontrol) token with the 
olour U(n; 
) and the value

'(V (t

1

); : : : ; V (t

m

)) ( (V (t

1

); : : : ; V (t

m

))) is added to the output ar
 of n, where t

1

; : : : ; t

m

are the data tokens removed from the input ar
s of n and m =j in(n) j.

2.3. For a gate n, one data token with the 
olour U(n; 
) and the value V (t

1

) is added to the

`+'-ar
, if V (t

2

) = true, or to the `{'-ar
, if V (t

2

) = false, where t

1

and t

2

are respe
tively the

data and 
ontrol tokens removed from the input ar
s of n.

2.4. For a 
olour a
tor n, one data token with the 
olour U(n; 
) and the value V (t) is added to

the output ar
 of n, where t is the data token removed from the input ar
 of n.

Here

U(n; 
) =

8

>

>

>

<

>

>

>

:

(n; 0; 
); if n 2 New,

(
:x; 
:y + 1; 
:z); if n 2 Next,


:z; if n 2 Old,


; otherwise.

For (CN ;M

in

; I), a �ring with a 
olour 
 of a node n is de�ned as a triple M

(n;
)

�! M

0

su
h that a

transition from the markingM to the markingM

0

is 
onsistent with the �ring rule asso
iated with n.

We shall denote a �ring with a 
olour 
 of a node n as just a pair (n; 
), if information about markings

M and M

0

is not signi�
ant.

From now on, we shall use R = (N � �) and R

0

= ((A

F

[A

R

)� �).

A �ring sequen
e in (CN ;M

in

; I) is a string � over the alphabet R de�ned as:

(i) � = � is a �ring sequen
e in (CN ;M

in

; I) and M

in

�

�!M

in

,

(ii) Suppose �

0

is a �ring sequen
e in (CN ;M

in

; I), M

in

�

0

�!M and M

(n;
)

�!M

0

, then � = �

0

(n; 
) is a

�ring sequen
e in (CN ;M

in

; I) and M

in

�

0

(n;
)

�! M

0

.

LetR(CN ;M

in

; I) denote the set of all �ring sequen
es in (CN ;M

in

; I), andR = [(R(CN ;M

in

; I) j

I 2 I).

The spe
i�
ation of the behaviour of an initially marked 
-net (CN ;M

in

) by means of a labeled

prime event stru
ture has been des
ribed in [1℄. To sket
h it out, we �rst need to introdu
e the notion

of a dependen
e graph and its proje
tion de�ned for a �ring sequen
e.

De�nition 3.4.

Let � 2 R. Then the D-graph asso
iated with � is the triple

e

G

�

= (

e

V

�

;

e

E

�

;

~

l

�

) su
h that:

� = �. Then

e

G

�

= (;; ;; ;).
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� 6= �. Let � = �

0

(n; 
) and assume that

e

G

�

0

= (

e

V

�

0

;

e

E

�

0

;

~

l

�

0

) is de�ned. Then

e

G

�

= (

e

V

�

;

e

E

�

;

~

l

�

) for

e

V

�

=

e

V

�

0

[ f((n; 
);X)g, where

X = f((n

0

; 


0

);X

0

) 2

e

V

�

0

j out(n

0

) \ in(n) 6= ; if U(n

0

; 


0

) = 
g,

e

E

�

=

e

E

�

0

[ (X � f((n; 
);X)g) and

8((n

0

; 


0

);X

0

) 2

e

V

�

�

~

l

�

(((n

0

; 


0

);X

0

)) = (n

0

; 


0

).

In order to generalize some insigni�
ant dependen
es in a d-graph, we de�ne the notion of its

proje
tion onto R

0

.

De�nition 3.5.

Let � 2 R. Then the proje
tion of D-graph

e

G

�

= (

e

V

�

;

e

E

�

;

~

l

�

) on the set R

0

is the triple

b

G

�

= (

b

V

�

;

b

E

�

;

^

l

�

)

su
h that:

b

V

�

= f((n; 
);X) 2

e

V

�

j (n; 
) 2 R

0

g;

b

E

�

�

b

V

�

�

b

V

�

su
h that (((n; 
);X); ((n

0

; 


0

);X

0

)) 2

b

E

�

()

9(((n; 
);X); ((n

1

; 


1

);X

1

)); : : : (((n

m

; 


m

);X

m

); ((n

0

; 


0

);X

0

)) 2

e

E

�

su
h that (n; 
),(n

0

; 


0

) 2R

0

, (n

1

; 


1

); : : : ; (n

m

; 


m

)2 (R n R

0

) if m � 1;

8((n

0

; 


0

);X

0

) 2

b

V

�

�

^

l

�

(((n

0

; 


0

);X

0

)) = (n

0

; 


0

).

Now we 
an give the event stru
ture semanti
s for 
-networks from [1℄.

De�nition 3.6.

The event stru
ture for (CN ;M

in

) is a quadruple E((CN ;M

in

)) = (E;�;#; l), where

� E = [

�2R

(

b

V

�

);

� �= [

�2R

(

b

E

�

)

�

;

� 8((n; 
); X); ((n

0

; 


0

);X

0

) 2 E � ((n; 
);X) # ((n

0

; 


0

);X

0

) , 8� 2 R �

f((n; 
); X); ((n

0

; 


0

);X

0

)g 6�

b

V

�

;

� 8((n; 
);X) 2 E � l

E(N )

(((n; 
);X)) = (n; 
).

Let us 
onsider the initially marked 
-net (CN

0

;M

in

) (shown on Fig. 3.4), where M

in

((!; l

r

0

)) =

ftg. Fig. 3.4 shows the �nal fragment of the event stru
ture for (CN

0

;M

in

), where 


0

= (0; 0; 0),




1

= (new; 0; 


0

), 


2

= (new; 1; 


0

) and 


3

= (new; 2; 


0

).

(r; 


2

)(r; 


1

) (f

1

; 


1

)

(f

2

; 


0

)

#

(f

1

; 


2

)

#

(f

2

; 


0

)

(r; 


3

) (f

1

; 


3

)

#

(f

2

; 


0

)

-

�

�

�

��

- -

�

�

�

��

- -

�

�

�

��

Figure 3.4.

4. Well-formed event stru
tures

In this se
tion we introdu
e a new version of event stru
tures, namely, the 
ontext event stru
tures

over a separated alphabet

d

A
t = A
t

f

[ A
t

r

[ f

p

g, where A
t

f

\ A
t

r

= ;. A
tions from A
t

f

are


alled basi
 and a
tions from A
t

r

are auxiliary for 
onstru
ting well-formed event stru
tures. We

superindu
e the notion of a 
ontext whi
h is a 
ountable set. When modeling a data domain by event

stru
tures, the 
ontext plays the role of an additional attribute, for example, time limitation or the

set of 
olours.
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De�nition 4.1. A 
ontext event stru
ture (over an alphabet

d

A
t = A
t

f

[A
t

r

[f

p

g with a 
ontext

K ) is a 5-tuple E = (E;<;#; l; 
), where

� E is a 
ountable set of events;

� <� E �E is a (nonre
exive) partial order 
ausality relation;

� # � E �E is a symmetri
 nonre
exive relation (
on
i
t relation);

� l : E !

d

A
t is a labeling fun
tion;

� 
 : E ! K is a 
ontext assigning fun
tion.

We use E

t

E

= fe 2 E

E

j l

E

(e) =

p

g to denote the set of terminate events, E

nt

E

= E

E

nE

t

E

to denote

the set of nonterminate events, and minE = fe 2 E

E

j

.

e = ;g to denote the set of minimal elements.

We now introdu
e the notions of a free term p, the set of its a
tions V ar(p), and the 
lass of

isomorphi
 
ontext event stru
tures [p℄ determined by this term. Let Term

K

(A
t) denote the set of

free terms over the alphabet A
t = A
t

F

[A
t

r

with the 
ontext K 
onstru
ted as follows.

1. p = O 2 Term

K

(

d

A
t), V ar(p) = ; and E 2 [p℄ ) E = (feg; ;; ;; f(e;

p

)g; f(e; k

0

)g).

2. p = a 2 A
t

f

) p 2 Term

K

(

d

A
t), V ar(p) = fag and

E 2 [p℄) (fe; e

0

g; f(e; e

0

)g; ;; f(e; a); (e

0

;

p

)g; f(e; k

0

); (e

0

; k

0

)g):

Let p; q 2 Term

K

(

d

A
t) su
h that V ar(p)\V ar(q) = ;. Then the following operators are used to build

terms :

(A) Parallel 
omposition.

p jj q 2 Term

K

(

d

A
t), V ar(p jj q) = V ar(p) [ V ar(q) and E 2 [p jj q℄ ) 9E

1

2 [p℄; E

2

2 [q℄ :

E

E

1

\E

E

2

= ; and E

E

= E

E

1

[E

E

2

, <

E

=<

E

1

[ <

E

2

, #

E

= #

E

1

[#

E

2

, l

E

= l

E

1

[ l

E

2

, 


E

= 


E

1

[ 


E

2

(B) Sequential 
omposition.

p; q 2 Term

K

(

d

A
t), V ar(p; q) = V ar(p) [ V ar(q) and E 2 [p; q℄)

) 9E

0

2 [p℄; E

1

; E

2

; : : : ; E

n

2 [q℄, where n =j E

t

E

0

j, su
h that E

t

E

0

= fe

1

; e

2

; : : : ; e

n

g, minE

i

=

fe

i

g; for all 0 � i � n, E

E

i

\ E

E

j

= ;for0 � i 6= j � n, E

E

0

\ E

E

i

= fe

i

g for 1 � i � n and

E

E

=

S

0�i�n

E

E

i

. Then:

<

E

=

S

0�i�n

<

E

i

S

f(e; e

0

) j e 2 E

E

0

; e

0

2 E

E

i

81 � i � ng,

#

E

=

S

0�i�n

#

E

i

S

f(e; e

0

); (e

0

; e) j e 2 E

E

0

; e

0

2 E

E

i

and e#

E

0

e

i

; 1 � i � ng

S

f(e; e

0

) j e 2

E

E

i

; e

0

2 E

E

j

for 1 � i; j � n; i 6= jg, l

E

=

S

1�i�n

l

E

i

S

l

E

0

j

E

nt

E

0

, 


E

=

S

1�i�n




E

i

S




E

0

j

E

nt

E

0

.

(C) Alternative 
omposition.

p

a

+ q 2 Term

K

(

d

A
t) with a 2 A
t

r

n(V ar(p) [ V ar(q));

V ar(p

a

+ q) = V ar(p) [ V ar(q) [ fag and E 2 [p

a

+ q℄ ) 9E

1

2 [p℄; E

2

2 [q℄; d 62 E

E

1

[ E

E

2

:

E

E

1

\E

E

2

= ;,

j minE

1

j=j minE

2

j= 1 and

E

E

= E

E

1

[E

E

2

[ fdg,

<

E

=<

E

1

[ <

E

2

[f(d; e) j e 2 E

E

1

[E

E

2

g,

#

E

= #

E

1

[#

E

2

[ f(e; e

0

) j e 2 E

E

i

; e

0

2 E

E

j

; i 6= jg,

l

E

= l

E

1

[ l

E

2

[ f(d; a)g,




E

= 


E

1

[ 


E

2

[ f(d; k

0

)g.

(D) Context substitution.

p = q[k

0

1

=k

1

; : : : ; k

0

n

=k

n

℄ 2 Term

K

(

d

A
t), where k

i

; k

0

i

2 K for 1 � i � n. Then V ar(p) = V ar(q)

and E 2 [p℄) 9E

0

2 [q℄ : E = (E

E

0

; <

E

0

;#

E

0

; l

E

0

; 
),

with


(e) =

(

k

0

i

; if 


E

0

(e) = k

i

for some 1 � i � n ;




E

0

(e); otherwise.

for all e 2 E

E

0

.
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(E) Iterative 
omposition.

p

a

�2 Term

K

(

d

A
t), where a 2 A
t

r

nV ar(p); V ar(p

r

�) = V ar(p) [ fag and E 2 [p

r

� ℄ ) E is a

minimal 
ontext event stru
ture su
h that 8n 2 N9E

n

2 [p

(n)

℄: E

n

v E , ( E

n

is a substru
ture of

E), where the term p

(n)

is built indu
tively as follows :

p

(0)

= O,

p

(n)

= (O

a

+ (p; p

(n�1)

))[k

1

a

=k

0

; k

2

a

=k

1

a

; : : : ; k

n

a

=k

n�1

a

℄.

In the set of free terms we 
onsider a subset of basi
 terms Term

K

0

(

d

A
t) � Term

K

(

d

A
t):

Term

K

0

(

d

A
t) = b j (p jj q) j (p; q) j (p

a

+ q) j (p

a

�), where

b 2 A
t

f

, a 2 A
t

r

, p; q 2 Term

K

0

(

d

A
t).

De�nition 4.2. A 
ontext event stru
ture E is 
alled a well-formed event stru
ture if E 2 [p℄ for some

p 2 Term

K

0

(

d

A
t).

Two 
ontext event stru
tures E

1

and E

2

with 
ontexts K

1

and K

2

, respe
tively, are 
alled isomorphi


(E

1

�

=

E

2

) i� there is an isomorphism f between E

1

and E

2

with a substitution h : K

1

! K

2

, i.e. f :

E

E

1

! E

E

2

is a bije
tion su
h that 8e; d 2 E

E

1

: (e <

E

1

d, f(e) <

E

2

f(d)) & (e#

E

1

d, f(e)#

E

2

f(d))

and 8e 2 E

E

1

; d 2 E

E

2

: d = f(e) ) (l

E

1

(e) = l

E

2

(d)) & 


E

1

(e) = h(


E

2

(d))) It 
an be noted that the

isomorphism just introdu
ed for 
ontext event stru
tures 
orrelates with that 
onsidered in Se
tion 2

for prime event stru
tures, assuming that prime event stru
tures have the null 
ontext K

null

= fOg

(i.e., k

i

a

= k

0

= O for all i 2 N and a 2 A
t

r

s.t. k

i

a

2 K

null

). Thus, we 
an 
onsider an isomorphism

between a 
ontext event stru
ture E and a prime event stru
ture E

0

(E

�

=

E

0

) with the substitution

h : K

E

! K

null

: In other words, we 
an 
onsider su
h isomorphisms simply without a substitution.

Proposition 4.1. Let E

0

be a well-formed event stru
ture (over the alphabet

d

A
t). Then there is

q 2 PBPA

�

(

d

A
t) su
h that E

PBPA

�

(q)

�

=

E

0

.

Proof. We prove it by indu
tion on the stru
ture of a term p. Assume p 2 Term

K

0

(

d

A
t) to be su
h

that E

0

2 [p℄. We 
onstru
t the 
orresponding PBPA

�

-term q (
onsidering an isomorphism without

substitution by indu
tion on the number of ;-operator used in the term p).

1. Suppose that the term p does not in
lude a sequential 
omposition. We prove the 
ase by

indu
tion on the stru
ture of p.

Four 
ases are possible:

p = a 2 A
t

f

. Then 
learly q = (a;

p

) 2 PBPA

�

(

^

A
t). It is easy to see that E

PBPA

�

(q)

�

=

E

0

.

p = (p

1

jjp

2

). Assume q

1

; q

2

2 PBPA

�

d

(A
t) to be 
onstru
ted so that E

PBPA

�

(q

1

) = F

1

�

=

E

1

2 [p

1

℄

and F

2

= E

PBPA

�

(q

2

)

�

=

E

2

2 [p

2

℄. Then obviously q = (q

1

jjq

2

) 2 PBPA

�

d

(A
t). It is ne
essary

to show E

PBPA

�

(q)

�

=

E

0

. Let f

1

and f

2

be an isomorphism between F

2

and E

2

. We 
an take

F

1

;F

2

; E

1

and E

2

su
h that E

F

1

\E

F

2

= ; and E

E

1

\E

E

2

= ;. It is 
lear that f

1

[f

2

: E

F

1

[E

F

2

!

E

E

1

[E

E

2

is an isomorphism between F = E

PBPA

�

(q) and E

0

.

p = p

1

; p

2

. Assume q

1

; q

2

2 PBPA

�

d

(A
t) to be 
onstru
ted so that E

PBPA

�

(q

1

) = F

1

�

=

E

1

2 [p

1

℄

and F

2

= E

PBPA

�

(q

2

)

�

=

E

2

2 [p

2

℄ and a 2 A
t

r

�

d

A
t. Then q = a; (q

1

+ q

2

) 2 PBPA

�

d

(A
t).

It is ne
essary to show that E

PBPA

�

(q)

�

=

E

0

. Let f

1

be an isomorphism between F

1

and

E

1

and f

2

be an isomorphism between F

2

and E

2

. We 
onsider F

1

;F

2

; E

1

and E

2

su
h that

E

F

1

\ E

F

2

= E

E

1

\ E

E

2

= ; and d 62 E

E

1

[ E

E

2

, where d 2 E

E

0

su
h that l

E

0

(d) = a. Let

e 62 E

F

1

[ E

F

2

be su
h that l

E

PBPA

�(q)

(e) = a. Then it is 
lear that f = f

1

[ f

2

[ f(e; d)g is an

isomorphism between E

PBPA

�

(q) and E

0

.

p = (p

1

a

�). Assume q

1

2 PBPA

�

d

(A
t) to be 
onstru
ted so that E

PBPA

�

(q

1

) = F

1

�

=

E

1

2 [p

1

℄. Then

q = a; (q

1

; a �

p

) 2 PBPA

�

(

d

A
t). It is ne
essary to show that E

PBPA

�

(q)

�

=

E

0

. Let us 
onsider

the sequen
e of PBPA

�

-terms:
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q

(0)

=

p

,

q

(1)

= a; (q

1

;

p

+

p

),

q

(2)

= a; (q

1

; (a; (q

1

;

p

+

p

)) +

p

); : : :, q

(n)

= a; (q

1

; q

(n�1)

+

p

). It is easy to see that

q = lim

n!1

q

(n)

and E

PBPA

�

(q

(i)

)

�

=

E

n

2 [p

(n)

℄. Hen
e, E

PBPA

�

(q) is the minimal event

stru
ture su
h that E

PBPA

�

(q)

�

=

E

0

..

2. Let p = (p

1

; p

2

). Sin
e the term p

2

in
ludes less sequential 
omposition operators than p, we


an 
onstru
t the term q

2

2 PBPA

�

(

d

A
t) su
h that E

PBPA

�

(q

2

)

�

=

E

2

2 [p

2

℄. We build the term q 2

PBPA

�

(

d

A
t) 
orresponding to p 2 Term

K

0

(

d

A
t) by indu
tion on the stru
ture of p

1

. It is 
lear from

the de�nition of the sequential 
omposition that (p

1

; p

2

); p

3

= p

1

; (p

2

; p

3

)8p

1

; p

2

; p

3

2 Term

K

0

(

d

A
t).

Thus, the following four 
ases are only worth to be 
onsidered.

p

1

= a 2 A
t

f

. Then q = (a; q

2

) 2 PBPA

�

(

d

A
t)

p

1

= p

0

1

jj p

00

1

. This 
ase is invalid sin
e 8E

1

2 [p

1

℄: j minE

1

j� 2 due to the de�nition of the parallel


omposition. This 
ontradi
ts the sequential 
omposition for Term

K

0

(

d

A
t).

p

1

= (p

0

1

a

+ p

00

1

). Sin
e p

0

1

and p

00

1

are less than p

1

, we 
an 
onstru
t the terms q

0

1

; q

00

1

2 PBPA

�

(

d

A
t)

su
h that E

PBPA

�

(q

0

1

)

�

=

E

1

2 [p

0

1

; p

2

℄ and E

PBPA

�

(q

00

1

)

�

=

E

1

2 [p

00

1

; p

2

℄. Let us 
onsider the

term q = a; (q

0

1

+ q

00

1

) 2 PBPA

�

(

d

A
t). By the reasoning analogous to that in 
ase 1(
) of the

present proof, one 
an establish that E

PBPA

�

(q)

�

=

E

0

.

p

1

= (p

0

a

�). Sin
e the term p

0

2 Term

K

0

(

d

A
t) is less than p

1

, we 
an 
onstru
t the term q

0

2

PBPA

�

(

d

A
t) su
h that E

PBPA

�

(q

0

)

�

=

E

1

2 [(p

0

; a)℄. Let us 
onsider the term q = a; (q

0

� q

2

).

By the reasoning analogous to that in 
ase 1(d) (repla
ing q

2

instead of

p

) of the present proof,

one 
an establish that E

PBPA

�

(q)

�

=

E

0

.

From Proposition 4.1 it obviously follows that a well-formed event stru
ture is a prime event

stru
ture, sin
e E

PBPA

�

(p) is a prime event stru
ture for all p 2 PBPA

�

(

d

A
t).

The a
tion

p

is not signi�
ant indeed, sin
e it is only used to denote a possible exit from an iterative


y
le in a well-formed event stru
ture. By this reason we 
onsider the notion of weak isomorphism

de�ned as follows: E

�

=

!

F (this means that E and F are weakly isomorphi
) if Ej

E

nt

E

�

=

Fj

E

nt

F

, what

means that this equivalen
e notion takes into 
onsideration only non-terminate events.

Theorem 4.1.

(i) Let (CN ;M

in

) be an initially marked 
-network su
h that 8e 2 In : t 2M

in

(e)) C(t) = 


0

. Then

there is a well-formed event stru
ture E

0

su
h that E

0

�

=

!

E(CN ;M

in

).

(ii) Let E

0

be a well-formed event stru
ture over the alphabet

d

A
t with a 
ontext K. Then there

is an initially marked 
-network (CN ;M

in

), where 8e 2 In : t 2 M

in

(e) ) C(t) = 


0

su
h that

E(CN ;M

in

)

�

=

!

E

0

.

Proof.

(i) We take the following alphabet A
t

r

= A

R

, A
t

f

= A

F

and a substitution h su
h that k

0

= h(


0

)

and k

i

a

= h(new(a); i; 
), where new(a) 2 New su
h that new(a) ,! a. We prove the 
ase by indu
tion

on the stru
ture of the formula for N

CN

:

1. Let N =

^

f . Then for any E 2 [f ℄ it is obvious that E

0

�

=

!

E(CN ;M

in

).

2. Let N = N

CN

1

jj N

CN

2

. By the indu
tion hypothesis, there are terms p (for N

CN

1

) and q

(for N

CN

2

) and well-formed event stru
tures E

1

2 [p℄ and E

2

2 [q℄ su
h that E

E

1

\ E

E

2

= ; and

E

1

�

=

!

E(CN

1

;M

in

), E

2

�

=

!

E(CN

2

;M

in

). Then, 
learly, E = E

1

[ E

2

2 [p jj q℄ 2 Term

K

(

d

A
t) built

a

ording to the rule (A) satis�es the following: E

�

=

!

E(CN

1

;M

in

) [ E(CN

2

;M

in

) = E(CN ;M

in

).

3. Let N = N

CN

1

;N

CN

2

. By the indu
tion hypothesis, there are terms p (for N

CN

1

) and q (for

N

CN

2

) and well-formed event stru
tures E

0

2 [p℄ and E

1

; : : : ; E

n

2 [q℄ su
h that E

E

i

\E

E

j

= ;, while i 6=

j and E

0

�

=

!

E(CN

1

;M

in

), E

i

�

=

!

E(CN

2

;M

in

) for 1 � i � n. Then, 
learly, E 2 [p;q℄ 2 Term

K

(

d

A
t)

built a

ording to the rule (B) satis�es the following: E

�

=

!

E(CN ;M

in

).
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4. Let N = (N

CN

1

+ N

CN

2

)

r

. By the indu
tion hypothesis, there are terms p (for N

CN

1

) and

q (for N

CN

2

) and well-formed event stru
tures E

1

2 [p℄ and E

2

2 [q℄ su
h that E

E

1

\ E

E

2

= ; and

E

1

�

=

!

E(CN

1

;M

in

), E

2

�

=

!

E(CN

2

;M

in

). Then, 
learly, E 2 [p

r

+ q℄ 2 Term

K

(

d

A
t) built a

ording to

the rule (C) satis�es the following E

�

=

!

E(CN ;M

in

).

5. N = (�N

CN

1

)

r

. By the indu
tion hypothesis, there is a term p (for N

CN

1

) and a well-formed

event stru
ture E

1

2 [p℄ su
h that E

1

�

=

!

E(CN

1

;M

in

). Then, 
learly, E 2 [p

r

�℄ 2 Term

K

(

d

A
t) built

a

ording to the rule (D) satis�es the following: E

�

=

!

E(CN ;M

in

).

(ii)We take A

F

=A
t

f

, A

R

= A
t

r

and a substitution h built as follows: h(


0

) = k

0

, h(new

i

; j; 
) = k

j

a

with new

i

,! a. We prove the 
ase by indu
tion on the stru
ture of p:

1. Let p = a. Then N

CN

= â. From the de�nition of o-nets we have

R(CN ;M

in

) = f(l

a

1

; 


0

)(a; 


0

)(l

a

2

; 


0

)g:

Then, by 
onstru
tion of E(CN ;M

in

), we get the following E

E(CN ;M

in

)

= f((a; 


0

); ;)g, <

E(CN ;M

in

)

= ;,

#

E(CN ;M

in

)

= ;, l

E(CN ;M

in

)

((a; 


0

); ;) = (a; 


0

). Obviously, E(CN ;M

in

)

�

=

!

E

0

.

2. Let p = p

1

jj p

2

. Then we have N

CN

= N

CN

1

jj N

CN

2

, where N

CN

1

is a 
-network for p

1

and

N

CN

2

is a 
-network fpr p

2

. By the de�nition of the jj-operation for networks, it follows that

R(CN ;M

in

) = R(CN

1

;M

in

) [R(CN

2

;M

in

):

Therefore,

E

E(CN ;M

in

)

= E

E(CN

1

;M

in

)

[E

E(CN

2

;M

in

)

;

<

E(CN ;M

in

)

= <

E(CN

1

;M

in

)

[ <

E(CN

2

;M

in

)

;

#

E(CN ;M

in

)

= #

E(CN

1

;M

in

)

[#

E(CN

2

;M

in

)

;

l

E(CN ;M

in

)

= l

E(CN

1

;M

in

)

[ l

E(CN

2

;M

in

)

:

By 
onstru
tion, it is easy to see that E(CN ;M

in

)

�

=

!

E

0

.

3. Let p = p

1

; p

2

. Then we have N

CN

= N

CN

1

;N

CN

2

, where N

CN

1

is a 
-network for p

1

and N

CN

2

is a 
-network fpr p

2

. By the de�nition of the ;-operation for networks, it follows that

R(CN ;M

in

) = maxR(CN

1

;M

in

) ÆR(CN

2

;M

in

) = f��

0

j � 2 maxR(CN

1

;M

in

); �

0

2 R(CN

2

;M

in

)g;

where

maxR(CN

1

;M

in

) = f� 2 R(CN

1

;M

in

) j 8�

0

2 R(CN

1

;M

in

) � �

0

= ��

00

) �

00

= �g

and j maxR(CN

1

;M

in

) j= n =j E

t

E

0

j for E

0

2 [p

1

℄: Therefore,

E

E(CN ;M

in

)

= E

E(CN

1

;M

in

)

[

[

1�i�n

E

E

i

(CN

2

;M

in

)

;

where E

E

i

(CN

2

;M

in

)

\E

E

j

(CN

2

;M

in

)

= ; with i 6= j and E

i

(CN

2

;M

in

)

�

=

E

j

(CN

2

;M

in

) for all 1 � i; j � n;

<

E(CN ;M

in

)

= <

E(CN

1

;M

in

)

[

[

1�i�n

<

E

i

(CN

2

;M

in

)

[f(e; e

0

) j e 2 E

E(CN

1

;M

in

)

; e

0

2 E

E

i

(CN

2

;M

in

)

and

e <

E(CN

1

;M

in

)

d

i

2 maxE

E(CN

1

;M

in

)

g;

#

E(CN ;M

in

)

= #

E(CN

1

;M

in

)

[

[

1�i�n

#

E

i

(CN

2

;M

in

)

[ f(e; e

0

) j e 2 E

E

i

(CN

2

;M

in

)

; e

0

2 E

E

j

(CN

2

;M

in

)

;

i 6= jg [ f(e; e

0

); (e

0

; e) j e 2 E

E(CN

1

;M

in

)

; e

0

2 E

E

i

(CN

2

;M

in

)

and

e#

E(CN

1

;M

in

)

d

i

2maxE

E(CN

1

;M

in

)

g;

l

E(CN ;M

in

)

= l

E(CN

1

;M

in

)

[

[

1�i�n

l

E

i

(CN

2

;M

in

)

:
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By 
onstru
tion, it is easy to see that E(CN ;M

in

)

�

=

!

E

0

.

4. Let p = p

1

r

+ p

2

. Then we have N

CN

= (N

CN

1

+N

CN

2

)

r

, where N

CN

1

is a 
-network for p

1

and

N

CN

2

is a 
-network fpr p

2

. By the de�nition of the +-operation for networks, it follows that

R(CN ;M

in

)=f(l

r

1

; 
)(r; 
)(l

r

2

; 
)(g; 
)(l; 
)� j � 2 R(CN

1

;M

in

) [R(CN

2

;M

in

)

and

l 2 f< l

r

3

; l

N

CN

1

1

>;< l

r

4

; l

N

CN

2

1

>gg:

Therefore,

E

E(CN ;M

in

)

= E

E(CN

1

;M

in

)

[E

E(CN

2

;M

in

)

[ f((r; 
);X)g;

<

E(CN ;M

in

)

= <

E(CN

1

;M

in

)

[ <

E(CN

2

;M

in

)

[f(e; e

0

) j e

0

2 E

E(CN

1

;M

in

)

[E

E(CN

2

;M

in

)

; e = ((r; 
);X)g;

#

E(CN ;M

in

)

= #

E(CN

1

;M

in

)

[#

E(CN

2

;M

in

)

[ f(e; e

0

); (e

0

; e) j e 2 E

E(CN

1

;M

in

)

; e

0

2 E

E(CN

2

;M

in

)

g;

l

E(CN ;M

in

)

= l

E(CN

1

;M

in

)

[ l

E(CN

2

;M

in

)

[ f(((r; 
);X); (r; 
))g:

By 
onstru
tion, it is easy to see that E(CN ;M

in

)

�

=

!

E

0

.

5. Let p = p

1

r

�. Then we have N

CN

= (�N

CN

1

)

r

, where N

CN

1

is a 
-network for p

1

. By the

de�nition of the �-operation for networks, it follows that

R(CN ;M

in

) =

[

i2N

f�

i

j � 2 R(CN

1

;M

in

)g;

where �

0

= �, �

n

= ��

n�1

. Therefore,

E

E(CN ;M

in

)

=

[

i2N

E

E

i

(CN

1

;M

in

)

;

where

E

E

i

(CN

1

;M

in

)

\E

E

j

(CN

1

;M

in

)

= ;; i 6= j

and

E

i

(CN

1

;M

in

)

�

=

E

j

(CN

1

;M

in

) 8i 2 N;

<

E(CN;M

in

)

=

[

i2N

<

E

i

(CN

1

;M

in

)

[

[

i<j

f(e; e

0

) je2E

E

i

(CN

1

;M

in

)

; e

0

2E

E

j

(CN

1

;M

in

)

g;

#

E(CN ;M

in

)

=

[

i2N

#

E

i

(CN

1

;M

in

)

;

l

E(CN ;M

in

)

=

[

i2N

l

E

i

(CN

1

;M

in

)

:

By 
onstru
tion, it is easy to see that E(CN ;M

in

)

�

=

!

E

0

.

5. Con
lusion

In this paper we have formalized a possibility for algebrai
 spe
i�
ation to establish a 
orresponden
e

between event stru
tures and 
-networks. We propose a new variation of the event stru
ture model.

We have enri
hed this well-known formal model by adding a notion of 
ontext. This allows us to

in
rease the expressiveness of the event stru
ture model. Moreover, we de�ne a number of algebrai


operations over re
ently introdu
ed 
ontext event stru
tures whi
h are shown to be 
orresponding to

the operations of the earlier known algebra BPA

�

de�ned over event stru
tures. The main result

of the paper establishes a mutual 
orresponden
e between the 
lasses of these two models (
oloured

data
ow networks and 
ontext event stru
tures) de�ned by algebrai
 operations.
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It is worth remarking that the obtained results have been formulated in terms of �nite obje
ts (�nite

algebrai
 formulas representing in�nite systems). Su
h investigations allow us to 
lassify and unify

di�erent abstra
t models of 
on
urrent pro
esses. Further resear
h 
ould in
lude di�erent equivalen
e

notions over 
-networks and their relations to the similar ones over event stru
tures.
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6. Appendix

The examples of the algebrai
 operations over data
ow networks.

(a) jj-operation (parallel 
omposition)

An example of using the jj-operation to o-net
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(b) �-operation (merging of links)

An example of using the �-operation to net (
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(
) ;-operation (sequential 
omposition)

An example of using the ;-operation to o-net
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(d) +-operation (alternative 
omposition)

An example of using the +-operation to o-net
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(e) �-operation (iterative 
omposition)

An example of using the �-operation to o-net
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