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Dispersion analysis of the hybrid plasma model∗

Lyudmila V. Vshivkova, Galina I. Dudnikova

Abstract. This paper deals with the analysis of the hybrid plasma model based
on the kinetic description of an ion component of the plasma and hydrodynamic
approach for electrons. This type of models is widely used to investigate the pro-
cesses and mechanisms of the collisionless interaction of interpenetrating plasma
flows with a magnetic field with different values of the Mach numbers.

It is well known that nonstationary processes in the laboratory and the
space plasma are always accompanied by the generation of different types of
oscillations and waves. At the same time, the energy of a directed motion is
transported to thermal and kinetic energies of the surrounding background,
the electromagnetic field energy and fast particle flows. A general property
of the phenomena of interaction of high-speed plasma flows is their collision-
less nature with respect to Coulomb’s collisions. This means that the flow
interaction takes place at the distances which are essentially smaller than
classical free paths. Under the current conditions, it is necessary to use the
kinetic approach to describe the plasma behavior. Difficulties in the numeri-
cal implementation of the kinetic models, dealing with an essential difference
in spatial-temporal scales for ions and electrons, resulted in developing the
hybrid models. These models, based on the kinetic-hydrodynamic approach,
are widely used in the research into a number of phenomena occurring in
the laboratory and space plasma [1–4].

In this paper, the dispersion analysis of the hybrid plasma model in
collisionless plasma is given. It allows finding a stability criterion for its
numerical implementation.

The initial system of the hybrid model equations includes the kinetic
Vlasov equation for ions:

∂f

∂t
+ v · ∂f

∂r
+

F
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· ∂f
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= 0, (1)

where F = e
(
E +
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[v ×B]

)
, the equation of motion and the equation of

an internal energy change for electrons are as follows:
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n

(
∂Te
∂t

+ (ue · ∇)Te

)
= −(γ − 1)pe∇ · ue; (3)

and the Maxwell equations are

∇×B =
4π

c
j, ∇×E = −1

c

∂B

∂t
. (4)

Here f = f(r,v, t) is an ion velocity distribution function, mi and e are a
mass and a charge of ions, respectively, v is an ion velocity, B and E are
the intensities of magnetic and electric fields, me and u are the mass and
velocity of electrons, pe = nTe is a pressure of an electron component, Te
is an electron temperature, j = en(Vi − ve) is the current density, and γ is
the ratio of specific heats. The plasma is quasi-neutral, i.e., it is assumed
that ne = ni = n. The ion density and the average ion velocity are found as
moments of the ion distribution function

n = ni =

∫
f(r,v, t) dv, 〈v〉 = Vi =

1

n

∫
vf(r,v, t) dv.

The numerical approach to solving system of equations (1)–(4) includes
the particle-in-cell (PIC) method and finite difference schemes [3–5]. A more
detailed description of the algorithm to solve this system is presented in [6].
In this paper, we investigate the dispersion properties of the above hybrid
model. The dispersion relation for plasma in a general case is derived in [7].

Let us turn from the Vlasov equation to the equations for moments with
allowance for the ion dispersion by velocities (i.e., the ion temperature) to
be equal to zero. Consequently, we obtain only two equations, instead of an
infinite system of equations for moments

mi

(∂vi
∂t

+ (vi · ∇)vi

)
= e
(
E +

1

c
(vi ×B)

)
, (5)

∂ni
∂t

+∇ · (nivi) = 0. (6)

The electrons are considered in the approach of a massless fluid, i.e., the
electron inertia is omitted.

Let us write down the system of equations (2)–(6) in the Cartesian coor-
dinates when considering the problem of the the wave oscillation propagation

along the axis x
(
∂

∂y
= 0 and

∂

∂z
= 0

)
which, initially (t = 0), takes place

in the uniform and equilibrium plasma:
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∂t
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Then let us assume f = f0 + f∗, where f is the following function f =
f{vix, viy, viz, n, vex, vey, vez, T, Bx, By, Bz, Ex, Ey, Ez}. Here f0 is the value
of the function in the initial non-perturbed state and f∗ is the initial per-
turbation (f∗ � f0). For the case in question, v0 = 0, B0 = (B0

x, B
0
y , 0) =

(B0 cosα,B0 sinα, 0), where B0 is the amplitude of a non-perturbed field
and α is the angle between the directions of the magnetic field and the axis x.
Linearizing system of equations (7)–(19) assuming f∗ = f̃ exp(−iωt+ ik‖x),
where ω is the frequency of oscillations and k‖ is a wave number, we obtain

the following cubic equation for x =
(
ω

k‖

)2
:
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e
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0
x

)2
+ 4πmin0(2(B0
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]
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1
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2γT0 + 8πn0γT0

]
x−

1

mi
γT0(B

0
x)4 = 0. (20)

From equation (20) one can see that the signs of the coefficients do not
change when varying parameters. Consequently, at x = 0 the function signs
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and derivatives alternate: f(0) < 0, f ′(0) > 0, f ′′(0) < 0, and f ′′′(0) > 0,
that is, there are three sign inversions. On the other hand, with sufficiently
large x = x∗, the sign of the function and its derivatives is defined by the
first term of the expression, i.e., by the sign of the coefficient a0 (f = a0x

3 +
a1x

2 + a2x + a3). Then there are no sign inversions in the sequence of the
function values and its derivatives at x∗. Consequently, according to the
Sturm’s theorem, there are exactly three roots on the interval x = [0, x∗].
As (ω/k‖)

2 > 0, then ω is a real number and, hence, f∗ has the oscillating
behavior with respect to time. This results in that the system of equations is
stable. These roots allow one to define the wave phase velocity vph = ω/k‖.

Dividing equation (20) by (4πmin0)
2 and taking into account the fact

that the Alfven velocity is vA =
B0

√
4πnimi

, the ion cyclotron frequency is

ωci =
eB0

mic
, the ion plasma frequency is ωpi =

√
4πnie

2

mi
and the sound speed

is cs =

√
γTe

mi
, we arrive at the following equation:

x3 − v2A
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ω2
pi

cos2α+ 1 + cos2α+
c2s
v2A

)
x2 +

v2Acos2α

(
v2A +

k2‖c
2

ω2
pi

c2s + 2c2s

)
x− c2sv4Acos4α = 0 (21)

where x =
(
ω

k‖

)2
. Next, let us proceed to dimensionless variables choosing

as characteristic parameters the velocity vA and the wave number ωpi/c. In
dimensionless variables, equation (21) is as follows:

x3−
(
k2‖ cos2α+1+cos2α+c2s

)
x2+cos2α

(
1+k2‖c

2
s+2c2s

)
x−c2s cos4α = 0. (22)

The contours of the phase velocity for the value of cs = 0.5 are given in
Figure 1. The angle α = 0 refers to the maximal values of vph. Figure 2
illustrates the dependence of the phase velocity vph on the wave number
k‖, obtained when solving equation (22) for cs = 0.5 and α = 0. The first
minor roots show that vph(k‖) does not grow when k‖ increases, and the
third (maximal) root grows. Also, at large values of k‖ the phase velocity
is proportional to k‖, vph ∼ k‖, i.e., the smaller the wave length of the
oscillation, the larger its velocity. Thus, the velocity of the perturbation
propagation can turn out to be infinitely large, even if its amplitude is very
small.

When using the numerical methods for solving problems based on the
considered model, the phase velocity cannot be infinite. In any numerical
grid method, there is a minimal size equal to a minimal grid step. Conse-
quently, there is a minimal wave length and, respectively, the maximal wave
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Figure 1. Contours of the phase veloc-
ity vph/vA depending on the wave num-
ber k‖/k0 and the angle α when cs = 0.5

Figure 2. Phase velocity vph/vA de-
pending on the wave number k‖/k0.
Here the sound speed is cs = 0.5 and
α = 0

number k‖,max = 2π/h, where h is a minimal grid step. Then the maximal
phase velocity vph,max is limited. The well-known stability criterion (the

Courant condition) combining time and space steps is
τvph
h
≤ 1, and in the

case of the considered model it becomes

2πτ

h2
≤ 1.

From this relation, it follows that τ has to be chosen proportional to h2.
The hybrid numerical model of plasma is explicit and, consequently, when
implementing it, it is necessary to take into account this stability condition
which differs from the one for the hyperbolic systems.
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