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Numerical simulation of plasma using the hybrid
MHD-kinetic model∗

L.V. Vshivkova

Abstract. In this paper, a numerical model for the propagation of the shear
Alfven waves (SAWs) on open magnetic field lines using a hybrid kinetic approach
is presented.

There is a two-dimensional hybrid model: an ion component of plasma is de-
scribed by a standard set of the MHD equations, while electrons are taken into
account via the Vlasov equation. To solve the Vlasov equation, a particle-in-cell
method (PIC) is used, and for solving the MHD and the Maxwell equations, finite
difference methods are utilized.

The problem is as follows. A region of an inhomogeneous magnetic field is
defined in the Earth‘s polar area. At the initial time, the Alfven wave arrives in
this region and causes a disturbance in electron distribution function velocities.
The problem is to find an electron distribution function and fields as the wave
propagates along the field.

1. Introduction

This paper deals with a problem of the modeling of the dynamics of solar
wind particles in the Earth‘s magnetic field.

The interaction of solar wind particles with the Earth‘s magnetic field
is of major interest in problems of the space physics. These energy-charged
particles, when reaching the upper atmosphere of the Earth, give rise to one
of the most spectacular phenomena in the night sky, the northern lights.
Under the influence of the solar wind, the Earth magnetosphere becomes
asymmetrical and stretches in the anti-solar direction. The northern lights
on the night side of the Earth are associated with processes in the inner part
of the magnetosphere. On the day side, plasma of the solar wind reaches
the upper atmosphere through the open magnetic field lines.

The problem of modeling of processes in the magnetosphere can be solved
by computing the interaction of the solar wind and the Earth‘s magnetic
field. The non-stationary modeling is the most important one as the north-
ern lights and magnetic storms, observed on the Earth, are due to changes
in the distribution of plasma and the magnetic field in the magnetosphere.

In [31], the dispersive shear Alfven waves on the dipolar magnetic field
lines are considered. In this work, a nonlinear model of the excitation of
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density perturbations and parallel electric fields by these waves are pre-
sented. It was found that a dispersion and nonlinearity define a depth, a
spatial structure, and a growth of density fluctuations of a large amplitude
at polar ionospheres. In the example given in this paper, a parallel poten-
tial drop was too small to interpret the acceleration of charged particles to
high energies that can excite aurora. The ratio of the ion and the electron
temperatures was Ti/Te = 3.3. However, the authors mention if the ra-
tio of the ion temperature to the electron temperature can be taken lower,
then it will greatly increase a parallel electric field and a parallel potential
drop.

In [36], the authors consider a nonstationary kinetic electron response to
an electric current, which is driven by a standing shear Alfven wave. Here,
also, plasma with an inhomogeneous (dipolar) magnetic field is considered.
It was found that one of the mechanisms controlling the electron response
to the field aligned currents of a low frequency is a mirror force leading to a
parallel electric field (within regions of a large parallel magnetic field and a
low plasma density), and another one is the quasistatic electric field along
the magnetic field. Also, it is shown that there is no dependance on the
magnitude of the parallel current in the energy of accelerated charged par-
ticles. The authors estimate that the amplitude of the field aligned current
of 1 µA/m2 results in parallel electric fields of 1 mV/m.

A model describing the nonlinear interaction between the dispersive
shear Alfven wave field line resonances and the ion acoustic waves is pre-
sented in [13]. The limits of low-β (β < me/mi) and high-β plasma were
considered. In the former case, the electron inertia is dominant, and in the
latter the electron thermal pressure effect is important. The analysis pre-
sented in this paper was based on a box model in which plasma parameters
do not vary along the magnetic field lines. However, in fact, the geomag-
netic field lines are curved and the parameters of plasma change from the
ionosphere to the equatorial plane. Nevertheless, the authors note that the
basic features of the model should be appropriate in a real geometry.

The papers mentioned above confirm that the development of numerical
simulations of nonlinear effects in geometry, which is close to the real geom-
etry of geomagnetic field lines is of major interest in the problems of space
physics.

The method of discrete simulation is the most universal approach in
the problems of collisionless plasma. Its first one-dimensional model was
presented in [11]. The subsequent development of such models resulted in
the particle-in-cell (PIC) method [3, 16, 17, 20]. In the PIC simulations,
plasma is represented as a number of model particles, whose trajectories are
characteristics of the Vlasov equation. Particles move according to the laws
of classical mechanics in the self-consistent electromagnetic field to be found
from the Maxwell equations.
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In this paper, a numerical hybrid MHD-kinetic model for the shear Alfven
waves propagation (SAWs) on the open magnetic field lines is presented.
An ion component of plasma is described by a standard set of the MHD
equations and electrons are via the Vlasov equation.

2. A parallel electric field in Space

One of the most important problems in the space physics is the acceleration
of electrons in the auroral region. Kinetic energies of precipitating electrons
reach high values of tens keV . In a period of many years, many different pos-
sible accelerator mechanisms were proposed. Among particle accelerators,
there were proposed such mechanisms as double layers [1], magnetic mirrors
[22], anomalous resistivity [34], kinetic Alfven waves [14,15,18,23,24,32,35],
electrostatic shocks [27] and electrostatic turbulence [6, 7].

The existence of a parallel electric field E‖ was first predicted by Hannes
Alfven, but for a long time it was commonly believed that a field-aligned
component of the magnetospheric electric field can be neglected. The de-
bate was that charged particles easily propagate along the magnetic field
lines, and that any electric field would be nullified by contributions of ions
and electrons, which are transported in different directions by this electric
field. However, observations from a sounding rocket [26] have confirmed
that E‖ does occur in the Earth’s magnetosphere, and that bright auroras
are caused by the magnetospheric electrons, which are accelerated by this
electric field. Also, these electrons carry a parallel (field-aligned) current
j‖ flowing upward. Observations of the parallel electric field in the upward
current region are considered in [28].

In the case of an inhomogeneous magnetic field, it has to be shown that
plasma supporting parallel electric field can maintain quasineutrality [33].

In [10], the expression for the parallel electric field is derived from the
Ampere and the Farady laws giving

∂2Ez(x)
∂x2

− Ez(x)
λ2
e

=
∂(∇ ·E⊥)

∂z
+ µ0e

∂

∂z

∑
v2
i S(x,xi). (1)

The same expression for the electric field is derived in [21]. If the last
summand on the right-hand side of this equation is neglected, then equation
(1) and the equations of the two-dimensional cold plasma approximation are
self-consistent. However, for the electric field generation, the second term
on the right has to be taken into account [10]. In this case, one more relation
for the electric field has to be satisfied

ε0
∂

∂t
(∇ ·E) = −∇ · j. (2)
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That is, if the condition of quasineutrality, ne ≈ ni, is initially assumed
(at t = 0), then it will be preserved only if equation (2) is enforced. Oth-
erwise, errors in ni − ne will go unstable, causing the growth of the electric
field E. Equation (2) is the result of combining the electron and the ion

continuity equations ∂(ni − ne)
∂t

+∇· (nivi−neve) = 0, the Poisson equation

∇ ·E = e

ε0
(ni−ne) (where E = −∇Φ, Φ is a potential), and the expression

for the current j = e(nivi − neve).

3. Hybrid simulation techniques

For any simulation technique, where one of a plasma species is kinetically
treated and another one as a fluid, the term of “hybrid code” is used. Here
the first species is described by the Vlasov equation, while for the other
one the MHD equations are used. Plasma can be coupled with electric and
magnetic fields through the Maxwell equations. The most common model
of a hybrid code in space plasmas is to kinetically treat ions and electrons
as a fluid (see, e.g., [39]). These models have many successful applications
in problems of collisionless plasma. However, in problems, where the wave-
particle interactions become of the major interest, another approach for
a hybrid code should be used. Namely, this means to treat electrons as
particles and ions as a fluid.

3.1. A standard MHD-kinetic approach. Hybrid MHD-kinetic ap-
proaches, in which ions are kinetically treated and electrons are considered to
be a fluid have been widely used in problems of the space physics. This type
of models arose to simulate phenomena which occur at shorter scales than
it can be interpreted by magnetohydrodynamics. Magnetohydrod dynamics
cannot resolve processes at electron scales, such as the electron gyro-radius
and the electron Debye length scales.

The ions in this model are described by the kinetic Vlasov equation

∂fα
∂t

+ v
∂fα
∂r

+
Fα
mα

∂fα
∂v

= 0, (3)

where fα = fα(r,v, t) is the ion distribution function, and mα is the ion
mass. The subscript α in this equation denotes the kind of ions in the case
of multi-component plasma. The force Fα is determined by

Fα = Zαe(E + v ×B) + Rα. (4)

Here Zα is the amount of ionization of ions of the kind α, e is the elec-
tron charge, E and B are electric and magnetic fields, respectively, and
Rα = −Zαe

σ
j represents the frictional force between ions of the kind α and

electrons. From equation (3) and (4) we obtain the ion motion equations
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mα
dv

dt
= Zαe (E + v ×B) + Rα,

dr

dt
= v. (5)

These equations are similar to those in the tutorial [39]. The difference is
that equations (5) are written down for the case of multi-component plasma
as it is very important to take into account the correct model statement
(see [5,37]). For the plasma with one type of ions, i.e., when α = 1, equations
(5) become the same as in [39].

The density and average velocity of ions of the kind α are determined
from the ion distribution function fα

nα =
∫
fα dv, Vα =

1
nα

∫
fαv dv.

The system of equations describing electrons is as follows (see [37])

∂ne
∂t

+∇ · (neVe) = 0,

me

(∂Ve
∂t

+ (Ve · ∇)Ve
)

= −e(E + Ve ×B)− ∇pe
ne

+ Re,

ne

(∂Te
∂t

+ (Ve · ∇)Te
)

+ (γ − 1)pe∇ · Ve = (γ − 1)(Qe −∇ · qe),

where ne and Ve are the density and velocity of electrons, me is the electron
mass, pe = neTe is the electron pressure, Re is the frictional force between
electrons and ions, Te is the electron temperature, Qe is the electron heating
(as a result of collisions with ions), qe = −k1∇Te is a heat flow, k1 is the
heat conductivity coefficient and γ is the ratio of specific heats. Finally, the
electromagnetic fields are described by Maxwell’s equations

∇×B = µ0j, ∇×E = −∂B
∂t
, ∇ ·B = 0.

Here j is the current density which in the case of multi-component plasma
has the form

j = e

(∑
α

ZαnαVα − neVe
)
.

In the case of quasi-neutral plasma

ne =
∑
α

Zαnα,

the Poisson equation ∇ ·E = e(ni − ne)/ε0 is not included into the system.
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3.2. Kinetic–electron and fluid–ion models. It was shown that the de-
scription of MHD is not valid when the problem of wave-particle interaction
is considered [30]. In these problems, hybrid techniques should be used [38].
However, standard hybrid MHD-kinetic models, i.e., models where ions are
kinetically described and electrons are considered to be a fluid, are not ap-
propriate either, as this approach also removes the kinetic wave-particle
electron effects. Consequently, a hybrid model that represents electrons as
particles and ions as a fluid should be used.

There are different particle-electron and fluid-ion approaches with dif-
ferent assumptions. For example, the authors [25] have numerically realized
a model which was first proposed in [29]. They considered an electrostatic
model where an ion component of plasma was described by the equations of
reduced magnetohydrodynamics. However, for the shear Alfven waves, the
electromagnetic case is needed. In [21], a two-dimensional hybrid kinetic
model of electron acceleration by the Alfven waves was presented. In this
model a parallel ion motion was neglected. Also, in the equation of motion
for electrons there is no µ term representing a mirror force.

Another hybrid MHD-kinetic model was considered in [10]. In this paper,
a box model for the standing shear Alfven waves was considered. This
model requires the use of the Poisson equation ∇·E = e(ni−ne)/ε0 to find
the correction electric field in order that a hybrid code be self-consistent.
However, in the case of quasineutral plasma ni = ne it is better to avoid the
use of the Poisson equation.

In this paper, a two-dimensional electromagnetic model in a curvilinear
geometry with allowance of a mirror force is considered.

4. Statement of the problem

Consider a two-dimensional problem of a shear Alfven wave propagation in
the polar area of the Earth’s magnetosphere. At the initial time t = 0, the
Alfven wave (with the amplitude A and the frequency ω) comes into the
region filled with plasma of constant density n = n0 and a magnetic field of
the dipolar type. While in motion, the wave disturbs the initial Maxwellian
distribution function of electrons, forming a number of fast particles, which
move towards the Earth.

4.1. The initial system of equations. We begin from the kinetic Vlasov
equation (see, e.g., [2, 8, 19])

∂f

∂t
+ v · ∂f

∂r
+

q

m
(E + v ×B)

∂f

∂v
= 0, (6)

where f = f(t, r,v) is a distribution function, q is a charge, m and v are
the mass and velocity of a charged particle, B and E are a magnetic and
an electric fields, respectively.
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To describe the electron (q = −e) component of plasma in this problem,
the gyro-averaged Vlasov equation (see, e.g., [19]) is used

∂f

∂t
+ v · ∂f

∂r
− e

m
E
∂f

∂v
= 0. (7)

For electrons moving parallel to the background magnetic field B0, equation
(7) becomes

∂f

∂t
+ vr

∂f

∂r
− evrEr

∂f

∂W
= 0, (8)

where f = f(t, r,W ) is an electron distribution function, vr is a particle
velocity in the direction of the axis r, e is an electron charge, Er is an r-
component of the electric field E, W = 1

2
mev

2
r + µBr is a particle kinetic

energy, me is an electron mass, µ = mev
2
⊥

2Br
is a magnetic moment and Br is an

r-component of the magnetic field B. The magnetic moment µ is defined for
each particle in a random way by assigning the transverse velocity according
to the initial temperature. Later, this magnetic moment remains constant
for a particle.

The motion of the ion component of plasma is described by a system of
equations consisting of the continuity equation and the equation of motion in
which a pressure gradient term was omitted (assumption of the cold plasma)

dni
dt

+∇ · (niVi) = 0, (9)

mi
dVi
dt

= e[E + Vi ×B], (10)

where ni and Vi correspond to the density and the average velocity of the
ion component, mi is the ion mass, E and B represent the electric and the
magnetic fields, respectively.

To describe the electric and the magnetic fields, the Maxwell equations
are used

∇×E = −∂B

∂t
, (11)

∇×B = µ0j, (12)

∇ ·B = 0. (13)

Here j = ne(Vi−Ve) is a current density and µ0 is a free space permeability.
All the equations are written down in SI units.

There were made some assumptions in the problem. It is considered to
be a quasi-neutral (ni = ne = n) plasma consisting of hydrogen ions and
electrons. Also, it is assumed that there is a very strong magnetic field along
the Alfven wave propagation which enables us to consider electrons moving
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only in the direction parallel to the magnetic field. On the right-hand side
of the Ampere law (12), the displacement current µ0ε0

∂E

∂t
was neglected as

there are only low-frequency oscillations that are considered in this problem.
Finally, to avoid difficulties of the numerical calculation of the perpen-

dicular component of the electric field Eφ from equation of motion (10), the
assumption of Eφ = −vi×B is made. That is, there are no whistler modes
and only the shear Alfven wave modes are considered (see, e.g., [9]). In the
next section, equations (16)–(18) show how this assumption is implemented
along with equation (10).

5. Description of the algorithm

5.1. Initial data and boundary conditions. A two-dimensional flow in
the plane (r, φ) with ∂/∂z = 0 is considered. Figure 1 shows the geometry
of the given problem. Here the coordinates r and φ correspond to the
parallel and perpendicular directions to the background magnetic field B0.
Let us write down the system of equations in cylindrical coordinates with
the assumptions made above.

Figure 1. Geometry of the problem. The
background magnetic field B0 is along r di-
rection

First, write all vectors
component-wise. The average
electron velocity Ve has only
one coordinate in r-direction
{Ver, 0, 0}, as electrons are
moving only parallel to the
background field. That is, we
neglect E × B-drift for elec-
trons across the magnetic field.
This assumption can be made
as a strong magnetic field is
considered in the problem, and
the magnitude of this drift is
proportional to E/B, which
is very small when E � B.
Ions can move in any direction,

i.e., V = {Vr, Vφ, Vz}. The magnetic and the electric fields are B =
{B0, 0, Bz} and E = {Er, Eφ, 0}, respectively. Equations (8)–(13) become

∂f

∂t
+ vr

∂f

∂r
− evrEr

∂f

∂W
= 0, (14)

∂n

∂t
+

1
r

∂

∂r
(rnVr) +

1
r

∂

∂φ
(nVφ) = 0, (15)

mi

(
∂Vr
∂t

+ Vr
∂Vr
∂r

+
Vφ
r

∂Vr
∂φ
−
V 2
φ

r

)
= eEr + eVφBz, (16)
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Eφ = −VzBr + VrBz, (17)

mi

(
∂Vz
∂t

+ Vr
∂Vz
∂r

+
Vφ
r

∂Vz
∂φ

)
= eVφBr, (18)

∂Bz
∂t

= −1
r

∂

∂r
(rEφ) +

1
r

∂Er
∂φ

, (19)

µ0jr =
1
r

∂Bz
∂φ

, µ0jφ = −∂Bz
∂r

. (20)

As illustrated in Figure 2, the solution is considered
in the area

rmin ≤ r ≤ rmax, −φmax ≤ φ ≤ φmax.

Here r and φ are the radial and the azimuthal directions,
respectively; L1 and L2 are the length and the top width
of the box.

As initial data, a non-perturbed state of plasma is used
in the pole area of a magnetic dipole, that is

n = n0, Bφ = 0, Bz = 0, Br = Br(r) ∼
1
r3
,

Er = Eφ = Ez = 0, Vr = Vφ = Vz = 0.
Figure 2

Now let us consider the boundary conditions of the problem formulated.
On the left φ = −φmax and on the right φ = φmax boundaries of the box
(Figure 2), the periodic boundary conditions are set. At the bottom bound-
ary r = rmin, all functions are equal to the values at the initial time. At
the upper boundary r = rmax conditions of the incoming Alfven wave are
set, using a simpler two-fluid set of equations. This will allow us to set a
perpendicular E-field and components of the above magnetic field.

The linearized system of equations in this case becomes as follows:

∂n

∂t
= −n0

(∂Vr
∂r

+
∂Vφ
∂φ

)
, (21)

me
∂Ver
∂t

= −eEr, mi
∂Vr
∂t

= eEr, (22)

mi
∂Vz
∂t

= −eB0Vφ, Eφ = −B0Vz, (23)

∂Bz
∂t

= −
∂Eφ
∂r

+
∂Er
∂φ

, (24)

∂Bz
∂φ

= µ0n0e(Vr − Ver), (25)
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∂Bz
∂r

= −µ0n0eVφ. (26)

This linearized system satisfies the following dispersion relation:

ω2 =
k2
‖V

2
A

1 + λ2
ek

2
⊥
,

where ω is the wave frequency, k‖ and k⊥ are parallel and perpendicular wave
numbers, respectively, VA is the Alfven speed, λe = c/ωpe is the electron
inertial length or the electron skin depth, c is the speed of light and ωpe is
the electron plasma frequency. It can be easily derived if we substitute the
dependence f = f̃ exp(−iωt + ik‖r + ik⊥φ) into equations (22)–(26). Here
f = {Vr, Vφ, Vz, Ver, Bz, Er, Eφ}.

Then, assuming that the perpendicular component of electric field Eφ =
A sinψ, where A is the amplitude of the wave at the boundary r = rmax and
ψ = −ωt + k⊥φ + k‖r, from equations (21)–(26), we obtain the following
expressions for the upper boundary:

Eφ = A sinψ, Er = A
k‖

k⊥

(
1− µ0n0e

ω2

k2
‖

)
sinψ, Bz = Aµ0n0e

ω

k‖
sinψ,

Vφ = −A mi

eB2
0

ω cosψ, Vz = − A

B0
sinψ,

Vr = A
e

mi

k‖

ωk⊥

(
1− µ0n0e

ω2

k2
‖

)
cosψ,

Ver = −A e

me

k‖

ωk⊥

(
1− µ0n0e

ω2

k2
‖

)
cosψ,

n = −An0

[
mi

eB2
0

k⊥ −
e

mi

k2
‖

ω2k⊥

(
1− µ0n0e

ω2

k2
‖

)]
cosψ.

5.2. Normalization of the system. The normalized magnitudes in the
problem are as follows: the background density n0, non-perturbed magnetic
field B0, the electric field E0, the Alfven velocity VA = B0√

µ0min0
, the ion

plasma frequency ωpi =

√
n0e

2

ε0mi
, the length L = c

ωpi
=

c
√
ε0mi

e
√
n0

, the time

t0 = L

VA
= cmi

eB0
= 1

ωci
, where ωci is the ion cyclotron frequency. The charac-

teristic equations of the Vlasov equation (8) in dimensionless variables can
be written down as

dr

dt
= vr,

dW

dt
= − 1

β
vrEr, (27)
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where W = 1

2
(v2
r + v2

⊥) and β = me

mi
, and the other equations from system

(14)–(20) in dimensionless variables become as follows:

∂n

∂t
+

1
r

∂

∂r
(rnVr) +

1
r

∂

∂φ
(nVφ) = 0, (28)

Eφ = −VzBr + VrBz, (29)

∂Vz
∂t

+ Vr
∂Vz
∂r

+
Vφ
r

∂Vz
∂φ

= VrBφ − VφBr, (30)

∂Vr
∂t

+ Vr
∂Vr
∂r

+
Vφ
r

∂Vr
∂φ
−
V 2
φ

r
= Er + VφBz − VzBφ. (31)

∂Bz
∂t

=
1
r

∂Er
∂φ
− 1
r

∂

∂r
(rEφ), (32)

Vφ = − 1
n

∂Bz
∂r

, Ver = Vr −
1
nr

∂Bz
∂φ

. (33)

A uniform scheme with the
steps h1 and h2 on the axes
φ and r, respectively, is intro-
duced into the calculated area
(Figure 3). Black dots denote
mesh nodes. Solid and dashed
line dots are centers of cells and
of mesh boundaries, respectively.

The magnetic field Bz is de-
fined at the grid nodes (φi, rk),
the functions Vφ, Eφ, Br, jφ –– at
the points (φi, rk−1/2), the func-
tions Vr, Er, jr –– at the points
(φi−1/2, rk), and the functions ni,
Vz, Ez –– in the centers of the cells
(φi−1/2, rk−1/2). Here φα = αh1,
rβ = βh2.

Figure 3. The grid

5.3. The calculation technique of a parallel electric field. The main
difficulty in this algorithm is to calculate the electric field Er, which is par-
allel to the background magnetic field B0. This electric field is determined
from the electron motion equation (8) by the particle-in-cell (PIC) method
(see, e.g., [20]).

As the field Er acting on a particle is interpolated into the particle lo-
cation, the velocity Ver at the mesh nodes depends on values of Er in the
surrounding nodes. Therefore, there is a system of linear algebraic equa-
tions for determination of Er. Fifteen values are connected with each other
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in each equation of this system. For every node, we obtain the equation of
the form

Ver = f(Er). (34)

The method for obtaining this system of equations will be described below.
First, let us consider the derivation of the formula for calculation of the
parallel electric field.

For each particle, the characteristic equations of the Vlasov equation
(27) can be written down as

dvr,j
dt

= − 1
β
Er(φj , rj)− µj

∂Br(φj , rj)
∂r

,
drj
dt

= vr,j .

Here the magnetic moment of each particle µj is defined before calcula-
tion and remains constant. The difference scheme for these equations is as
follows:

vm+1
r,j = vmr,j −

τ

β
Em+1
r,j − µjτ

(∂Br
∂r

)m
j
, (35)

rm+1
j = rmj + τvm+1

r,j , (36)

where β = me

mi
, j is the particle number,

Er,j =
∑
i,k

Er,i−1/2,kR(φi−1/2 − φj)R(rk − rj) (37)

and R(f) is the following function (see, e.g., [4]):

R(f) = max
(

1− |f |
h
, 0
)
,

where f = {φ, r} and h = {h1, h2}. Introducing the notation

Di,k ≡
(∂Br
∂r

)
i,k

=
1
h2

(
Bm+1
r,i,k+1/2 −B

m
r,i,k−1/2

)
,

we can write down(∂Br
∂r

)
j

=
∑
i,k

Di,kR(φi − φj)R(rk − rj). (38)

The density and the current density of electrons are

ne,i−1/2,k =
∑
j

mjR(φi−1/2 − φj)R(rk − rj),

(neVer)i−1/2,k =
∑
j

vr,jmjR(φi−1/2 − φj)R(rk − rj).

Consequently, using the latter two equations, we arrive at the formula for
calculating the electron velocity at the time point tm+1
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V m+1
er,i−1/2,k =

1
Nm+1
i−1/2,k

∑
j

vm+1
r,j R

(
φi−1/2 − φm+1

j

)
R
(
rk − rm+1

j

)
, (39)

where
Nm+1
i−1/2,k =

∑
j

R
(
φi−1/2 − φm+1

j

)
R
(
rk − rm+1

j

)
.

Then, substituting vm+1
r,j from equation (35), we have the following expres-

sion:
τ

β

∑
j

Er,jR
(
φi−1/2 − φm+1

j

)
R
(
rk − rm+1

j

)
=
∑
j

vmr,jR
(
φi−1/2 − φm+1

j

)
R
(
rk − rm+1

j

)
−

τ
∑
j

µj

(∂Br
∂r

)
j
R
(
φi−1/2 − φm+1

j

)
R
(
rk − rm+1

j

)
−

V m+1
er,i−1/2,kN

m+1
i−1/2,k. (40)

Introduce the notation of the right-hand side of this equation as Fi−1/2,k.
Then equation (40) becomes

τ

β

∑
j

Er,jR
(
φi−1/2 − φm+1

j

)
R
(
rk − rm+1

j

)
= Fi−1/2,k.

Afterwards, substituting Er,j from (37) into the left-hand side of this equa-
tion we come to

τ

β

∑
j

R
(
φi−1/2 − φm+1

j

)
R
(
rk − rm+1

j

)
×

∑
i′,k′

R
(
φi′−1/2 − φcj

)
R
(
rk′ − rcj

)
Er,i′−1/2,k′ = Fi−1/2,k.

Here, i′ and k′ are introduced in order to differ from i and k, which are used
in the first part of this equation. Also, rcj = (rm+1

j + rmj )/2. Rearranging
this equation in the form

τ

β

∑
i′,k′

Er,i′−1/2,k′

∑
j

R
(
φi−1/2 − φm+1

j

)
R
(
rk − rm+1

j

)
×

R
(
φi′−1/2 − φcj

)
R
(
rk′ − rcj

)
= Fi−1/2,k, (41)

we obtain the final formula for calculation of the parallel electric field.
Now, let us consider the method used for obtaining the system of equa-

tions equations (34). Let Ver and Er be defined at the grid nodes (i, k).



108 L.V. Vshivkova

Figure 4. The 15-point pattern. The
black dot inside a cell denotes a particle

At the time point tm+1, the veloc-
ity of electrons Ver is defined by
velocities of particles which are in
the cells surrounded by the grid
nodes (i − 1, k − 1), (i + 1, k − 1),
(i − 1, k + 1), and (i + 1, k + 1)
(Figure 4). The particles, which
are in these four cells at the
time point tm+1, at the previous
time point tm could be in any
eight cells surrounded by the grid
nodes (i − 1, k − 2), (i + 1, k − 2),
(i − 1, k + 2), and (i + 1, k + 2).
It follows from the fact that parti-
cles can move only in the r-direc-
tion and cross the cell boundaries
during the time step τ . There is,

also, an electric field Er, which is defined in the grid nodes of these eight
cells, acting on the particles, located in these eight cells at the time point tm.

We can write equation (35) for each particle defining Ver in the grid
nodes. Then, after substitution it into equation (39), we arrive at the fol-
lowing equation:

Nm+1
i,k V m+1

er,i,k = R11
i,kE

m+1
r,i−1,k−2 +R12

i,kE
m+1
r,i,k−2 +R13

i,kE
m+1
r,i+1,k−2 +

R21
i,kE

m+1
r,i−1,k−1 +R22

i,kE
m+1
r,i,k−1 +R23

i,kE
m+1
r,i+1,k−1 +

R31
i,kE

m+1
r,i−1,k +R32

i,kE
m+1
r,i,k +R33

i,kE
m+1
r,i+1,k +

R41
i,kE

m+1
r,i−1,k+1 +R42

i,kE
m+1
r,i,k+1 +R43

i,kE
m+1
r,i+1,k+1 +

R51
i,kE

m+1
r,i−1,k+2 +R52

i,kE
m+1
r,i,k+2 +R53

i,kE
m+1
r,i+1,k+2 +Qmi,k. (42)

Here the coefficients R11, R12, . . . , R53 are obtained by summation of coef-
ficients of Er from each particle. The term Qi,k results from summation of
the last summands in equation (35) and particle velocities at the point time
tm. In equation (42), the terms Nm+1

i,k V m+1
er,i,k and Qmi,k are known, and terms

with electric field Er are unknown.
Thus, we obtain the system of liner algebraic equations to determine

Er in the grid nodes. This system is solved by the following manner. The
terms Em+1

r,i,k−1, Em+1
r,i,k , and Em+1

r,i,k+1 with values in the three central nodes
(the nodes cycled with a dashed line in Figure 4) of the fifteen-point pat-
tern (the thick line pattern) are transferred to the left side of the system
and the rest terms–– to the right-hand side. After this procedure for each i
we come to the system with a three-diagonal matrix which is solved using
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the double-sweep method. This method is stable as we attain the diagonal
dominance in the system.

5.4. A quasi-neutrality and numerical noise. In this method, the ion
density ni is defined from equation (28). Because of the assumption of quasi-
neutral property, the ion and the electron densities must coincide: ni = ne.
However, if we calculate the electron density by the formula

ni−1/2,k−1/2 =
∑
j

mjR(φi−1/2 − φj)R(rk−1/2 − rj),

where R(x) = max
(

1 − |x|
h
, 0
)

, we will not obtain the required equality.
This is because of discreteness of a time step and insufficient number of par-
ticles. Therefore, there is a necessity in the adjustment of particle location
to enforce the quasi-neutral property. A one-dimensional case of this ad-
justment is presented in [12]. In similar manner, this adjustment is realized
by iterations along φ and r for the current two-dimensional case.

Because of a limited number of model particles, there are phenomena that
are not associated with the physics of simulated processes. The discreteness
of model particles in calculations leads to such effects as an increase of the
number of collisions, non-conservation of energy, etc. To remedy this, the
algorithm of the numerical noise reduction, presented in [12], is used.

6. Test runs

In this section, the simulation results of the Alfven wave dynamics are pre-
sented. The Alfven wave is specified on the boundary r = rmax. For the
test runs presented below, the following parameters are chosen: the length
of the simulation box is L1 = 200 km, the width is L2 = 40 km (see Fig-
ure 2). Also, in order to ensure that the background magnetic field B0, is
uniform, the distance from the center of the Earth to the bottom boundary
of the simulation box was taken to be 637,000 km, which is approximately
equal to 100RE , where RE is the Earth’s radius. The magnitude of the
background magnetic field is B0 = 66.6 nT, the density n0 = 3 · 105 m−3

and the temperature of electrons Te = 10 eV. The latter parameters have
been chosen in such a way that k⊥λe = 2.5 and v2

the/V
2
A = 0.5. The Alfven

speed corresponding to these parameters is vA = 2652 km/s and the thermal
speed is 1876 km/s.

The simulation parameters are as follows: the number of particles is
N = 500,000 and the number of cells in the perpendicular and in the parallel
directions are 32 and 64, respectively. Consequently, there are 2048 cells and
244 particles per cell.

In Figures 5–7, the contour plots show the wave propagation in the con-
sidered area. A wave comes into the box from the above boundary and
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Figure 5. The electron velocity

Figure 6. The propagation of the electric field along r-axis
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Figure 7. The evolution of the electron distribution function

Figure 8. The phase space

propagates downward. The plots were taken at the dimensionless time steps
t = 0.45, 0.75, 0.85, and 0.9. From these figures one can see that the wave is
propagating downward smoothly and is reflecting at the bottom boundary.
These plots illustrate the evolution of the electron velocity (see Figure 5),
the parallel electric field (see Figure 6) and the electron distribution function
(see Figure 7). From the plots of the phase space (Figure 8) one can see
how the wave affects the particles in the considered region.
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7. Conclusion

In this paper, the new two-dimensional hybrid model for the modeling of
a charged particle motion in the polar area of the Earth’s magnetic field is
presented. In this model, the ion component of plasma is described by the
MHD equations, while the electron component is taken into account for via
the Vlasov equation. The electric and the magnetic fields are found from
the Maxwell equations. In this paper, the algorithms for finding a parallel
electric field by particle velocities are described in greater detail than in [12]
and the boundary conditions at the upper boundary are corrected. Also,
more appropriate parameters were found to obtain the results demonstrated
in [12]. Here, the test runs for the uniform background magnetic field B0 are
presented. However, with a more careful choice of parameters it is possible
to simulate the processes in a curvilinear geometry.
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