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Hybrid simulation of collisionless shock waves
using the PIC-method∗

L.V. Vshivkova, G.I. Dudnikova, T.V. Liseykina, E.A. Mesyats

Abstract. We present a 2D hybrid numerical plasma model for the simulation of
the physical processes in supernova remnant shock precursor. In simulation, a shock
is generated by sending a supersonic flow against a reflecting wall. The interaction
between the incoming and reflected streams produces a sharp discontinuity, which
moves away from the wall. The hybrid approach reduces computer costs relative to
a fully kinetic approach while treating ions with a greater accuracy than MHD al-
lows. Another important advantage of the hybrid approach is a possibility to study
important instabilities on the ion time scale, neglecting the high-frequency modes
associated with electrons. The new numerical model to investigate the processes of
particle acceleration on the front of a shock wave is presented.

1. Introduction

In this paper, a 2D numerical model to investigate an acceleration mech-
anism of cosmic ray charged particles on a shock front is presented. This
problem is of interest in astrophysics, plasma physics and charged particle
accelerators. Numerical models, applied to the investigation of the problem
of generation and dynamics of cosmic rays [1,2], are divided into three types
and are associated with the kinetic or magnetohydrodynamic approach. The
most full description is based on the Vlasov kinetic equation and Maxwell’s
system of equations. However, the difficulty in the implementation of such a
model, dealing with a big difference in space and in time scales for electrons
and ions, complicates its application when carrying out computations even
using modern computer systems. Also, the MHD-models are often used.
Nevertheless, they do not permit the description of violation of one-flow
streams when particles are reflected from the shock front. The research
based on the hybrid (combined) models [3–7], where an electron component
of plasma is described by the MHD-approach, while ions are kinetically
treated, and vice versa [8, 9], allows one to essentially reduce the require-
ments for computation resources, and is now more promising in terms of nu-
merical experiments. For their implementation, this type of models requires
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utilization of the PIC-method [10, 11] and the practice to solve large-scale
problems based on the algorithms of parallel computations.

2. Statement of the problem

Let us consider a 2D-problem (in the Cartesian coordinates) of a plasma flow
injection into the uniform plasma background (Figure 1). The plasma flow
consists of hydrogen ions and electrons. At the initial time t = 0, the plasma

Figure 1

flow of the density n, the tem-
perature T , the charge q and
constant initial velocity v = v0
enters the plasma area of the
uniform magnetic field B, the
constant density n, the tem-
perature T , the charge q, and
the velocity v = 0 (or v =
v0). Entering the considered

area from the left, the plasma flow forms a shock wave which accelerates
charged particles of the background plasma towards the right boundary and
which, afterwards, are reflected from it. It is supposed that plasma is quasi-
neutral, i.e. the densities of ions and electrons are equal ni = ne = n.

3. The initial system of equations

Let us write down the initial system of equations of the proposed hybrid
model. The Vlasov kinetic equation for ions in the problem is solved by the
PIC-method, therefore, the following characteristic equations of this kinetic
equation are used

dr

dt
= vα, mα

dvα
dt

= Zαe
(
E +

1

c
vα ×B

)
+ Rα.

Here Zα is the degree of ionization of ions of a sort α, E = {Ex, Ey, Ez}
and B = {Bx, By, Bz} are the intensities of the electric and magnetic fields,
Rα is the force of friction between the ions of the sort α and electrons.
The density nα and the average velocity of the ions Vα of the sort α are
determined by the ion distribution function fα by the velocities

nα =

∫
fα dv, Vα =

1

nα

∫
fαvα dv.

The motion of an ion component of plasma is described by the magnetic
hydrodynamics (MHD) approach
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∂ne
∂t

+∇ · (neVe) = 0,

me

(
∂Ve
∂t

+ (Ve · ∇)Ve

)
= −e

(
E +

1

c
Ve ×B

)
− ∇pe

ne
+ Re,

ne

(
∂Te
∂t

+ (Ve · ∇)Te

)
+ (γ − 1)pe∇ · Ve = (γ − 1)(Qe −∇ · qe),

where ne, Ve are the density and the electron velocity, respectively, pe = neTe
is the electron pressure, Re is the force of friction between electrons and
ions, Te is the electron temperature, Qe is the electron heating resulting
from collisions of electrons with ions, qe = −κ1∇Te is a heat flow, where κ1
is the heat conductivity coefficient. Also, the following Maxwell’s equations
are added to the system of equations:

∇×B =
4π

c
j, ∇×E = −1

c

∂B

∂t
, ∇ ·B = 0.

Here j is the current density which in the case of multicomponent plasma
is defined as j = e

(∑
α ZαnαVα − neVe

)
, where Vα = (Vαx, Vαy, Vαz) =(∑

α Zαnαvα
)
/ne is the average ion velocity. Plasma is quasi-neutral, i.e.

ne =
∑

α Zαnα, consequently, we do not consider the equation ∇ ·E = 4πρ
in the system, where ρ = e

(∑
α Zαnα − ne

)
is a volume charge.

As the normalized values we take the following characteristic quantities:
the density of the background plasma n0, the unperturbed magnetic field

B0, the Alfven velocity VA = B0/
√

4πmin0, and the temperature T0 =
B2

0

8πn0
.

In compliance with the stated problem, the initial conditions of the back-
ground plasma at t = 0 are as follows:

n(x, y) = n0 = const, q(x, y) = q0 = const, T (x, y) = T0 = 0,

Bx(x, y) = By(x, y) = 0, Bz(x, y) = B0 = const,

Ex(x, y) = Ey(x, y) = Ez(x, y) = 0,

vx(x, y) = vy(x, y) = vz(x, y) = 0.

The initial conditions of the incoming flow are given as

n(x, y) = n0 = const, q(x, y) = q0 = const, T (x, y) = T0 = 0,

vx(x, y) = v0, vy(x, y) = vz(x, y) = 0.

The solution is considered in the area 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax

(see Figure 1). The boundary conditions are written down as the reflection
conditions by x and the periodic conditions by y for the particles (ions); for
the grid functions we have Ex = 0, ∂Ey/∂x = ∂Ez/∂x = 0, ∂n/∂x = 0,
Te = const by x and the periodic conditions by y.
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4. The algorithm description

A uniform grid with the steps hx, hy by the axes x and y, respectively, is
introduced in the calculation area. The grid function Bz is defined at the
grid nodes xi = ihx, yk = khy, the grid functions Vx, Vex, Ex, By –– at the
nodes xi, yk−1/2 = (k − 0.5)hy, the grid functions Vy, Vey, Ey, Bx –– at the
nodes xi−1/2 = (i− 0.5)hx, yk, and the functions n, Te, Vz, Vez, Ez –– at the
centers of cells xi−1/2, yk−1/2.

The equations of motion for each particle (hydrogen ions) are solved at
the first computation stage:

vm+1
x = vmx + τ

(
Êmx + vmy B

m
z − vmz Bm

y

)
, (1)

vm+1
y = vmy + τ

(
Êmy + vmz B

m
x − vmx Bm

z

)
, (2)

vm+1
z = vmz + τ

(
Êmz + vmx B

m
y − vmy Bm

x

)
, (3)

xm+1 = xm + τvm+1
x , ym+1 = ym + τvm+1

y . (4)

Note, that at this stage the calculation is carried out in such a way that the

terms
æ

n

∆yB
m
z

hy
, −æ

n

∆xB
m
z

hx
and

æ

n

(
∆xB

m
y

hx
− ∆yB

m
x

hy

)
dealing with the friction

force Rα are omitted in parentheses of equations (1)–(3) at first (it will be
added at later in the computation). This has been made to reduce the error
as these terms are canceled with similar terms in the equation for E. The
notation for Êx, Êy and Êz is defined below (see formulas (5)), m is a time
layer number and τ is a time step.

The ion density and the average values of the ion velocity in cells are
found at the second stage:

ni−1/2,k−1/2 =
1

hxhy

∑
j

qjR
(xj − xi−1/2

hx

)
R
(yj − yk−1/2

hy

)
,

Vi−1/2,k−1/2 =
1

ni−1/2,k−1/2hxhy

∑
j

qjvjR
(xj − xi−1/2

hx

)
R
(yj − yk−1/2

hy

)
,

where j is a particle number and the function R in the PIC-method is defined
as R(t) = max{1− |t|, 0}.

Other equations of the system are solved by finite difference methods.
For the sake of simplicity, the following designations are introduced in the
scheme formulas:

fx,i−1/2,k−1/2 =
fx,i,k−1/2 + fx,i−1,k−1/2

2
,

fy,i−1/2,k−1/2 =
fy,i−1/2,k + fy,i−1/2,k−1

2
,
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fx,i−1/2,k =
fx,i,k−1/2 + fx,i−1,k−1/2 + fx,i,k+1/2 + fx,i−1,k+1/2

4
,

fy,i,k−1/2 =
fy,i−1/2,k + fy,i−1/2,k−1 + fy,i+1/2,k + fy,i+1/2,k−1

4
,

∆xfi−1/2,k−1/2 =


fi−1/2,k−1/2 − fi−3/2,k−1/2

hx
, if fx,i−1/2,k−1/2 > 0,

fi+1/2,k−1/2 − fi−1/2,k−1/2

hx
, otherwise,

∆yfi−1/2,k−1/2 =


fi−1/2,k−1/2 − fi−1/2,k−3/2

hy
, if fy,i−1/2,k−1/2 > 0,

fi−1/2,k+1/2 − fi−1/2,k−1/2

hy
, otherwise.

At the third stage, the components of the electron velocity are found:

V m+1
ex,i,k−1/2 = V m+1

x,i,k−1/2 −
2(Bm

z,i,k −Bm
z,i,k−1)

hy(n
m+1
i−1/2,k−1/2 + nm+1

i+1/2,k+1/2)
,

V m+1
ey,i−1/2,k = V m+1

y,i−1/2,k +
2(Bm

z,i,k −Bm
z,i−1,k)

hx(nm+1
i−1/2,k−1/2 + nm+1

i−1/2,k+1/2)
,

V m+1
ez,i−1/2,k−1/2 = V m+1

z,i−1/2,k−1/2 +
1

nm+1
i−1/2,k−1/2

×

(Bm
x,i−1/2,k −B

m
x,i−1/2,k−1

hy
−
Bm
y,i,k−1/2 −B

m
y,i−1,k−1/2

hx

)
.

Before going further, let us introduce the notations of different values of
the electric field intensities in the order they appear in the algorithm

Ẽx = −VeyBz + VezBy − β
(
∂Vex
∂t

+ Vex
∂Vex
∂x

+ Vey
∂Vex
∂y

)
,

Ẽy = −VezBx + VexBz − β
(
∂Vey
∂t

+ Vex
∂Vey
∂x

+ Vey
∂Vey
∂y

)
,

Ẽz = −VexBy + VeyBx − β
(
∂Vez
∂t

+ Vex
∂Vez
∂x

+ Vey
∂Vez
∂y

)
,

E∗
x = Ẽx +

æ

ne

∂Bz
∂y

= Ẽx +
æ

n

∆yB
m
z

hy
,

E∗
y = Ẽy −

æ

ne

∂Bz
∂x

= Ẽy −
æ

n

∆xB
m
z

hx
,

E∗
z = Ẽz +

æ

ne

(
∂By
∂x
− ∂Bx

∂y

)
= Ẽz +

æ

n

(
∆xB

m
y

hx
− ∆yB

m
x

hy

)
,
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Êx = Ẽx −
1

2ne

∂pe
∂x

, Êy = Ẽy −
1

2ne

∂pe
∂y

, Êz = Ẽz, (5)

Ex = E∗
x −

1

2ne

∂pe
∂x

, Ey = E∗
y −

1

2ne

∂pe
∂y

, Ez = E∗
z . (6)

Then, at the fourth stage, preliminary values of the electric field intensities
Ẽx, Ẽy, Ẽz, E

∗
x, E∗

y , and E∗
z are determined:

Ẽm+1
x,i,k−1/2 = − β

(V m+1
ex,i,k−1/2 − V

m
ex,i,k−1/2

τ
+

V m+1
ex,i,k−1/2

V m+1
ex,i+1,k−1/2 − V

m+1
ex,i−1,k−1/2

2hx
+

V
m+1

ey,i,k−1/2

V m+1
ex,i,k+1/2 − V

m+1
ex,i,k−3/2

2hy

)
−

V
m+1

ey,i,k−1/2

Bm
z,i,k +Bm

z,i,k−1

2
+

Bm
y,i,k−1/2

V m+1
ez,i+1/2,k−1/2 + V m+1

ez,i−1/2,k−1/2

2
,

Ẽm+1
y,i−1/2,k = − β

(V m+1
ey,i−1/2,k − V

m
ey,i−1/2,k

τ
+

V
m+1

ex,i−1/2,k

V m+1
ey,i+1/2,k − V

m+1
ey,i−3/2,k

2hx
+

V m+1
ey,i−1/2,k

V m+1
ey,i−1/2,k+1 − V

m+1
ey,i−1/2,k−1

2hy

)
−

Bm
x,i−1/2,k

V m+1
ez,i−1/2,k+1/2 + V m+1

ez,i−1/2,k−1/2

2
+

V
m+1

ex,i−1/2,k

Bm
z,i,k +Bm

z,i−1,k

2
,

Ẽm+1
z,i−1/2,k−1/2 = − β

(V m+1
ez,i−1/2,k−1/2 − V

m
ez,i−1/2,k−1/2

τ
+

V m+1
ex,i,k−1/2+V

m+1
ex,i−1,k−1/2

2

V m+1
ez,i+1/2,k−1/2−V

m+1
ez,i−3/2,k−1/2

2hx
+

V m+1
ey,i−1/2,k+V

m+1
ey,i−1/2,k−1

2

V m+1
ez,i−1/2,k+1/2−V

m+1
ez,i−1/2,k−3/2

2hy

)
−

Bm
y,i,k−1/2+B

m
y,i−1,k−1/2

2

V m+1
ex,i,k−1/2+V

m+1
ex,i−1,k−1/2

2
+
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Bm
x,i−1/2,k+B

m
x,i−1/2,k−1

2

V m+1
ey,i−1/2,k+V

m+1
ey,i−1/2,k−1

2
,

E∗m+1
x,i,k−1/2 = Ẽm+1

x,i,k−1/2 +
2æ(Bm

z,i,k −Bm
z,i,k−1)

(nm+1
i+1/2,k−1/2 + nm+1

i−1/2,k−1/2)hy
,

E∗m+1
y,i−1/2,k = Ẽm+1

y,i−1/2,k −
2æ(Bm

z,i,k −Bm
z,i−1,k)

(nm+1
i−1/2,k+1/2 + nm+1

i−1/2,k−1/2)hx
,

E∗m+1
z,i−1/2,k−1/2 = Ẽm+1

z,i−1/2,k−1/2 +
æ

nm+1
i−1/2,k−1/2

(Bm
y,i,k−1/2 −B

m
y,i−1,k−1/2

hx
−

Bm
x,i−1/2,k −B

m
x,i−1/2,k−1

hy

)
.

At the fifth stage, the magnitudes of the magnetic field intensities are
computed:

Bm+1
x,i−1/2,k = Bm

x,i−1/2,k −
τ(E∗m+1

z,i−1/2,k+1/2 − E
∗m+1
z,i−1/2,k−1/2)

hy
,

Bm+1
y,i,k−1/2 = Bm

y,i,k−1/2 +
τ(E∗m+1

z,i+1/2,k−1/2 − E
∗m+1
z,i−1/2,k−1/2)

hx
,

Bm+1
z,i,k = Bm

z,i,k+τ

(E∗m+1
x,i,k+1/2−E

∗m+1
x,i,k−1/2

hy
−
E∗m+1
y,i+1/2,k−E

∗m+1
y,i−1/2,k

hx

)
+P̃i,k,

where P̃i,k = −τ
2

[
∂

∂y

(
1

ne

∂(neTe)

∂x

)
− ∂

∂x

(
1

ne

∂(neTe)
∂y

)]
i,k

or

P̃i,k = − τ

4hxhy

1

n
m+1
i,k

×[
(nm+1
i+1/2,k+1/2 − n

m+1
i−1/2,k−1/2)(T

m
i−1/2,k+1/2 − T

m
i+1/2,k−1/2) +

(nm+1
i+1/2,k−1/2 − n

m+1
i−1/2,k+1/2)(T

m
i+1/2,k+1/2 − T

m
i−1/2,k−1/2)

]
.

Also, let us note that the pressure pi,k in terms of P̃i,k is pi,k = ni,kP̃i,k. Here,
in order to calculate the term ∇n · ∇Te more accurately, the corresponding
terms in the calculation formulas for Bz are taken from the formulas for E.
From their combination, the term P̃i,k appears, and the terms E∗ are used
instead of E in the formulas for Bz. This way increases the stability of the
scheme.

Afterwards, at the sixth stage, we find Êx, Êy, Êz and then determine
the final values of the electric field intensities Ex, Ey, Ez using formulas (5)
and (6). Consequently, we have



86 L.V. Vshivkova, G.I. Dudnikova, T.V. Liseykina

Em+1
x,i,k−1/2 = E∗m+1

x,i,k−1/2 −
1

2hx

[
Tmi+1/2,k−1/2 − T

m
i−1/2,k−1/2 +

(Tmi+1/2,k−1/2 + Tmi−1/2,k−1/2)
nm+1
i+1/2,k−1/2 − n

m+1
i−1/2,k−1/2

nm+1
i+1/2,k−1/2 + nm+1

i−1/2,k−1/2

]
,

Em+1
y,i−1/2,k = E∗m+1

y,i−1/2,k −
1

2hy

[
Tmi−1/2,k+1/2 − T

m
i−1/2,k−1/2 +

(Tmi−1/2,k+1/2 + Tmi−1/2,k−1/2)
nm+1
i−1/2,k+1/2 − n

m+1
i−1/2,k−1/2

nm+1
i−1/2,k+1/2 + nm+1

i−1/2,k−1/2

]
.

Finally, at the seventh stage of computation we determine the temper-
ature T using the splitting scheme, each step being implemented by an
implicit scheme to improve its stability. Also, the velocity sign was taken
into account:

T
m+1/2
i−1/2,k−1/2 = Tmi−1/2,k−1/2 − τV

m+1
ex,i−1/2,k−1/2∆xT

m+1/2
i−1/2,k−1/2 −

τ(γ − 1)Tmi−1/2,k−1/2

(V m+1
ex,i,k−1/2 − V

m+1
ex,i−1,k−1/2

hx
+

V m+1
ey,i−1/2,k − V

m+1
ey,i−1/2,k−1

hy

)
+

2τæ(γ − 1)

(nm+1
i−1/2,k−1/2)

2
×[

1

h2y
(Bm+1

z,i,k +Bm+1
z,i−1,k −B

m+1
z,i,k−1 −B

m+1
z,i−1,k−1)

2 +

1

h2x
(Bm+1

z,i,k +Bm+1
z,i,k−1 −B

m+1
z,i−1,k −B

m+1
z,i−1,k−1)

2 +(Bm+1
y,i,k−1/2 −B

m+1
y,i−1,k−1/2

hx
−
Bm+1
x,i−1/2,k −B

m+1
x,i−1/2,k−1

hy

)2]
+

τæ1(γ − 1)

nm+1
i−1/2,k−1/2h

2
x

(
T
m+1/2
i+1/2,k−1/2 − 2T

m+1/2
i−1/2,k−1/2 + T

m+1/2
i−3/2,k−1/2

)
,

Tm+1
i−1/2,k−1/2 = T

m+1/2
i−1/2,k−1/2 − τV

m+1
ey,i−1/2,k−1/2∆yT

m+1
i−1/2,k−1/2 +

τæ1(γ − 1)

nm+1
i−1/2,k−1/2h

2
y

(
Tm+1
i−1/2,k+1/2 − 2Tm+1

i−1/2,k−1/2 + Tm+1
i−1/2,k−3/2

)
.

The algorithm proposed has the first approximation order with respect
to time and space.

5. Computational results

Let us consider the computational results of the wave oscillation formation
when the plasma flow with the velocity v = v0 enters the area of unperturbed
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Figure 2. Particle phase planes at the different instants time

a b

Figure 3. Isolines of the plasma density (a) and z-component of the magnetic
field Bz (b)

plasma. Here the electron temperature was taken to be zero, i.e. Te = 0.
All the results are presented in dimensionless variables.

Figure 2 shows the particle distribution on the phase planes for different
time instants. The velocity of the incoming flow is v0 = 1. As we can
see from this graph, the formed wave has a regular oscillation structure
with a characteristic oscillation scale equal to 0.5. The wave distribution
velocity is 1.3VA. The isolines of the plasma density and z-component of
the magnetic field Bz are illustrated in Figure 3 at the time instant t = 7 for
the above parameters. In these figures, one can see the coincidence of the
maximum value coordinates for the density and the magnetic field resulting
from the condition of infinite plasma conductivity chosen for this run. An
increase in the incoming flow velocity up to v0 = 4 brings about the shock
wave formation, and as a result of its propagation the particles are reflected
from its front. The particle distribu-
tion at the time instant t = 3, 4.2, and
4.6 is given in Figure 4. Here the ve-
locity of the shock wave propagation is
2.4VA, and the velocity of the reflected
particles is of order up to 5. The for-
mation of the “step” on the shock wave
front is caused by the Larmor rotation
of the reflected particles under the ef-
fect of the magnetic field.

Figure 4. Particle phase planes at
the time instants t = 3 (1), 4.2 (2),
and 4.6 (3)

Thus, the developed numerical model permits one to describe the shock
formation processes for different Mach numbers of the incoming flow and
the particle reflection from the shock front, whose velocities can attain v =
2vshock wave.
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