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Comparison of FDM and FEM models for a 2D
gravity current in the atmosphere over a valley∗

M.S. Yudin

Abstract. A 2D version of a 3D nonhydrostasic finite-difference meteorological
model is compared with a 2D finite-element model used to simulate the effects of
atmospheric front propagation over a 2D valley. The front surface is described in the
models by an equation for advection of a scalar substance, which is solved by a third-
order semi-Lagrangian procedure. A leap-frog type scheme in combination with an
Asselin filter is used for time discretization. Special operators of space discretization
are used to provide conservation of momentum and scalars in the finite-difference
model. Triangular elements are used in the finite-element model. The results of 2D
model simulations show reasonable behavior of cold front propagation over a valley
as calculated by both models. The FEM model seems more universal in describing
complicated surfaces,although with the FDM model it is easier to conserve the
invariants of the initial differential equation system.

1. Introduction

Atmospheric phenomena take place on a wide range of horizontal length
scales. The flows are divided into some categories ranging from micro to
macroscales. Flows ranging from several to thousands of kilometers are
called mesoscale ones. Atmospheric fronts over complex terrain are exam-
ples of mesoscale gravity flows. A terrain-following coordinate system is
most often used to describe numerically a local topography of complicated
shape. The domain becomes a rectangular one that can be easily discretized
into a finite-difference grid. However,the transformed equations are more
complicated than the original ones. In addition, it can be shown that the
transformation function must satisfy some smoothness restrictions.

In the present paper a finite-element model is use as an alternative to
the above approach. Specifically, a 2D version of a 3D nonhydrostatic finite-
difference meteorological model is compared with a 2D finite-element model
used to simulate the effects of atmospheric front propagation over a 2D
valley. The propagation of an atmospheric front over steep terrain is a
phenomenon of great practical importance in meteorology [1–4]. This is also
a subject matter of interest for numerical modelers, since atmospheric fronts
can be considered as surfaces of discontinuity in the atmosphere. To simulate
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the deformation of these surfaces by spacial obstacles like mountains and
valleys with good accuracy, efficient numerical methods are needed.

The literature on theoretical studies of atmospheric fronts is not exten-
sive (e.g. [5]). Two distinct approaches can be recognized in the numerical
simulation of front propagation. In one approach, the front to be calcu-
lated is considered as a gravity current driven by a cold air source[6]. In
the other, the front surface is considered as a passive scalar, a tracer to
distinguish between warm and cold air masses [7].

In the present paper, first a preliminary investigation is carried out to
simulate cold front propagation over a steep valley in two dimensions with
a finite-difference model. For this, a 2D version of a 3D nonhydrostatic
meteorological model is used. The model is based on spacial discretizations
that conserve some important quantities of the phenomena under study like
momentum and scalars. Also, an efficient procedure is used to calculate the
advection of scalars. Then, a 2D finite-element model based on triangular
elements is used to simulate the same phenomenon of cold front propagation
over an idealized valley and compare the results.

In Section 2, the basic model equations are formulated. In Section 3,
orographic stability restrictions are formulated for the linearized basic equa-
tions in 2D form. In Section 4, a comparison is made between the results
produced by FDM and FEM models of model simulations for orographic
retardation of an idealized cold front by a valley. Conclusions to the paper
are given in Section 5.

2. Governing equations

We consider here a small-scale nonhydrostatic model developed for simu-
lations mainly in meso- and microscales (see, for example, [8]). In three-
dimensional statement, the basic equations of motion, heat, moisture and
continuity in a terrain-following coordinate system are as follows:
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U = ρ̄G1/2u, V = ρ̄G1/2v, W = ρ̄G1/2w, P = G1/2p′, where p′, θ′ are
deviations from the basic state pressure p̄ and the potential temperature θ̄,
s is specific humidity, Cs is the sound wave speed, ug, vg are components of
the geostrophic wind representing a synoptic part of the pressure, η is the
terrain-following coordinate transformation:

η =
H(z − zs)
(H − zs)

,

zs is the surface height, H is the height of the top of the model domain.
Here H = const,
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For an arbitrary function ϕ
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1
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The terms Ru, Rv, Rω, Rθ, Rs refer to subgrid-scale processes. As turbu-
lence parameterization, we use a simple scheme:

Km =

 l2
√

1
2
D2(1− Ri), Ri < 1,

0, Ri ≥ 1,

Ri =
g(d ln θ/dz)

D2/2
, D = ∇u + u∇.

3. Orographic stability restrictions

The above 3D system of equations is reduced to a 2D form and discretized by
using numerical schemes with central differences in time and space, on grids
for the scalar and vector quantities shifted half-grid size from each other
in all three space variables (see, e.g., [8]). The terms in the left-hand side
of the linearized system are taken by central differences in time and space,
while the terms in the right-hand side are taken at half-time grid levels
[9]. The basic equations system is linearized around a constant basic state
wind velocity vector (Ū , V̄ ). To perform a von Neumann stability analysis
procedure, one needs to estimate the amplification factor of the total grid
operator. Because of the high complexity of the linearized equations, this is
not a simple task, and one has to perform some simplifications.
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Since stability is studied only at the adjustment stage, we put Ū ,V̄ ,
and N̄ equal to zero. In [9], a two-dimensional (x, z) stability analysis was
carried out. In this case, it was possible to obtain the following characteristic
equation:[
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and kx, kz are horizontal and vertical wave numbers, respectively. This
equation was solved analytically by Ferrari’s method in [9].

It is not an easy task to obtain an analytical solution. Instead of calculat-
ing the characteristic equation, the eigenvalue problem for the amplification
matrix is solved by using a procedure for matrices in Hessenberg form de-
scribed by Wilkinson and Reinsch [11] (see also [12]). The input parameters
are used as in [9]: (∆x,∆y, ∆η, Cs) = (1200 m, 1200 m, 200 m, 340 m/s).
At ∆t = 12 s, we have found instability for any ∆G. Reducing ∆t to 2 s, the
calculations have shown that, similar to the two-dimensional case considered
in [9], the necessary stability limitation on ∆G is as follows:

0 ≤ ∆G ≤ γ < 1,

where γ is about 0.25. Here ∆G ∼ G13 ∼ G23, a measure of mountain
steepness; ∆H ∼

(
1
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)
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θ
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squared Brunt–Vaisala frequency; Ū and V̄ are constant basic state wind
velocity components; and θ′′ = ρ′

N

gρ̄
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.

4. Comparison of FDM and FEM models to simulate
an idealized front over a valley

In this section the above model is compared with a finite-element model.
The front surface is treated by an efficient semi-Lagrangian finite difference
scheme [13, 14]. Here the advection of a scalar is calculated in two steps:
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Determination of so-called departure points. This is the point from which
the point under consideration is reached at the next time step.

Interpolation of values of the advected scalar from grid points on the
departure point:

xD = x−
∫

u dt, f(x, t + ∆t) = f(xD, t).

Here u is the velocity vector and ∆t is the time step size. The scheme
is designed as follows: an arbitrary function f is expanded into a Taylor
series up to terms of the fourth order. The free coefficients of this expansion
are determined through values of the function at grid points. Denote λ =
(xD − xi)/∆x. Here ∆x is the grid size. By solving the resultant system of
linear equations for the free coefficients, we finally obtain

f(t + ∆t) = fi(1− λ/2− λ2 + λ3/2) + fi+1(λ + λ2/2− λ3/2) +

fi+2(−λ/6− λ2 + λ3/6) + fi−1(−λ/3 + λ2/2− λ3/6).

A third-order semi-Lagrangian scheme was used as a reasonable com-
promise between cost and accuracy. The FEM model is described in [15].
The model is a continuation of a previous version developed in collaboration
with K. Wilderotter.

To apply the above constructions to simulating the propagation of an
idealized cold atmospheric front over a valley in two dimensions the follow-
ing input parameters are taken from [6]: The obstacle is a circular valley
with an axially symmetric Gaussian shaped height profile of 600 m. The
computational domain is 25 × 2 km. In contrast to 6], the front was not
driven by a cold air source, but given initially as a step-function. Figures 1, 2
and 3, 4 show the results produced by the FDM and FEM models, respec-
tively. Figure 1 shows the FDM front as it enters the valley. In Figure 2,
the FDM front climbs the opposite side of the valley. In Figures 3 and 4,
the FEM front enters and exits the valley, respectively. A reasonable front
propagation behavior is obtained, as compared to the results of [6].

5. Conclusion

The general patterns of meteorological fields calculated by the FDM and
FEM models are very close to each other. It should be noted that the FEM
model seems more universal in describing complicated surfaces, although
with the FDM model it is easier to conserve the invariants of the initial
differential equation system. The results of calculations presented above are
preliminary. They should be extended to more realistic situations described
by more sophisticated physical parameterizations. In forthcoming papers the
effects of stratification and valley shape on front propagation will be studied.
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Figure 1 Figure 2

Figure 3 Figure 4

Also, comparison will be made with simulation results on atmospheric front
deformation by mountains and hills. Although the present study is of limited
utility, the above simulation results show that the numerical tools proposed
in this paper can be used for numerical simulation of cold front propagation
over a valley.
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