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A difference algorithm for a small-scale
non-hydrostatic meteorological model

M.S. Yudin

A numerical scheme for the advection part of a small-scale mathematical-
meteoroclogical model developed earlier is proposed. The algorithm has a technical
advantage when dealing with implicit difference schemes. The flow produced by
the meteorological model serves as a basis for the calculation of pollutant transport
over complex terrain. A simple Monte Carlo method is used for this purpose. Some
results of a calculation for the transport of a passive substance over a steep hill are
presented. A reasonably good agrecment with the existing theory is achieved.

1. Introduction

A wide variety of theoretical and practical problems of interest are closely
connected with meteorological phenomena on meso and micro spatial scales
[1]. Important information on urban climate and pollutant transport is
often based on a very scarce set of available data. Some mathematical-
meteorological models developed in recent years can serve as useful inter-
polants for such data bases. These models are used as helpful tools, which
produce such an amount of four-dimensional (space-time) information that
one can never obtain from observations only.

Many problems of meso and micro scale dynamics require a non-hydro-
static treatment of the equations of motion. It is well-known [2] that the
hydrostatic approximation is not valid when the resolvable horizontal and
vertical scales are the same order.

One of the first successful models in the important field of non-hydro-
static modeling was created by Clark [3]. It was a three-dimensional limited-
area anelastic finite difference model that used a terrain-following coordinate
transformation. In the design of the model the emphasis was put on conser-
vative aspects of the difference schemes employed. The discretized advective
terms of these schemes conserved the first moments of the original system
of equations (e.g., momentum, potential temperature). The discrete kinetic
energy in Clark’s algorithm was conserved provided the second time deriva-
tives were negligible. '

The purpose of this paper is to describe an algorithm for the advective
terms in a small-scale model based on the artificial compressibility approach
which was developed earlier by the author. The algorithm exactly conserves
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the first moments of the original equations and seems to have some technical
advantages when dealing with implicit time schemes.

The equations of the model are given in Section 2. Section 3 describes
the algorithm proposed for the advective terms in the model. A simple
Monte Carlo method which simulates the transport of a pollutant using the
information calculated by the meteorological model is briefly described in
Section 4. Section 3 shows a calculation of polutant transport over a hill as
an example, and Section 6 is devoted to conclusions.

2. The model

The basic equations of motion, heat, moisture and continuity in a terrain-
following coordinate system are as follows:
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U = pGY%u, V = pGV2%, W = pG1/%w, P = G”zp' where p/, §' are
deviations from the basic state pressure 7 and potential temperature 8, s is
specific humidity, C, is the sound wave speed, ug4, v, are the components
of geostrophic wind representing the synoptic part of the pressure, 7 is a
terrain-following coordinate transformation:
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z, is the surface height, H is the height of the top of the model domain.
Here H = const,

a1 6= g% o= gnlh )%
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In the above equations we use the following notation: for an arbitrary
function ¢
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The terms R,, R,, R., Ry, R, refer to subgrid-scale processes. As the
turbulence parameterization of the model, we use a simple scheme:
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where K, is the vertical exchange coefficient, Ri is the local Richardson
number, [ is the Blackadar mixing length [2]. A more detailed description
of the model and the numerical algorithms used can be found in [4, 5}. In
this paper, the emphasis is put on the discretization of the advective terms
only. This is described in the next section.

3. The algorithm

We approximate the advective terms in the model described above by the
following difference operators:

ADVU = 6;(u®(p"u%)) + &y (v*(p"u)") + &n(w”(p"u)")
ADVV = 5, (u¥(p%0)?) + 8, (v¥(p*0)¥) + & (¥ (6"0)")
ADVW = 6, (u"(p"w)®) + &, (v"(v(p"w)¥) + &, (" (p"w)")
ADV = 5, (u(p6)") + &,(0(08)") + 6, (2 (p8)"),
where
bap = [p(d+ Ad/2) - p(d - A/2)]/Ad,
0! = [o(d+ Ad/2) + p(d - Ad/2)]/2,

and d could be any of the independent variables.
As in [3], it can be readily shown that these forms are exactly conservative
with respect to the first moments..
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4. The Monte Carlo model

A simple Monte Carlo model described in [6] was chosen to perform trans-
port and diffusion simulations. This model is especially attractive because of
its mathematical simplicity and flexibility. We describe it briefly as follows:

At time ¢ + At in the terrain-following coordinate system of Section 2
individual particles are located at

zi(t+ At) = z;(t) + Ui (t) At.

The particle velocity U; is divided into a mean velocity u;, simulated by
the model described in Section 2, and a turbulent component !

Ui = ui + uj.
The following algorithm is used:
ui(t + At) = Ry (At)ui(t) + (1 - Rp (At)%)Y 0!, ¥,
Rp(At) = exp(~At/Ty,),

where Tr, and Ry, are Lagrangian time scales and autocorrelations, ¥ is a
random number generator. The velocity variances are

o.=(@mE)'? o, =@mE)'? o, =(2msE)"/?.
For three types of stratification
a9 00 08
— < — puiell i}
3 < 0.5 K/100 m., laz < 0.5 K/100 m, % > 0.5 K/100 m,

we use the following coefficients m; = 0.40, 0.54, 0.54; my = 0.30, 0.30,
0.37; m3 = 0.30, 0.16, 0.09; T, = K(a{“,)‘?

The turbulent kinetic energy E is obtained from K = IvcE. Here c is
an empirical constant commonly chosen as ¢ = 0.2 [6].

5. Pollutant transport over a hill

In this section we give some results of a calculation for the transport of a
passive substance over a steep hill,

A bell-shaped hill with a height of 500 m is located at the center of a
10 km x 10 km domain. The top of the domain is at 5 km. A geostrophic
flow goes from the west, with u; =5 m/s, v, = 0.

As the basic state, a standard atmospheric stratification % = 3.5 K/km
is assumed. An absorbing layer is located above a height of approximately
1500 m. The computational grid consists of 31 x31x 16 points, the horizontal
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grid size is Az = Ay = 333 m, the vertical grid size Az is variable, increasing
with height. The hill is slowly inflated during the first 15 minutes of the
computation. A tracer of 5000 particles was released east of the hill.

Figures 1 and 2 show a successive motion of the pollutant over the hill.
They represent z—z cross-sections over the center of the hill at 12 and 24 min.
Figures 3 and 4 show the distributions of the substance at two successive
cross-sections further north. The pollutant flow is shifted to the north de-
spite the symmetry of the initial conditions. This is in accordance with the
existing theory, which describes the flow as essentially close to the Ekman
spiral [7].

Figure 1 ' Figure 2

Figure 3 Figure 4
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6. Conclusions

The results of the test simulction seem to testify that the algorithm proposed
can be used as a helpful tool in numerical modeling of pollutant transport
over a steep terrain.
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