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Advantage of using QUICKEST scheme for the
approximation of the transport operator in the

equations of motion in the ocean circulation model

D.F. Yusupova

Abstract. This paper presents a study aimed at improving numerical models of
the ocean dynamics. We evaluate the sensitivity of the regional ocean circulation
model to the numerical schemes used to approximate the transport operator in
the equations of motion; we investigate the influence of the numerical scheme on
the flow field, reproduced by the numerical model. Numerical experiments involv-
ing two versions of the numerical circulation model were conducted for the basin,
which includes the Arctic Ocean and the North Atlantic. A comparative analysis
of the experimental results has shown that the rejection of a generally used central
difference scheme for the equations of motion and the use of a scheme of higher
order accuracy QUICKEST [1] conduce to the reproduction of more intense cur-
rents responsible for the exchange of water between the oceans. Even in models
with a coarse spatial resolution on the numerical grid, where nonlinear effects do
not have a significant impact on the structure of model fields, there are differences
between the obtained model fields. The use of more accurate schemes for approxi-
mation of the transport process in the equations of motion make possible to reduce
the viscosity coefficients and to obtain a smoother flow pattern, whose intensity is
increased.

1. Introduction

The modeling of advective transport is one of the most important Ocean
Process computational modeling problems. At the end of the 1960’s Bryan’s
publication [2] appeared, where the full nonlinear ocean dynamic model
was presented, which initiates an intensive ocean circulation research by
means of numerical modeling. This model [2] used spatial central difference
schemes for advection operators. In the sequel, the problem was repeatedly
discussed in that the central difference scheme has a numerical dispersion
causing oscillations in numerical solutions. To suppress these oscillations, it
is necessary to use high-diffusion significantly coefficients, exceeding physical
values and, hence, smoothing fronts and currents. The use of first order
upwind difference schemes in some models caused a scheme viscosity also
smoothing a numerical solution. At the beginning of the 1990’s an intensive
research into tracer advection numerical schemes began aimed at their use in
the ocean dynamic models for the temperature and salinity calculation [3–5].

The numerical schemes with a reduced scheme viscosity that are a com-
bination of the central difference and the upwind-difference schemes [6], were
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coming into use. In [7], the scheme viscosity was excluded by means of the
Richardson extrapolation.

The authors of [4, 5] indicated to the fact that the use of the FCT, the
QUICK schemes allows one to obtain a hydrological fields distribution free
from numerical oscillations and to significantly improve the ocean process
definition in comparison with the central difference scheme. Currently, it
remains a highly topical problem [8, 9]. In [10] it was demonstrated that
substitution of a scheme with a reduced scheme viscosity by the QUICKEST
scheme [1] in the equations of temperature and salinity advection allows one
in the context of rather a rough resolution to describe the Atlantic water
spreading in the Arctic Ocean.

At the same time, in any ocean circulation numerical model, the central
difference schemes for the advection operator are still used in the moment
advection equations. An extended analysis of the moment advection equa-
tions shows that the primary balance in the ocean is struck between the
Coriolis force and the pressure gradients. Close to the side boundaries, the
surface and bottom viscous term has an essential impact.

Nonlinear effects in the velocity field are revealed only in high-resolution
models. Therefore numerical schemes, used for approximation of the mo-
mentum advection equation, generally have second or a lower order of accu-
racy. The progressively improving computer engineering allows us gradually
to go on to the problems, where nonlinear processes are of paramount impor-
tance. Therefore the ocean dynamic numerical models must be developed
for improving the advection description in a flow field.

The present paper is a sequel to study [10]. Numerical experiments
are made for the Arctic –– North-Atlantic basin. In current studies of the
Earth’s climate changing the Arctic –– North-Atlantic interaction is of pri-
mary concern. Many international projects are aimer at investigation these
regions processes, field study data processing, and development of the ocean
dynamic numerical models. AOMIP (The Arctic Ocean Intercomparison
Project, http://fish.cims.nyu.edu/project_aomip/overview.html) is
one of these projects. Its object is a comparison of the ocean-ice interac-
tion numerical models and causation of the qualitative and the quantitative
distinctions in numerical experiments results for the development of new
standard models, enabling the reproducing of climate changing.

In the present paper, the problem of the influence of an advection nu-
merical scheme in the momentum equation on the flow field reproduced by
a numerical model is investigated. For a set of momentum equations, two
schemes are examined: the central difference scheme and the QUICKEST
scheme. Let us testify that even in models with a rough resolution, where
nonlinear effects have no significant impact on the model fields structure,
there are differences between the derived model fields. The use of more accu-
rate schemes for approximation of the transport process in the equations of
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motion allow us to reduce the viscosity coefficients and to obtain a smoother
flow pattern, whose intensity is increased.

2. The ocean circulation model

2.1. The modeling domain. To simulate the processes of interaction
between the Arctic Basin and the North Atlantic, we considered the region of
the Arctic Ocean and the North Atlantic, starting with 20◦ S. The numerical
grid is a union of 1◦ × 1◦ grid in the spherical coordinate system for the
North Atlantic and a reprojective grid with a finer resolution of the Arctic
Ocean [11]. A maximum resolution in the polar regions is equal to 35 km. On
average, the nodes of the numerical grid in the area of the Arctic Ocean are at
a distance of about 50 km. The vertical partitioning represents 33 horizontal
levels with concentration at the surface, where the resolution is 10 m.

2.2. The numerical model. The numerical model used for investigation,
is a regional ocean model developed at the ICMMG SB RAS. The history of
the model originates from the large-scale ocean model [12,13]. A description
of the latest version of the model was presented in papers [10,14].

In the system of orthogonal curvilinear coordinates, the full nonlinear hy-
drothermodynamic equations of the ocean are considered using conventional
approximations: Boussinesq, hydrostatics and “solid lid”.

The system includes the equation for the horizontal velocity components:
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the transport-diffusion equation for heat and salt
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(7)

where we use the following notations: z is the vertical coordinate with a
positive direction from the surface to the center of the Earth, u, v are the
horizontal velocity components, T is potential temperature (◦C), S is salinity
(%), ρ is density of water, ρ0 = const is a standard density, p is pressure,
f = 2Ω sinϕ is the Coriolis parameter, ϕ is latitude, µ, ν and µT,S , νT,S are
the coefficients of horizontal and vertical viscosity and diffusion, and hx, hy

are metric coefficients.
Boundary conditions for the original system are the following:

• on the surface z = 0:

w = 0, ν
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• on the bottom z = H:
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• on the lateral boundaries Γ0:
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= 0, U · n = 0,
∂(T, S)
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= 0. (10)

Here τ is vector of the wind stress, U = (u, v) is vector of horizontal velocity
components on the corresponding horizontal coordinates, R is a friction
coefficient on the bottom, l, n are the tangential and thenormal unit vectors
to the contour of the boundary Γ, respectively, and QT , QS are fluxes of
heat and salt on the surface.

2.3. A modification of the model. A modification of the numerical
model, provided in this paper, concerns the calculation of the horizontal
velocity components. In the previous version of the numerical model [10,14],
further denoted as M1, the system of transport–diffusion equations
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is solved using the method of splitting a 3D operator by spatial variables. In
1D equations for the approximation of the transport operator, the central
difference scheme is used. For the time approximation, an implicit scheme
is used. In a modified version of the model, further denoted as M2, system
of equations (11) is solved in two stages:
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Diffusion part (13) is realized using the splitting on 1D operators and a
subsequent solution using the implicit schemes in time.

To approximate system of transport equations (12), QUICKEST-scheme
with respect to [1] is used. According to results of conducted prelimi-
nary tests with the schemes QUICKEST, UTOPIA [15], SOM [16], the
QUICKEST-scheme is a reasonable compromise between the efficiency and
the cost calculations. The efficiency of this scheme for the transport equation
of heat and salt in the model M1 is described in [10].

In model M2, the QUICKEST-scheme is implemented as follows:
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The value of the curvature κ (second derivative) depends on the direction
of flow:
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Approximation of the equation for v-components of velocity is similarly
done.
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3. Numerical experiments

In the numerical experiments, an array of climatic Data PHC [17] was used
as the initial data for temperature and salinity. The absolute water temper-
ature represented in the data, was re-counted for a potential temperature
distribution. Velocities were set equal to zero.

A sequence of numerical experiments can be divided into two phases.
At the first stage, we carry out the calculation of a quasi-stationary state

of the ocean to simulate a system of currents of the Arctic Ocean and the
North Atlantic.

Testing the model was carried out with no ice cover at a fixed seasonal
course of constraining forces at the ocean surface for 5 years of model time.
The lack of ice in the model was offset by “restoring” condition (cf. [18]) of
the estimated temperature T and the salinity S on the surface of the ocean
to the climatic distribution values [19,20] by the formulas

k
∂T

∂z
= γT (T − T ∗), k

∂S

∂z
= γS(S − S∗), (15)

where T ∗, S∗ are climatic data, γ is a “restoring” parameter, equal to 5
days.

To calculate the momentum flux, an array of data of the wind shear stress
was used [21]. The lateral border for this experiment was considered to be
closed. Using the “restoring” condition to the salinity of the ocean surface
provided in the surface layer of the presence of fresh water from rivers. At
the second stage, we used the wind field obtained with the archive data
NCEP / NCAR [22] for the period from 1948 to 1973.

The estimation of the diffusion coefficient necessary for the suppression
of oscillations in the numerical solution of the transport-diffusion equation
for models, using the central difference scheme, presented in [23] based on
the stationary equation solution of the form:

U
∂ϕ

∂x
= µ

∂2ϕ

∂x2
. (16)

The choice of the numerical solutions in the form of ϕi = a+ bξi results
in the condition U∆x/µ < 2, which ensures non-negative ξ and, hence, the
absence of oscillations in the numerical solution.

Assuming that the characteristic scale of velocity in the temperate lati-
tudes in the model is equal to 10 cm/s, and the grid size of ∼ 100 km, we
find that the value of viscosity, sufficient to suppress the oscillations is equal
to 5 · 107 cm2/s.

For the Arctic region, the grid size is, on average, equal to 50 km, the
characteristic velocity of order 2 cm/s, which corresponds to the viscosity of
5 · 106 cm2/s. These values can be reduced on the assumption of a smooth
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behavior of the solution that is checked for each model in the numerical
experiment.

The scheme QUICKEST is a numerical scheme of third order accuracy,
although not monotonic. However, the numerical solution obtained for 1D
transport equation, shows a distinct advantage of the QUICKEST scheme as
compared to the scheme. Presentation of the numerical solution in the form
Tn

j = Re[exp(ijk∆x)], |Tn+1| = |λ||Tn|, where i is an imaginary unit, k is
wavenumber, allows building a dependence λ2 from k∆x for different values
of the Courant number c. From the analysis it follows that QUICKEST is
stable when the Courant number c ≤ 1.

It effectively suppresses the short-wave and leaves the transition factor
close to unity for long waves [10]. This allows us to reduce the value of the
required viscosity.

Numerical experiments were conducted with the following model param-
eters (cm2/s):

Model M1 Model M2
In the polar latitudes 106 106

In the temperate latitudes 107 106

At the equator 5 · 108 5 · 108

4. Results of numerical experiments

A flow field, obtained at the first stage reflects the picture of North At-
lantic water circulation (Figure 1) and, also, the water exchange between the
oceans. The model results represent subtropical anticyclonic North Atlantic
circulation with most intensive flow Gulfstream and its continuation North
Atlantic flow; subpolar cyclonic circulation, in whose east part the North
Atlantic flow water is transported to the north. In the Arctic basin (Fig-
ure 3) the following flows are displayed: the Norwegian flow, transporting
the warm Atlantic water northward, the East Greenlandic flow, transport-
ing the cold arctic water southward, anticyclonic circulation of the Canadian
basin and cyclonic circulation of the Atlantic water in the Arctic.

Results of the numerical experiment matching for two versions of the
model have shown that more intensive flows were obtained in Model M2
in comparison with the results of Model M1. A flow intension increase in
the upper layer of the ocean can be observed through the vertical section in
the primary current, which are responsible for the Arctic –– North Atlantic
water exchange: the North Atlantic (Figure 2), the East Greenlandic and
the Norwegian flows (Figures 4). The results revealed that the velocity of the
basin primary currents increased at the account of model modification: the
North Atlantic flow–– 8 cm/s for 1 and 12 cm/s for 2; the East Greenlandic
flow –– 4 cm/s for 1 and 8 cm/s for 2; Norwegian flow –– 4 cm/s for 1 and
9 cm/s for 2.
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Figure 1. Field of calculated currents in the North Atlantic at a depth of 100 m

Figure 2. Flow field in the vertical section AB for M1 (top) and M2 (bottom)
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Figure 3. Field of calculated currents in the Arctic at a depth of 100m

Figure 4. Flow field in the vertical section CD for M1 (top) and M2 (bottom)
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Figure 5. Distribution of the integral values of the stream function in 1973
for M1 (top) and M2 (bottom)
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The second numerical experiment was conducted for the time interval
from 1948 to 1973. The distribution of the wind field for this period reflects
the situation of the negative phase of the North Atlantic Oscillation [24] in
the atmosphere, which brings about a weakening of the major large-scale
circulations in the North Atlantic, the lower flux of the warm Atlantic wa-
ters in the Arctic. In numerical models, where the currents are usually
obtained underestimated, the modeling of the water exchange in this pe-
riod represents certain difficulties. The difference in the results of numerical
experiments obtained from Models M1 and M2 is most obvious from the
picture of vertically-averaged integral circulation of the ocean, whose dis-
tribution in 1973 is presented in Figure 5. From these pictures, it follows
that despite the overall deformation of the subtropical gyre in the North
Atlantic and weakening of the circulation, in Model M2 subpolar front is
more pronounced. A more intensive and subpolar circulation cell is derived
from calculations of M2. In the Arctic, differences between the experiments
are less pronounced, but it should be noted that as a result of applying the
scheme QUICKEST we obtained a smoother distribution of flow fields in
the areas with complex bottom topography.

5. Conclusion

In the present study, we evaluate the sensitivity of the regional ocean circu-
lation model to the numerical schemes used to approximate the transport
operator in the equations of motion.

It is shown that the rejection of the central difference scheme traditionally
used for the equations of motion and the use of a scheme of higher order
accuracy QUICKEST, conduce to the reproduction of more intense currents
responsible for the exchange of water between the oceans.

In this case, this process is clearly expressed even for a model on a one-
degree grid. It is assumed that with the use of a finer mesh, with more
expressed nonlinear processes, the advantages of the scheme QUICKEST
will be even more noticeable.
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