
Joint NCC & IIS Bull., Comp. Science, 16 (2001), 153–170
c© 2001 NCC Publisher

Subdefinite data types and constraints in

knowledge representation language

Yu.A. Zagorulko, Yu.V. Kostov, I.G. Popov

A knowledge representation language with subdefinite data types and constraints is
considered. An important feature of this language is the possibility of operating with
objects that may have slots (attributes) with imprecisely defined (subdefinite) values.
Another important feature of the language is that it allows one to bind any object or
relation to a set of constraints defined on the values of the object slots. The constraints
defined on the slots with subdefinite values allow one to automatically refine such values.
Since the constraints are encapsulated in the objects and relations of the semantic network,
they can be added to or deleted from the current set of constraints during the process
of computation as a consequence of creation or deletion of these objects or relations. A
production rule technique is used to specify the process of inference and to manage the
set of constraints, as well as to control a search for precise values (solutions).

Introduction

Knowledge representation languages are traditionally based on semantic net-
works, frames, and production rules. Usually, these languages allow one to
operate on objects whose parameters are either completely known (i.e., have
exact or precise values), or completely unknown. This limits their descrip-
tive and functional capabilities and does not allow the use of incomplete or
imprecise knowledge about the objects. Extension of knowledge represen-
tation languages with the ability to handle objects whose parameters are
known approximately, i.e., the ability to represent and process inexact data
and incomplete information, would enhance the descriptive power of such a
language and expand the class of problems that can be solved.

Another shortcoming of traditional knowledge representation languages
is their limited computational power. Unknown values of parameters can
be obtained mainly through the inference of some kind. At the same time,
there are other approaches and techniques that allow us, on the one hand,
to work with incomplete or inexact data and, on the other hand, to support
the declarative description of computational problems. In the former case,
we refer to the method of subdefinite data types (SD-types) [1], and in the
latter case, to constraint programming techniques [2, 3, 4]. Moreover, they
are unified into the method of subdefinite computational models [5, 6]: this
method is based on SD-types and, at the same time, is one of the most
universal techniques in constraint programming.



154 Yu.A. Zagorulko, Yu.V. Kostov, I.G. Popov

The apparatus of SD-types can help to represent and process objects
whose slots (attributes) can have subdefinite values (or SD-values), i.e., some
ranges of possible values (sets of intervals).

The methods developed within the framework of constraint programming
paradigm allow us to specify a problem as a set of constraints on the values
of object attributes. In this case, a solution of the initial problem is reduced
to a constraint satisfaction problem. This approach is particularly conve-
nient when the constraints are represented in the form of ordinary logical
expressions.

Since these methods permit one to solve a relatively narrow class of prob-
lems reduced to constraint satisfaction, there is a tendency to use them in
combination with other means. For example, methods of constraint pro-
gramming are built into imperative languages [7], as well as into the lan-
guages for logic and functional programming [8].

However, the extension of conventional programming languages with
constraint programming techniques certainly extends their capabilities but
does not make them knowledge representation languages, since their level
of knowledge representation remains rather low and they are to be used by
knowledge engineers rather than by programmers.

In addition, languages developed within the paradigm of constraint pro-
gramming offer low-level tools for problem specification. As a rule, they
provide the user with the ability to define constraints on ”single” variables
even when they are parts of complex entities, e.g., parameters of an object.
As a result, the constraints on parameters of an object or arguments of a re-
lation are also independent, single elements of knowledge that are connected
only in the mind of the developer, even though these constraints either are
properties of some objects or describe the semantics of relations between
objects.

High-level problem specification tools can be developed by integrating
constraint programming techniques with the object-oriented approach [9,
10, 11]. In knowledge representation languages, this can be seen in binding
constraints to objects and relations of the semantic network. This approach,
in particular, creates the necessary prerequisites for dynamic control of the
set of constraints (through adding or deleting objects or relations of the
semantic network).

In this paper we consider a knowledge representation language based
on the abovementioned approach. This language includes subdefinite data
types and constraint programming techniques, as well as some more conven-
tional methods for representation and processing of knowledge and data.

Extending knowledge representation languages with subdefinite data
types increases its descriptive power by allowing representation of inexact



Constraints in knowledge representation language 155

and incomplete information. In particular, SD-types can be used to repre-
sent the values of parameters (or attributes of objects) for which only an
approximate estimate or the type is known. At the same time, the use of
the mechanism of constraints in the language allows comprehensive use of
subdefinite data types. Once parameters with subdefinite values are linked
by constraints, we can refine their values via constraint propagation, and in
some situations even obtain their exact values. To resolve situations when
the initial data (constraints) are not sufficient to find the exact values of
parameters, the language should include the corresponding methods for so-
lution search.

It should be noted here that the use of SD-types and constraints in
knowledge representation languages not only improves its ability to infer
new information, but also expands its domain of use covering the class of
problems solvable by constraint programming.

Thus, such a language can be regarded both as a knowledge representa-
tion language, with extended capabilities for knowledge representation and
processing, and as a high-level object-oriented constraint programming lan-
guage.

The paper is structured as follows. Section 1 defines subdefinite data
types and subdefinite computational models. In Section 2, we consider data
types and knowledge representation facilities and knowledge processing ca-
pabilities of the knowledge representation language, and Section 3 gives an
example of the use of the language.

1. Subdefinite data types and subdefinite

computational models

In the early eighties, A.S.Nariny’ani proposed the apparatus of subdefinite
data types [1] and method of subdefinite computational models [5, 6] as fa-
cilities for working with imprecisely defined values and objects.

First we consider subdefinite data types.
Let T be an “ordinary” data type with the set of values A and the

corresponding set of operations over A. We denote the set of all subsets of
A by A∗. Elements of A∗ will be called subdefinite values or SD-values and
denoted by a∗. The values a∗ containing only one element of A will be called
exact values. A special value equal to the entire set A will be said to be fully
indefinite, and a value equal to the empty set will be called inconsistent.

For each operation P : An → A of type T , we can define the correspon-
dent operation P ∗ : A∗n → A∗ as a subdefinite extension of the operation
P :

P ∗(a∗1, . . . , a
∗

n
) = {P (a1, . . . , an)|a1 ∈ a∗1, . . . , an ∈ a∗

n
}



156 Yu.A. Zagorulko, Yu.V. Kostov, I.G. Popov

These new operations have similar semantics but may be applied to
subdefinite values and the result of each of them is, in general, a subdefinite
value too. So we can build a subdefinite data type T ∗ on the base of the
original ’exact’ data type T .

Presently, subdefinite extensions have been constructed for various data
types: integer, real, symbolic, logical, sets, etc.

The method of subdefinite computational models implies the use of sub-
definite data types to represent uncertain data in a problem which is specified
in terms of constraints on its parameters.

Formally, a constraint is a boolean expression C(v1, . . . , vn) that is re-
quired to be true. The variables v1, . . . , vn linked by the constraint may get
values of any subdefinite data type.

In the considered method each constraint must have functional inter-
pretations. This means that the constraint can be represented by a set of
functions:

f∗

i
: A∗n−1 → A∗,

which are called interpretation functions. Each of these functions allows us
to calculate the value of one variable from the values of the other ones:

vi = f∗

i
(v1, . . . , vi−1, vi+1, . . . , vn).

The set of such constraints is called a subdefinite computational model
(SD-model) of the task. Interpretation of the constraints of this model,
performed by a special data-driven algorithm, allows us to refine subdefinite
values or even obtain exact values of the task parameters which satisfy given
constraints.

The principle of data-driven computations (algorithm) means that a
change of the value of any variable activates (causes execution of) the inter-
pretation functions which depend on this variable; execution of the interpre-
tation functions, in turn, may cause a change of the value of other variables,
and so on.

If at least one variable gets an inconsistent value (for example, empty
set of values), the process will stop and the SD-model will be considered
inconsistent.

The important point here is that, during the process of interpretation, a
new value a′′ of the variable v is calculated and intersected with the old one
(a′):

v = a′′ ∩ a′.
Since it is the result of this intersection that is assigned to the variable

v, the value of v can be only refined, i.e. a new value is a subset of the old
one. Notice that the value of the variable is considered to be changed only
if it is actually refined.

Thanks to described above semantics of the assignment operator, as it



Constraints in knowledge representation language 157

was shown in [6], for variables of all data types containing only a finite
set of SD-values, this algorithm terminates in a finite number of steps. In
the case of infinite sets of SD-values (for instance, intervals of real values),
the stopping criterion can be based on the preset threshold of computation
accuracy e. This threshold e determines the maximum possible distance
between two values for which they are still considered to be identical.

We emphasize that the method of subdefinite computational models may
be used to solve the problems that include variables of different types simul-
taneously. This proves the universal nature of this method. For this reason,
we use the method of subdefinite computational models to implement the
mechanism of constraint propagation in our knowledge representation lan-
guage.

2. The knowledge representation language

The language is based on an integrated knowledge representation model that
unifies such classic means as semantic networks, production rules, apparatus
of subdefinite data types, as well as the methods of constraint programming.
This natural integration is based on the object-oriented approach.

2.1. The data types

In the language, there are three kinds of data types: elementary, com-
pound and semantic. Elementary types include integer, real, atom, char,
and boolean. Compound types are string, structure, set and tuple. Classes
of objects and relations defined by the user are considered as semantic data
types.

A value of the type atom is a label (indivisible string) which can be only
compared with another label.

A value of the type boolean can be only true, false or undefined, including
both values true and false simultaneously.

An elementary type can have both definite and subdefinite values. A
subdefinite value can be represented by an interval or enumeration. E.g., a
subdefinite integer value can be the interval from 10 to 100,

integer(10..100),
or the enumeration of the odd digits,

integer(1, 3, 5, 7, 9).
The real interval from 1.8 to 43.7,

real(1.8..43.7),
and the character ranges from ’a’ to ’z’ and from ’A’ to ’Z’,

char(′a′..′z′,′ A′..′Z ′),



158 Yu.A. Zagorulko, Yu.V. Kostov, I.G. Popov

are also the examples of subdefinite values.
A subdefinite value of the type atom can be represented only as enumer-

ation of labels, e.g.,
atom(black,white, red, blue).
Notice that subdefinite values are basic, whereas the usual “precise”

values are considered just as a special kind of subdefinite values.
A full-scale set of arithmetical and logical operations, as well as trigono-

metric and other mathematical functions are defined over numerical data. In
addition, the language includes the built-in functions which return current
upper and lower boundaries of a subdefinite value x, (Low(x) and High(x)),
and the logical function detecting whether the value x is definite or subdef-
inite, (IsPrecise(x)).

Compound data types are used to aggregate values of any type except
a string that consists of only characters. Elements of a structure, a set and
a tuple can be not only values of elementary types but also references to
objects of compound and semantic data types.

A structure is a construction which is similar a structure in C or a record
in the Pascal language. It can integrate data of different types.

A set is a disordered list of elements with the traditional operations
over sets (union, intersection, subtraction). A tuple is an ordered list of
elements (which may be duplicated) with the operations of indexation and
concatenation. It should be noted that all elements of a set and a tuple
must have the same type. Sets and tuples can be nested.

In addtition to conventional operations, expressions with quantifiers (it-
erators) are defined for tuples and sets:

forall x in Domain when P (x) : Q(x)
and

exist x in Domain when P (x) : Q(x).
The first iterator (forall) produces the value true if, for all elements x of

Domain which satisfy the predicate P(x), the predicate Q(x) is true. The
second iterator (exist) produces true if at least one such element exists.
Domain in the iterator can be any expression whose result is a tuple or a
set; the predicates P (x) and Q(x) are logical expressions; the predicate P (x)
may be omitted.

Both iterators can also be regarded as the conjunction and disjunction,
respectively, of the predicate Q(x) for all elements of Domain restricted by
the predicate P(x).

The language also includes two additional iterators sum and prod which
are used for arithmetical calculations:

sum x in Domain when P (x) : F (x)
and



Constraints in knowledge representation language 159

prod x in Domain when P (x) : F (x).
The first iterator (sum) calculates the sum of values of F (x) for all

elements x of Domain which satisfy the predicate P (x). The second iterator
(prod) calculates the product in the similar way. Note that the sum and
the product may have a subdefinite value and the predicate P(x) may be
omitted.

For example, we can check the presence of a positive number in the set
S = {−3,−1, 0, 2, 5} using the following expression

exist x in S : x > 0,
and if we want to check whether the set S includes only positive numbers,
we have to use the expression

forall x in S : x > 0.
The result of calculation of the first expression will be true and one of

the second expression will be false.
To calculate the sum of squares of elements of the set S and product of

its positive numbers we can can use the following expressions
sum x in S : x2

and
prod x in S when x > 0 : x.
There are also special types any and nil. The type any can be considered

as the most base type for all other types. The value of any can be any value
of the elementary, compound or semantic types. This type can be used in
all cases when the actual type of the value is unknown. The actual type of
a value will be determined at the run time. The type nil has only one value
denoted by ’?’ symbol. This value may be used for compound and semantic
data type to indicate that “no value” is actually presented.

The semantic data types are described in the next section.

2.2. The knowledge representation means

The basic tool used to represent declarative knowledge in this language is
a so-called object-oriented semantic network, which consists of objects and
relations. An object can be any entity of the subject domain defined by the
knowledge engineer. Relations are used for linking objects in the semantic
network.

Each object is characterized by its name (reference) and values of its
attributes (slots). The values of the slots may be of any type defined in the
language. The value of the object slot may be represented by the object
as well. Objects may have constraints defined on the values of the object
slots. These constraints are also considered as the features of the object. A
similar set of constraints may be associated with a relation, but in this case
constraints are defined on the slots of objects linked by this relation.



160 Yu.A. Zagorulko, Yu.V. Kostov, I.G. Popov

The constraints associated with some object or relation constitute its
local SD-model.

Since the value of a slot can be an object, as well as a set or a tuple of
objects, constraints can link the values of slots from several objects. The
set of local SD-models of all objects and relations presented in a semantic
network constitutes a global SD-model or functional network.

Notice that logical expressions from which constraints are composed may
contain iterators defined for tuples and sets in addition to arithmetic and
logical operations over values of elementary types.

Objects with the same properties are combined into one class. The
properties of the class define the names and types of the values of object
slots, possibly their default values, and the behavior of the objects.

Some classes may inherit the properties of other classes (in this case,
the former are called subclasses, and the latter are superclasses), with a
possibility of multiple inheritance. Some properties of a superclass can be
redefined in subclasses.

An important feature of the language is that object slots may have sub-
definite values. Subdefinite values can be defined as intervals or sets of
possible values of elementary types. Such subdefinite values can be refined
as a result of constraint propagation in the functional network (let us remind
that the method of subdefinite computational models is used to implement
the mechanism of constraint propagation in such a network).

Notice that the functional network is activated for every modification of
the values of object slots it contains; it ensures recalculation and modifica-
tion of the values of slots of the related objects. Activation and interpre-
tation of the functional network is performed by a data-driven algorithm
described in Chapter 1.

There is a special class of relations. These are binary relations for which
a user can specify, along with the properties described above, the math-
ematical properties, e.g., reflexivity, symmetry, transitivity, antireflexivity,
etc.

2.3. The knowledge and data processing means

To specify the knowledge inference processes, the language provides two
methods. The first of them is declarative. It lies in the definition of the
constraints on the slots of objects given in the specifications of the object
classes and relations and determines local processes of computations in the
functional network. The second method can be considered as less declara-
tive, but more procedural or imperative. It serves for the specification of
global processes of the knowledge inference in the form of the production
rule system worked over the semantic network.



Constraints in knowledge representation language 161

The first method was considered above, so let us consider the second
one.

A production system consists of the production rules which have the
traditional form:

CONDITION => ACTION ,
where CONDITION is the conditions necessary for the application of the
rule, and ACTION is the actions executed if the conditions are satisfied.
Sign ′ =>′ is used to separate the left-hand part of a rule (CONDITION)
from its right-hand part (ACTION).

The left-hand part of the rule contains a global condition and a list of
patterns with local conditions.

The global condition is an ordinary logical expression.
The pattern is a template of instance of an object or a relation with the

given values of slots. In addition to concrete values, the pattern can also
contain local variables which get their values, when the pattern is matched
with some object or relation of the semantic network. Each local condition
is a usual logical expression defined on local variables of a rule; it specifies
additional constraints on their values.

A part of patterns may be labeled by not specificator and treated as
a negative context. The CONDITION of the rule is satisfied only if the
global condition is satisfied, and all ordinary patterns (ones not labeled by
not specificator) and none of the patterns from the negative context are
matched with the semantic network.

It should be noted that since global and local conditions of the rule may
contain subdefinite values or variables with subdefinite values, the result of
computation of this logical expressions may be, in general, undefined. In
this case the rule is not applied.

The application of the rule is defined as execution of the actions speci-
fied in its right-hand part. This part contains the operations over objects
and relations of the semantic network, as well as other operations, such as
control of production activation, hypotheses and alternatives testing, search
for exact values, data input/output and so on.

To support working with semantic networks, the language includes the
operators for creation of objects and relations (new), editing them (edit)
and deleting from the network (delete). It is also possible to save and
restore the content of the semantic network at any time.

When an object is created, its slots are filled with the values indicated
in the new operator. The slots the value of which are not specified will be
filled with the default values. If there is no default value, then the slot will
be filled with a subdefinite value — the entire set (domain) of admissible
values if the slot is of an elementary type, or the completely indefinite value



162 Yu.A. Zagorulko, Yu.V. Kostov, I.G. Popov

’?’ if the slot is of a compound or semantic type. Only after all slots are
filled with values, the object is inserted into the semantic network. If the
description of the object’s class contains an SD-model, it is concretized by
the values of its slots and added to the functional network.

The edit operator makes it possible to change the values of the slots of
already existing objects and relations.

After objects or relations are deleted from the network, the semantic and
functional networks are corrected. In the semantic network, all references
to the deleted objects are replaced by the completely indefinite value ’?’.
The relations which link the deleted objects are removed from the semantic
network. At the same time, all constraints related to the slots of the deleted
objects and relations are removed from the functional network.

An important feature of the language is that creation, modification, and
deletion of any object or relation leads to the immediate activation and
interpretation of the functional network.

Since each constraint is linked to some object or relation of the semantic
network, the global set of constraints (the functional network) can be modi-
fied during the process of computation as a consequence of both insertion of
new objects and relations into the semantic network or deletion of the exist-
ing ones from it. This process is performed by the production rule system,
which is traditional inference tools in the knowledge-based systems.

Thus, subdefinite values of slots may be refined by production rules as
a result of direct editing of values of object slots or constraint propagation,
that is as a consequence of insertion into the semantic network new relations
containing the set of constraints which narrow the ranges of values of the
slots.

Other important feature of the language is the availability of means for
two-level dynamic control of activation of production rules. These facilities
ensure high flexibility of knowledge (or data) processing control. They allow
one to structure the set of production rules defined in the application, and
then activate or deactivate some its subset depending on the situation.

If there is no enough constraints to completely refine subdefinite values
of the object slots, then exact values can be obtained by special precise
operator:

precise Object : ClassName(Slot1, . . . , Slotn),
where Object is a reference to the object, ClassName is the name of the
object class and Slot1, . . . , Slotn are names of the object slots.

This operator searches for exact values of indicated slots of the object
Object, which satisfy all constraints of functional network. If no such values
are found, the contradiction is arouse.

A search for exact values may be performed together with maximization



Constraints in knowledge representation language 163

or minimization of the value of some expression (target function). In this
case the found exact values will satisfy all constraints and provide minimal
or maximal value of the target function at the same time:

precise Object : ClassName(Slot1, . . . , Slotn) minimize Expression;
or

precise Object : ClassName(Slot1, . . . , Slotn) maximize Expression;

2.4. Hypotheses and alternatives testing

Since modification of the semantic network can lead to a contradiction in
the global functional network, it is necessary to have abilities to roll back
to the previous state. This mechanism is implemented in the language by
an operator of alternatives (try operator), which allows us to define and
execute several alternatives.

try Alternative1
or Alternative2
. . .
else DefaultAction

end

Any sequence of valid operations and statements may serve as an alter-
native (Alternativei).

If execution of an alternative is successful, no other alternative is con-
cerned. (The execution of the current alternative is successful if it does not
lead to a contradiction.)

If execution of an alternative results in inconsistency, rollback is per-
formed with following attempt to process the next alternative.

If all alternatives fail, the actions placed after else (DefaultAction) are
executed.

The contradiction can occur in the following cases:

1) if the functional network is inconsistent (in the case when the value of
some slots of objects do not satisfy the given constraints);

2) if the semantic network is inconsistent (i.e., the properties of some
binary relation are not satisfied);

3) if fail operator is executed (it serves for an explicit generation of fail-
ure).

Notice that the fail operator can be included into the production rule,
which traces the appearance of contradictory data in the semantic network.
Furthermore, the fail operator (in a combination with the precise operator)
can be used by the knowledge engineer for the forced selection of alternatives
with the purpose to obtain all precise solutions.



164 Yu.A. Zagorulko, Yu.V. Kostov, I.G. Popov

Thus, the statement of alternatives, on the one hand, allows us to gen-
erate hypotheses and reject them if they lead to a contradiction. On the
other hand, the use of embedded statements of alternatives allows one to
define a case analysis similar to backtracking. In this case a contradiction
means that the version under consideration is unsatisfactory and we must
test another branch in the analysis tree.

3. Use of the language for developing a robot

simulator

As an example, we consider the use of the language for developing a robot
simulator.

The robot’s world consists of several rooms which may contain some
objects. Robot is capable to transfer objects. The classes of objects, such
as furniture and equipment, are distinguished. Relations are used to define
position of objects with respect to each other.

Since all things in the robot’s universe have a certain position in space,
they are all represented by geometrical figures.

First, we introduce the class FIGURE which includes the most general
properties of all geometric objects:

class FIGURE

x, y: integer(0..200 );

left, right, top, bottom: integer(0..200 );

end;

Its parameters x and y denote the center of the geometric object in the
Cartesian system of coordinates; left, right, top, and bottom refer to the
objects borders. Basing on the class FIGURE, we construct the classes, like
RECTANGLE or CIRCLE:

class RECTANGLE ( FIGURE )

height,width: integer(1..200);

constraints

height = top - bottom;

width = right - left;

left = x - width/2;

right = x + width/2;

top = y + height /2;

bottom = y - height /2;

end;



Constraints in knowledge representation language 165

class CIRCLE ( FIGURE )

radius: integer(1..100);

constraints

left = x - radius;

right = x + radius;

top = y + radius;

bottom = y - radius;

end;

The RECTANGLE and CIRCLE inherit all the properties of the class
FIGURE. Besides, the class CIRCLE has an additional slot radius and the
class RECTANGLE has two additional attributes height and width. In ad-
dition, these classes have also a set of constraints linking the values of their
slots.

The classes ROOM, TABLE and CHAIR are introduced to represent a
room, a table and a chair, respectively.

class ROOM( RECTANGLE );

class TABLE( RECTANGLE );

class CHAIR( CIRCLE );

The ROOM is derived from the RECTANGLE and has an additional
slot number denoting the number of the room. The TABLE is a subclass of
the class RECTANGLE, and the CHAIR is a subclass of the class CIRCLE.

We can define various relations on these objects, for instance:

relation LEFT(what, from: FIGURE)

antiref, antisym, trans;

constraints

what.right < from.left;

end;

relation INSIDE(what, into: FIGURE)

constraints

what.left >= into.left;

what.right <= into.right;

what.top <= into.top;

what.bottom >= into.bottom;

end;

relation IN_THE_CENTER (INSIDE)

what, into: FIGURE

constraints



166 Yu.A. Zagorulko, Yu.V. Kostov, I.G. Popov

what.x = into.x;

what.y = into.y;

end;

The relation LEFT states that one figure (what) is located to the left
of other one (from). The relation INSIDE states that one figure (what) lies
within the other one (into). The relation IN THE CENTER indicates that
one figure is situated in the center of the other. These relations are connected
with constraints defining the relationships between the boundaries (LEFT,
INSIDE) or centers (IN THE CENTER) of two objects.

Suppose there is a room that has a number (number=5) and a definite
size (width=200, height=200) and coordinates of the center (x=100, y=100),
and a table of a definite size (width=80, height=40) and indefinite coordi-
nates x and y (by default, each their value will be the interval ( 0..200)).
This situation is simulated by addition of two objects Room and Table to
the semantic network:

Room: ROOM (number: 5, x: 100, y: 100,

width: 200, heigth: 200),

Table: TABLE (width: 80, heigth: 40).

Now, let the robot get a command to move the table to the room num-
ber 5. Linking of the objects Table and Room by the relation INSIDE
corresponds to this action:

INSIDE ( what: Table, into: Room).

After addition of this relation to the semantic network and constraint
propagation, the object Table gets the following form:

Table:TABLE (width: 80, heigth: 40, x: 40..160, y: 20..180,

left: 0..120, right: 80..200,

top: 40..200, bottom: 0..160).

Note that, though the coordinates of the object Table are refined, they
remain still subdefinite. So, the center of the Table may be at any point of
the square with a diagonal from (40,20) to (160,180).

The robot cannot yet execute the command and apply to his knowledge
base. Let the knowledge base of the robot contains a rule according to which
a table is situated in the center of the room if the center is not occupied:

rule PlaceTableInCenter

forall



Constraints in knowledge representation language 167

T: TABLE ( x:X, y:Y ),

R: ROOM(),

INISIDE( what:T, into:R )

when

not IsPrecise( X ) and

not IsPrecise( Y ) and

not IN_THE_CENTER ( what:F, into:R )

=>

new

IN_THE_CENTER ( what:T, into:R );

end;

The application of this rule results in adding the relation IN THE CENTER,
linking the object Table with Room. Addition of this relation to the semantic
network will lead to activation of the functional network. The process of
refinement will be realized by the common mechanism of the constraint
propagation.

The slots of the object Table will be fully refined and have the form:

Table: TABLE (width: 80, heigth: 40, x: 100, y: 100,

left: 60, right: 140, top: 120, bottom: 80).

Thus, by linking the subdefinite object Table with the definite object
Room via the relation IN THE CENTER, we have fully refined the co-
ordinates of the former. It is possible now due to the process of sat-
isfying constraints which describes the internal semantics of the relation
IN THE CENTER.

Assume now that the robot should move the chair of a definite size (radius
= 30) to the room number 5 and place it to the left or to the right of the
table and at the same line with it. First of all, this action implies insertion
of the following relation into the network:

new Inside( Chair, Room );

Since up to now there are no relations between the chair and other objects
in the room, the coordinates of the chair are imprecise:

Chair: CHAIR( radius: 30, x: 30..170, y: 30..170, left: 0..140,

right: 60..200, top: 60..200, bottom: 0..140).

Assume that at first the robot decides to place the chair to the left of
the table. This decision may be realized by the following operator:



168 Yu.A. Zagorulko, Yu.V. Kostov, I.G. Popov

try

new LEFT(Chair, Table );

or

new RIGHT(Chair, Table );

else

message ("I can’t execute this command");

end;

After execution of the first alternative and creation of the relation LEFT
(Chair, Table), x coordinate of the chair becomes precise, while y coordinate
is still imprecise:

Chair: CHAIR( radius: 30, x: 30, y: 30..170, left: 0,

right: 60, top: 60..200, bottom: 0..140).

Now with help of following operator the robot can find the precise values
of coordinates of the chair, such that the chair is at the same line with the
table:

precise Chair( y ) minimize Chair.y - Table.y;

After finding the precise values satisfying all constraints, both coordi-
nates of the chair become precise:

Chair: CHAIR( radius: 30, x: 30, y: 100,

left: 0, right: 60, top: 130, bottom: 70).

If the robot could not place the chair to the left of the table (setting the
LEFT relation would lead to inconsistency of the constraint system) then it
could explore other alternatives, i.e. it would place the chair to the right of
the table. If this action would be impossible, then the robot would send a
message “I can’t execute this command”.

Thus, arrangement of objects in the rooms results in adding new re-
lations, linking the objects with rooms. After creation of a new relation,
parameters of objects are refined according to new constraints. The process
of refinement in all cases is realized by common mechanism of the constraint
propagation. This process can be controlled by special facilities similar to
precise and try operators.

4. Conclusion

The presented language is the development of the knowledge representation
language [11, 12]. The use of the object-oriented approach makes it pos-
sible to unify various means of knowledge representation, such as frames,



Constraints in knowledge representation language 169

semantic networks, and production rules, as well as methods of constraint
programming within the framework of one language.

The use of SD-types and constraints in the knowledge representation
language not only improves its ability to infer new information, but also
expands its application domain covering the class of problems solvable by
constraint programming.

Encapsulation of constraints into objects and relations increases the level
and convenience of constraints specification and use. It allows us to repre-
sent functional and computational links between attributes of objects or
parameters of task by declarative relations.

Encapsulation makes it possible also to control the set of constraints
during the process of computation. The constraints can be added to or
deleted from the current set of the constraints as a consequence of creation
or deletion of objects or relations of the semantic network. The production
systems technique included in the language allows one to perform this control
using the logical inference and heuristic analysis.

Joint use of logical inference and constraint propagation gives certain
advantages. The former stimulates the latter and vice versa. So, refinement
of a value of a variable (object slot) obtained as a result of constraint prop-
agation provides conditions for activation of a rule, and in turn, application
of a rule can lead to refinement of values of variables or addition new con-
straints which also can be used for refinement of values of variables and so
on.

Thus, the proposed language can be regarded both as a knowledge repre-
sentation language with extended capabilities for knowledge representation
and processing, and as a high-level object-oriented constraint programming
language.

The language can be used to create a broad class of intelligent applica-
tion systems which require the combination of logical inferences, constraint
propagation and computations over imprecise values. In addition, since the
set of active constraints can be modified during the process of computation,
this language can also be used for developing systems which can regard the
dynamics of processes, in particular, hybrid expert systems and systems for
intelligent robot control.

References

[1] Narin’yani A. S. Sub-definiteness and Basic Means of Knowledge Representa-

tion, Computers and Artificial Intelligence, 1983, Vol. 2, No. 5, P. 443–452.

[2] Henz M., Smolka G., Wurtz J. Object-Oriented Concurrent Constraint Pro-

gramming in Oz, DFKI Research Report RR-93–16, April 1993.



170 Yu.A. Zagorulko, Yu.V. Kostov, I.G. Popov

[3] Freeman-Benson B., Malony J., Borning. An Incremental Constraint Solver,
Comm. of the ACM, 1990, Vol.33, No. 1, P. 54–63.

[4] Borning A., Freeman-Benson B., Willson M. Constraint Hierarchies, Lisp and
Symbolic Computation, 1992, No. 5. P. 223–270.

[5] Narin’yani A. S. Subdefinite Models: A big jump in Knowledge Processing

Technology, Proceedeings East-West Conference on AI: from theory to prac-
tice, EWAIC’93, September 7–9, Moscow, 1993, P. 227–231.

[6] Telerman V., Ushakov D. Data Types in Subdefinite Models. In: Jacques Cal-
met and others (eds.), Art. Intell. and Symbolic Mathematical Computation,
Lecture Notes in Computer Science; Vol. 1138, Springer, (1996), P. 305–319.

[7] Apt K.R., Brunekreef J., Schaerf A. and Partington V., Alma-0: An Imper-

ative Language that Supports Declarative Programming, ACM Toplas, 20(5),
P. 1014–1066.

[8] Cohenen J. Constraint Logic Programming Languages, Comm. of the ACM,
1990, Vol. 33, No. 7. P. 52–68.

[9] Freeman-Benson B.N., Borning A. Integrating Constraints with an Object-

Oriented Language, Proc. of the Conf on Object-Oriented Programming, Mar-
seille, 1992. P. 248–266.

[10] Telerman V.V., Sidorov V.A., Ushakov D.M. Problem Solving in the Object–

Oriented Technological Environment NeMo+, Perspectives of System Infor-
matics (PSI–96), Berlin: Springer, 1996, P. 91–100, (Lect. Notes Comput.
Sci.; Vol.1181).

[11] Zagorulko Yu.A., Popov I.G.Object-Oriented Language for Knowledge Repre-

sentation Using Dynamic Set of Constraints, Knowledge-Based Software Engi-
neering, P.Navrat, H.Ueno (eds), (Proc. 3rd Joint Conf., Smolenice, Slovakia),
Amsterdam: IOSPess, 1998, P.124–131.

[12] Zagorulko Yu.A., Popov I.G. Knowledge representation language based on

the integration of production rules, frames and a subdefinite model, Joint Bul-
letin of the Novosibirsk Computing Center and Institute of Informatics Sys-
tems, Series: Computer Science, 8 (1998), NCC Publisher, Novosibirsk, 1998,
P.81–100.


