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Knowledge representation language
based on the integration of production
rules, frames and a subdefinite model*

Yury A. Zagorulko and Ivan G. Popov

A knowledge representation language based on integration of such means as
frames, semantic networks, production rules, subdefinite computational models,
and methods of constraint programming are considered. An important feature of
this language is the possibility of operating with objects which can have slots with
imprecisely defined (subdefinite) values. Another important feature of the language
is that it allows one to bind to any object a set of constraints defined on the values
of the object’s slots. These constraints, represented in the form of usual logical
expressions, not only serve for control of consistency and correctness of the slots’
values but also allow one to refine automatically subdefinite values. Besides, the
possibility of including the operation of implication in constraints makes it possible
to provide local inference within the object.

Introduction

The main trend in artificial intelligence is not the opposition of different
means and methods for knowledge representation and processing, but their
rational combination within one system. This trend is based on the under-
standing of the fact that each of these means executes its function and has
its application domain. On the other hand, none of the well-known means
for knowledge representation and processing can support comprehensive de-
velopment of a real application on its own.

New technologies for developing intelligent systems have to unify var-
ious complementary means and methods of knowledge representation and
processing. In the present paper we describe a language based on an inte-
grated model of knowledge representation unifying such means as frames,
semantic networks, production rules, subdefinite computational models, and
constraint programming technique. It can be used to create a broad range
of intelligent systems, in particular, systems requiring the combination of
logical inference and computations over imprecise values and to cope with
the problems which have a set of solutions.

- *Supported by the Russian Foundation for Basic Research under Grant 96-01-01607.
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1. A brief overview of knowledge representation
and processing means

Before describing the integrated model, let us consider the main well-known
means and methods for knowledge representation and processing.

One of the most popular knowledge representation means is semantic
network [1]. Due to such properties as high associativity and flexibility
for representation of information, semantic networks are considered to be
a universal storage for any information (knowledge or data), that can be
represented in terms of objects and relations between them. These proper-
ties have made semantic networks very popular. However, high flexibility
of semantic networks is provided by means of a rather low level of knowl-
edge representation that leads to complicated description of a problem, and
thereby makes the work of the knowledge engineer (the user) extremely dif-
ficult.

The formalism of production rules [2] is regarded as a powerful tool for
expressing the operational semantics of the notions of the subject domain
and for logical inference. It is characterized by a natural specification of
knowledge, simplicity of modification and extension, and natural modular-
ity. But production systems are oriented mostly to symbolic computations,
therefore they are very difficult to apply to the solution to problems requir-
ing numerical calculations.

The use of frames [3, 4] and object-oriented approach [5, 6] allows one
to raise greatly the level of the knowledge representation language and the
possibility of its customization in a concrete subject domain. The main
advantage of such an approach is the possibility of linking locally every
frame with its properties. This saves one from the necessity to take care
of small details at the global level. Frame-based representation languages
have the mechanism of demons and attached procedures which allows one
to define functional dependencies for values of the slots. But, as a rule, in
frame languages such dependencies are given at a low level, for example,
in terms of procedures and functions, which makes the knowledge engineer
to turn to skilled programmers for help. It would be better to use for this
purpose the mathematical and logical formulae or other means of high level.

In the framework of the paradigm of constraint programming (7], which
is very popular now, it is possible to specify knowledge in the form of a
set of constraints over the values of parameters of objects. However, this
approach allows one to solve a rather narrow class of problems which are
reducible to the constraint satisfaction problem. Consequently, in practice
constraints are often used in combination with other, more universal means
of knowledge representation and processing.

It should be noted that none of the above techniques has provided the
means for operating with imprecisely defined values and objects.
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True, the attempts of imbedding such means in AI languages were made.
However these languages do not allow one to achieve sufficient efficiency of
implemented application systems. The extension of conventional program-
ming languages, for example C++, with the means for operating with im-
precisely defined values [8] certainly increases their possibilities but does not
make them knowledge representation languages, since their level remains yet
low in order to use them by knowledge engineers rather than programmers.

The facilities for working with imprecisely defined values and ob jects can
be found in the method of subdefinite data types (9], proposed in the early
eighties, and in the method of subdefinite computational models [10] based
on it. We consider this approach in a bit more detail, as it is of particular
importance.

Let T be an “ordinary” data type with the set of values A and the
corresponding set of operations over A. We denote the set of all subsets of
‘A by A*. Elements of A* will be called subdefinite values or SD-values and
denoted by a*. The values a* containing only one element of 4 will be called
eract values. A special value equal to the entire set A will be said to be fully
indefinite, and a value equal to the empty set will be called inconsistent.

For each operation P : A™ — A of type T we can define the correspondent
operation P* : A*" — A* as a subdefinite extension of the operation P:

P*(ay,...,a;) = {P(ay,...,a,)|a1 €d},...,a, € a’}

These new operations have similar semantics but may be applied to
subdefinite values and the result of each of them is, in general, a subdefinite
value too. So we can build a subdefinite data type T* on the base of the
original 'exact’ data type T'.

Subdefinite data types can be used to represent uncertain data in a
problem which is specified in terms of constraints on its parameters.

Formally, a constraint is a boolean expression C(v1,...,vy), that is re-
quired to be true. The variables vy, ... v, linked by the constraint may get
values of any subdefinite data types 2.

Each constraint must have functional interpretations. This means that
the constraint can be represented by a set of functions:

fi*:A*nfl_)A*,

which are called interpretation functions. Each of these functions allows us
to calculate the value of one variable from the values of the other ones:

v = fi*(vl, ceey Vi1, Vg1, ,'Un).

For example, the constraint

*Variables in the programming language sense are meant here.
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A=B+C (1)
can be interpreted by the following three interpretation functions:

A = f{(B,C),
B = f;(AvC)s
C = f3;(4,B),

where

filz,y) = z+y,
.f;(zfy) =T—Y,
f!;(zvy) =z—y.

Here '+' and '—' denote subdefinite extensions of arithmetical operations
'plus’ and 'minus’, respectively.

If an expression in a constraint is too complicated, it is possible to sim-
plify it by adding new variables and splitting the complex constraint into
several simpler ones.

For example, the constraint

A= (B+0C)? (2)
can be divided into two more simple constraints:

S =B+C,
A =5

where S is an auxiliary variable.

In most cases, any set of constraints can be transformed in a set of
elementary constraints as it is shown in the latter example.

A subdefinite computational model (SD-model) is represented by a bi-
partite oriented graph (subdefinite functional network or SD-network) and
a discipline of its processing, or data-driven computations. There are two
types of vertices in an SD-network: variables and interpretation functions.
The incoming edges of a function vertex connect it to the variables whose
values are input arguments of the function. Outgoing edges of the function
vertex point to variables in which store the results produced by the function.

For example, the subdefinite functional network corresponding.to the
constraint (1) is illustrated in Figure 1.
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Figure 1. A simple subdefinite functional network

The principle of data-driven conlputations means that a change of the
value of variable vertices activates (causes execution of) the function ver-
tices; execution of the function vertices, in turn, may cause a change of
the resulting value of variable vertices, and so on. If at least one variable
gets an inconsistent value (empty set), the process will be stopped and the
SD-model will be considered inconsistent.

During the process of interpretation a new value of the variable is cal-
culated and intersected with the old one. Since it is the result of this in-
tersection that is assigned to the variable, the value of the variable can be
only refined, i.e., the new value is a subset of the old one. The value of the
variable is considered to be changed only if it is actually refined.

As it was shown in [10], for all data types containing only a finite set
of SD-values, this algorithm terminates in a finite number of steps. In the
case of infinite sets of SD-values (for instance, intervals of real values), the
stopping criterion can be based on the preset threshold of computation ac-
curacy. This threshold determines the maximum possible distance between
two values for which they are still considered to be identical.

Presently, subdefinite extensions have been constructed for various data
types: integer, real, symbolic, logical, sets, etc. We emphasize that the same
method is used to solve problems for all of these types, that is the method
of subdefinite computational models. This proves its universal nature. For
this reason, the method of subdefinite computational models can be used to
implement the mechanism of constraint propagation.

It should be noted that exclusive use of data-driven computations in this
method makes it difficult to apply it to problems requiring logical inference.
In addition, existing implementation of SD-models have one drawback that
precludes their broad use. They are static, i.e., their structure cannot be
changed during computations, for instance, by adding new constraints or
modifying (deleting) existing ones. Therefore, they cannot be used, in par-
ticular, to construct intelligent systems taking into account the dynamics of
processes.
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Thus, a brief overview of knowledge representation and processing means
and methods accumulated in the field of artificial intelligence shows that,
in spite of their remarkable qualities, each of them has shortcomings which
limit their possibilities and application domain. Only integration of these
means and methods within one knowledge representation model allows one
to create a powerful and universal apparatus for development of a broad
range of knowledge based systems.

2. The integrated knowledge representation
model

Let us consider the integrated knowledge representation model. The main
notions of this model are objects, relations, constraints, and production
rules. .

The base tool used to represent declarative knowledge in this model is a
semantic network, which consists of ohjects linked by binary relations. The
processes of inference and data processing are defined mostly as a production
rule system working over the semantic network.

An object can be any entity of the subject domain, defined by the knowl-
edge engineer. Each object is characterized by its name and the values of
its attributes, or slots.

Objects with the same properties are combined into one class. The prop-
erties of the class determine the number and types of its slots, their possible
values, and the behavior of the object. Classes may inherit properties of
other classes (in this case, the former are called subclasses, and the latter
are superclasses), with a possibility of multiple inheritance. Some properties
of superclasses can be redefined in subclasses, which provides polymorphism
as one of the main notions of the object-oriented approach.

The values of slots can be characters, strings, atoms (indivisible strings),
integer and real numbers, tuples and sets. An object may be the value
of a slot too. An important feature of objects is that their slots may be
subdefinite, i.e., their values may be subsets of the domain of admissible
values. Subdefinite values can be defined as intervals of values for numerical
data types and as sets of possible values for other types.

The integrated model allows one to bind with any object a set of con-
straints defined on the values of its slots. The constraints associated with
some object constitute its SD-network and not only serve for control of con-
sistency and correctness of the slots’ values but also make it possible to refine
automatically subdefinite values. The method of subdefinite computational
models is used to implement the mechanism of constraint propagation in
such a network.

Since the value of a slot can be an object (or a set of objects), constraints
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can link the values of slots from several objects. The set of SD-networks of
all objects presented in a semantic network constitutes a global SD-network,
which is activated for every modification of the values of slots of the objects
it contains; it ensures recalculation and modification of the values of slots
of the related objects. Let us remind that the activation and execution of a
SD-network are a data-driven process.

The possibility of including in the SD-network constraints with the op-
erations of implication makes it possible to model the simplest production
rules providing local inference within the object. Since any object may be
the value of a slot of another object, the global SD-network can be mod-
ified by the execution of such rules. This takes place because the process
of setting up new links among objects can lead to involving into the giobal
SD-network new constraints which include slots of these objects.

Thus, the global SD-network may be modified (expanded) during the
application system operation as a consequence of both insertion of new ob-
jects and relations into the semantic network and the local inference which
is provided by constraints which have form of logical implications.

A binary relation is treated as a special object with two slots. We can
define constraints for relations just as we do it for objects. We have chosen
binary relations for the development of the integrated model because of their
flexibility and popularity, and also because they have uscful properties like
reflezivity, symmetry, transitivity, which can be built into the system.

Classes of objects and relations describing the notions of a subject do-
main serve to represent its model. The model of a problem (a concrete
application) is given as a set of production rules, which operates with a
semantic network formed by the above-mentioned cbjects and relations.

3. The knowledge representation and processing
language

The knowledge representation and processing language based on the above
model includes facilities for describing classes of objects and relations, as
well as tools for defining the process of inference and data processing which
are required by a particular application.

3.1. Data types

In the language, there are three kinds of data types: elementary, structured
and semantic. Elementary types include integer, real, atom, char, string,
boolean. Structured types are set and tuple. Classes of objects and relations
defined by the user are considered as semantic data types.
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A value of the type atom is a label which can be only compared with an-
other label. A value of the type boolean can be only true, false or undefined.
An elementary type can have both definite and subdefinite values. A
subdefinite value can be represented by an interval or enumeration. E.g., a
subdefinite integer value can be the interval from 10 to 100,

integer(10..100),
or the enumeration of the odd digits,
integer(1,3,5,7,9).
The real interval from 1.8 to 43.7,
real(1.8..43.7),
and the character ranges from ’a’ to 'z’ and from ’A’ to ’Z’,
char('d’.'2' A'.Z"),

are also the examples of subdefinite values.
A subdefinite value of the type atom can be represented only as an enu-
meration of labels, e.g.,

atom(bldck, white, red, blue).

Notice that subdefinite values are basic whereas the usual “precise” val-
ues are considered just as a special kind of subdefinite values. For example
the obvious value 10 and the subdefinite value integer(10) are identical.

A full-scale set of arithmetical, logical and trigonometric operations as
well as mathematical functions are defined over numerical data. In addi-
tion, the language includes the built-in functions which return current up-
per and low boundaries of a subdefinite value z, (Low(z) and High(z)), and
the logical function detecting whether the value z is definite or subdefinite,
(IsPrecise(z)).

Structured data types (set and tuple) are used to aggregate values of
any type, i.e., their elements can be not only values of elementary types but
also references to objects. A set is a disordered list of elements with the
traditional operations over sets (union, intersection, substraction). A tuple
is an ordered list of elements (which may be duplicated) with the operations
of indexation and concatenation. It should be noted that all elements of a
set and a tuple must have the same type. Sets and tuples can be nested.

Besides conventional operations, expressions with quantifiers (iterators)
are defined for structured types:

forall z in Domain : Q(z),

exist z in Domain : Q(z).
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The first iterator (forall) produces the value true if, for all elements z of
Domain, the predicate Q(z) is true. The second iterator (exist) produces
true if at least one such an element exists. Domain in the iterator can
be any expression whose result is a tuple or set; the predicate Q(z) is any
logical expression.

The language includes also two additional iterators sum and prod which
are used for arithmetical calculations only:

~ sum z in Domain : F(z),

prod z in Domain : F(z). -

The first iterator (sum) calculates the sum of expression F(z) for all el-
ements = of Domain. The second iterator (prod) calculates the production
in the similar way.

New data types can be derived from all these types. Every elementary
data type Tj can be specialized to a new more refined type T'. In this case
the value domain of the type T must be only a subset of the value domain
TD:

dom(T) - dO’ln(To),

where dom(T') is the value domain of the type T' and dom(T}) is the value
domain of the type T. For example, the construction

integer(0..100) -

defines the new type which have the same operations as the integer type but
its values are limited by the range from 0 to 100.

A structured data type can be also derived from another one. One struc-
tured data type T (tuple or set) is derived from another structured data type
Ty if the type E of elements of T is derived from the type Ej of elements
T, i.e.,

dom(E) C dom(Ey) — dom(T') C dom(Tp).

For semantic data types, it is allowed to define classes of objects and
binary relations and derive any of them from ‘the other ones as it will be
described below.

There are also special types any and nil. The value of any can be any
value of the elementary, structured or semantic types. This type can be used
in all cases when the actual type of the value is unknown. Actual type of
value will be determined at run time. Type nil has only one value which is
denoted by ’#’ symbol. It means the absolute indefiniteness of the domain
for any type and may be used instead of any its value. So type any can be
considered as the most base type for all other types, whereas type nil is the
most derived of them. The value '?’ may be also used for any data type to
indicate that “no value” is actually presented.

The use of the hierarchy of data types provides one with flexible and
powerful means for static and dynamic control of data types. Thus, using
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only most specialized data types, the user can produce more reliable and
efficient code. On the other hand, if the type any is mostly used in the
program, the code produced will be more universal and more expensive
because of runtime type control.

3.2. The means for describing classes of objects and
relations

An object class description generally has the following structure:

class NAME ( Superclassl, ..., SuperclassN )
<description of slots>
. constraints
<logical expressions>
end;

A class definition specifies a set of slots, their possible values, and con-
straints restricting them (SD-network). If necessary, it includes the names
of the superclasses whose properties this class inherits.

The description of a slot defines its type and possibly its default value.
The type of the slot’s values can be any standard type or its subset given
either by enumerating all possible values or by indicating their ranges.

If a subclass inherits from several superclasses containing slots with the
same name, then these slots are “glued” into a single slot. The types T; of
these slots specified in the definition of superclasses must be the same or at
least they must be derived from the same base type T and have a nonempty
common subset of values, i.e.,

Ndom(T;) # 0.
In this case the slot in the subclass will have type T' derived from Ty and
dom(T) = Ndom(T}).

In the definition of a subclass we can redefine the type of an inherited
slot. The new type T of the slot must refine the old type Tp, i.e.,

dom(T) C dom(Ty).

Each constraint in an objects class definition is a logical expression
(sometimes labeled) which binds object slots. Use of labels of constraints
makes it possible to redefine or delete this constraint through the process of
inheritance. To redefine (or delete) a constraint, one introduces a new (an
empty) constraint with the same label when the subclass is defined.
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Notice that some values of object slots can be references to other ob jects
which in turn can contain references to other objects, etc. Using such slots
in the constraints, one can bind values of different objects and thus construct
an integrated SD-network.

To define a binary relation, one must specify the types of arguments of
a relation, set of constraints (similar to that of a class of objects), as well as
mathematical properties, e.g., reflexivity, symmetry, transitivity, antireflex-
ivity, etc.

relation NAME ( ARG1: typel; ARG2 : type2 )
Propertyl, Property2, Property3, ... ;
constraints
<logical expressions>;
end;

The mathematical properties defined within the description of a relation
influence essentially the behavior of the semantic network when new element
of the relation is added. Thus, for example, if a relation R is specified to be
symmetric, once an element R(A, B) is inserted into R, the element R(B, A)
is also automatically inserted into R. The mathematical properties enable
the logical inference of new elements of semantic relations.

3.3. Operations defined over semantic network

To support operating with a semantic network, the language includes oper-
ations for creating objects and elements of binary relations (new), editing
them (edit) and deleting them from the network (delete). It is also possible
to save and restore the content of the semantic network at any time.

The new operation creates objects and elements of binary relations.
When an object is created, its slots are filled with the values indicated in
the operation new. The slots whose values are not specified will be filled
with default values.

If there is no default value and type of the slot values is elementary, then
the slot will be given a subdefinite value which is the entire set (domain)
of admissible values. If type of the slot values is not elementary (i.e., it
is a tuple, set, or object), then the slot will be filled with the completely
indefinite value 2,

Only after all slots are filled with values, the object is inserted into the se-
mantic network. If the description of the object’s class includes constraints,
then the object’s SD-network added to the global SD-network.

The operation edit modifies the values of the slots of already existing
objects.

After objects or relations are deleted from the network by the operation
delete, the semantic and subdefinite functional networks are corrected. In
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the semantic network, all references to the names of the deleted objects are
replaced by the completely indefinite value ’#’. At the same time, all con-
straints related to the slots of the deleted objects and relations are removed
from the global SD-network.

Note that an important feature of the language is that creation, modi-
fication, or deletion of any object or element of a binary relation leads to
the immediate activation and execution of the global SD-network until its
stability is achieved.

3.4. Production rules

The logical inference and data processing are defined by means of production
rules. The production rule in the language has the traditional form:

COND => ACT,

where COND is the condition which is necessary for the application of the
rule, and ACT is the actions executed if the condition is satisfied. Sign' =>'
is used to separate the left-hand part of rule (COND) from the right-hand
part of it (ACT).

The left-hand part of the rule contains a pattern that is a list of objects
and relations with the given values of the slots. In addition to concrete val-
ues, the pattern can also contain local variables. These variables get their
values when the pattern is matched with the semantic network. Along with
the pattern, the left-hand part can include a local condition consisting of a
logical expression and a so called negative context. Both the logical expres-
sion and the negative context specify additional constraints for the values of
the local variables. The logical expression can include, in particular, local
variables and built-in predicates and functions. The negative context is an
extra pattern (or a list of patterns) having at least one common variable
with the above-mentioned pattern which is considered as a main one. The
condition of the rule is satisfied only if none of the patterns from the negative
context is matched with the semantic network.

The main pattern must be preceded by a quantifier (forall, exists or
for) which determines the way of the rule application. Thus, a rule with
the forall quantifier is applied for each network fragment which matches
the main pattern and satisfies the local condition. On the other hand, a
rule with the exists quantifier is applied only for the first such a fragment
found. A rule with the for quantifier is applied only if all the fragments
which match the pattern satisfy the local condition.

The application of a rule is defined as an execution of operations which
are indicated in the right-hand part of the rule (ACT). This part contains
the above mentioned operations for manipulating objects and relations of
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the semantic network, as well as other operations and functions permitted
by the language.

Finally, the right-hand part of a rule can include certain optional opera-
tions which are executed not earlier than the rule itself is completely applied.
This facility is useful, for example, to activate other rules (see below).

3.5. Control facilities for activation of production rules

An important feature of the language is the availability of means for two-level
dynamic control of the activation of production rules. These facilities ensure
high flexibility of controlling knowledge (or data) processing. They allow one
to structure the set of production rules defined in the application, and then
activate some subset of them depending on the situation. The language
provides flexible two-level facilities for the production rules activation. The
first level corresponds to the conditions of the rules themselves. The second
level is supported by the statements call and activate which invoke groups
of production rules as well as a number of operations and built-in functions.

To make a production rule potentially applicable, one must activate this
rule, i.e., to put it into the Group of Active Rules (GAR). The call and
activate statements replace GAR by the group which is indicated as their
parameter. In contrast to activate which just change GAR, call statement
assumes that when the execution of the newly activated group is completed,
the previous GAR is restored and the control is returned back to the point
of the call.

The group of active rules can be not only replaced but also just mod-
ified. For this purpose, the language contains GetActive() function which
returns the contents of the current GAR. Combining this function with the
operations of concatenation and subtraction of groups, one can produce the
modified GAR which then must be activated by the activate or call state-
ments. This enables us to add rules and groups to GAR or delete them from
it.

The predicates (logical functions) Applied() and Deadlock() also serve for
the control of activation. Applied() detects whether at least one rule from
the current GAR has been already applied. Deadlock() returns true only if
the process of application of the activated rules is completed.

These predicates can be used within conditions of production rules. By
definition, the rules which include the deadlock predicate are always exe-
cuted only when all other rules of this group have been already executed.
This means that deadlock-containing rules can be used to organize the trans-
fer of control from one group to another.
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3.6. The mechanism of alternatives

The mechanism of alternatives is a powerful tool supporting inference and
data processing under the condition that both objects and relations between
them can be imprecise. This mechanism is implemented in the language by
the statement of alternatives which allows us to define and execute several
alternatives:

try Alternativel
or Alternative2

else DefaultActions
end

If the processing of an alternative results in inconsistency, we go to the
next one. If the processing finishes successfully, no other alternative is con-
cerned. If all tried alternatives fail, the actions placed after else are exe-
cuted.

Any sequence of valid operations and statements may serve as an alter-
native. The execution of the current alternative is successful if it does not
lead to a contradiction. Otherwise, roll-back is performed followed by an
attempt to process the next alternative.

The contradiction can occur in the following cases:

1) if the SD-network of some object is inconsistent (in the case when the
value of some of its slots do not satisfy given constraints);

2) if the semantic network is inconsistent (i.e., the properties of some
binary relation are not satisfied);

3) if the statement fail of the explicit generation of a failure (contradic-
tion) is used.

Thus, the statement of alternatives, on the one hand, allows us to gener-
ate hypotheses and reject them if they lead to contradiction. With its help,
for instance, we can find various choices of the exact values for the slots of
a subdefinite object. On the other hand, the use of embedded statements
of alternatives allows one to define a case analysis similar to backtracking.
In this case a contradiction means that the version under consideration is
unsatisfactory and we must test another branch in the analysis tree.

Finally, due to the availability of the statement fail, we can generate
contradictions (failures) explicitly. For instance, a knowledge engineer can
use fail to force testing of all alternatives in order to obtain all versions of
the solution. In addition, this statement can be included in the production
rules that monitor the semantic network for appearance of data that the
knowledge engineer believes to be contradictory.
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4. Example of use of the language

As an example, we consider the use of the language for developing a system
supporting flexible planning of production and research under the conditions
of an incomplete and imprecise data on time intervals of execution of tasks
comprising the plan. '

A task can be any activity that is continuously performed during some
time interval. The system provides facilities to describe plan items, their
structure, resources used and sequence of their execution.

Consider the main notions of the system.

The execution of a task is related to the consumption of resources. These
can be people (person-months), machines, etc. A resource is characterized
by its name and the cost per day in some units. To represent this notion,
we use the class RESOURCE having two slots, Name and Price:

class RESOURCE

Name: string;

Price: integer(0..32000);
end;

The slot Price can have a value from 0 to 32000.

The tasks can describe the planned activity with the varying degree of
detail, i.e., represent both the entire activity and its parts. A task can
include several subtasks; at the same time, it can be a subtask of another
task. In this hierarchy a plan is the top-level task.

Thus, the system has two types of tasks, simple and compound. These
notions are represented by two main classes: SIMPLE_TASK and COM-
POUND_TASK. Both classes are based on an auxiliary class TASK which
includes the characteristics common for both types of tasks:

class TASK

Name: string;

Start: integer(0..2000);

Finish: integer(0..2000);

Duration: integer(0..1000);

Price: integer(0..100000);

State: atom( NotStarted, Started, Finished ):= NotStarted;
constraints

C1i: Finish > Start;

C2: Duration = Finish - Start;

C3: IsPrecise( Start ) -> State = Started;

C4: IsPrecise( Start ) and IsPrecise( Finish )

-> State = Finished;

end;
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The slot Name serves to name the task.

The interval of execution of a task, which is its basic characteristic, is.
determined by the Start date, the Finish date and Duration. Note that these
characteristics may be defined imprecisely, i.e., they can have subdefinite
values.

The parameter State (state of a task) reflects the current phase of the
execution of a task and can have the following values: Started, NotStarted
and Finished. The value of this parameter is set by the user when the
operational information on the realization of the plan arrives. The default
value is NotStarted.

The parameter Price indicates an estimate for the total cost of perform-
ing a task (in some units). Its value depends on the organizational structure
of the task and the cost of the resources it consumes.

The class TASK includes four constraints. Two constraints C1 and C2
define the relations among the start, end, and duration of a task and allow
us to refine one part of these parameters which have subdefinite values using
the other part of these parameters with values defined more precisely. The
constraints C3 and C{ serve to calculate the current state of a task.

The classes SIMPLE_TASK and COMPOUND_TASK inherit all prop-
erties of the auxiliary class TASK:

class SIMPLE_TASK (TASK)

Resource: set of RESOURCE;

Priority: atom( low, high ):= low;
constraints

C5: Price = sum $r in Resource : $r.Price * Duration;
end;

class COMPOUND_TASK (TASK)

Structure : set of TASK; .
constraints

C6 : forall $t in Structure :

$t.Start >= Start and $t.Finish <= Finish;
C7 : forall $t in Structure :
$t.Duration <= Duration;

C8 : Price = sum $t in Structure : $t.Price;
end; :

Note that the names with the $’sign in the all examples denote variables.

The class SIMPLE_TASK serving to represent simple tasks includes ad-
ditional slots to denote the resources used by a task (Resource) and its
priority (Priority) for the use of resources. The default value of the slot
Priority is low. A task with a high priority of the use of some resources
cannot share them simultaneously with other tasks.
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The class SIMPLE_TASK contains also the constraint C5 which allows
us to calculate the cost of a task from the price of the resources it uses.

The class COMPOUND_TASK contains an additional slot Structure enu-
merating all subtasks of a task. The constraint C6 sets the time limits for
subtasks of the task. The constraints C7 and C8 relate the duration and
price of a task, respectively, with the duration and price of its subtasks.

The user can set the order in which the tasks of a plan are carried out. To
this end, the system has binary transitive relations AFTER and BEFORE:

relation AFTER(Taskl, Task2: TASK)
transitive;
constraints
C9: Taskl.Start <= Task2.Finish;
end;

relation BEFORE(Taskl, Task2: TASK)
transitive;
constraints
C10: Taskl.Finish <= Task2.Start;
end;

The constraints C9 and C10 included in these relations can refine values
of start and finishe of the tasks which are ordered. The constraint C9 defines
the dependency between the start of the first task (ZaskI) and the finish of
the second task (Task2). Constraint C10 does the same for the finish of the
first task and the start of the second task.

The process of operation with a plan in the system is divided into three
stages: entering initial data, composing the plan and monitoring it.

At the first stage the user creates the list of planned tasks, list of re-
sources, organizational structure of the plan, sequence of the executions of
tasks, and distribution of resources over tasks. The user interface of the
system is used to enter this data.

At the second stage, the precise plan is created. Due to the global
SD-network, consisting of the constraints of the objects of the classes RE-
SOURCE, COMPOUND_TASK, SIMPLE_TASKS and the elements of the
relations AFTER and BEFORE, the system automatically refines the exe-
cution times of tasks. The refined times can be edited by the user again,
and can then be used as initial data for further recomputations.

Thus, the process of the plan creation consists of the consecutive refine-
ment of some temporary intervals, introduction of additional links between
tasks and resources, and automatic refinement of the plan. Incorrect user
actions (from the standpoint of consistency of the plan) can result in in-
consistent data. The system will find them and employ the mechanism of
alternatives to return the user to the preceding step, offering him to choose
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a different refinement of times. Thus, the user can play different variants of
the plan. . '

In the same stage the system can find conflicts between tasks using com-
mon resources. In this case it will offer the user to resolve the conflict either
by redistributing the resources or by correcting the execution times of tasks.

Note that whereas the process of automatic plan refinement is ensured by
the global SD-network all other processes are supported by production rules.
In particular, the rule HighPriority serves to discover conflicts between tasks
using common resources: :

rule HighPriority
forall
SIMPLE_TASK (Name: $t1, Start: $si, Finish: $f1,
Resource: $r1, Priority: high),
SIMPLE_TASK (Name: $t2, Start: $s2, Finish: $f2,
Resource: $r2, Priority: $p2)
when
not( $£2 < $s1 or $£f1 < $s2 ) and #($r1*$r2) != 0
=>
message("Task ", $t1, " with high priority cannot share",
"resources ", $ri*$r2, " with the task ", $t2,
"It is necessary to redistribute the resources!");
end;

This rule is activated when the intersection (#) of execution intervals of
two tasks is not empty, i.e., the condition ($f2 < $s1 or $f1 < $s2) is not
met, and the two tasks use common resources (i.e., intersection of the sets
$r1 and $r2 is not empty).

The third stage of working with the system (monitoring) refers to the
time when the plan is executed. Its main function is to monitor the current
state of tasks. After the user enters current data (which tasks are started
or finished and when) the system corrects the times of start/finish for the
tasks that have not been started or finished, as well as finds the tasks that
are late for start or finish and issues messages about them.

For example, the rules AttentionStart and AttentionFinish find the tasks
that are behind schedule with respect to their start and finish dates, respec-
tively:

rule AttentionStart
forall
COMPOUND_TASK (Name: $t, Start: $s, State: NotStarted)
when
$5 < $current_date
=>
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message("Task", $t, " is behind the starting date!");
end;

rule AttentionFinish
forall

COMPOUND_TASK (Name: $t, State: Started, Start: $s,

Duration: $d)

when

$s + $d < $current_date
=>

message("Task ", $t, " is behind the finishing date!");
end;

Note that in both rules $current_date is a global constant denoting the
current date.

Thus, from the above example we see that the language suggested allows
us to define in a clear and natural manner the main notions of a planning
system and to set the rules supporting the main phases of its use.

Conclusion

In contrast to other knowledge representation languages which use a limited
set of means and methods, the language described in this paper is based
on the integration of various complementary tools of knowledge represen-
tation and processing. The use of the object-oriented approach makes it
possible to unify various means and methods, such as frames, semantic net-
works, production rules, subdefinite computational models, and constraint
programming technique, in the framework of one language.

This language provides a user with powerful and flexible means for the de-
velopment of an intellectual system. It makes it possible to form a knowledge
base in a rather natural, high-level manner. Besides providing additional
functional and descriptive capabilities, it significantly increases the produc-
tivity of the knowledge engineer designing an application. After defining the
necessary system of notions in this language, we can manipulate objects in
terms of production rules, without worrying about their internal semantics.

An important feature of the language is the possibility of operating with
objects which can have slots with imprecisely defined values.

Another important feature of the language is that it allows one to bind
to any object a set of constraints defined on the values of the object’s slots.
These constraints not only serve for control of consistency and correctness
of the slots’ values but also allow their values to be automatically refined.
With the help of the mechanism of alternatives we can find various choices
of the exact values for the object’s slots.
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Due to the object-oriented approach and the use of the particular class
of constraints which allows one to simulate the simplest productions, it is
possible to localize inside the object not only the computations but also the
logical inference.

Because the global SD-network can be modified during the process of
computation, this language can also be used to create intelligent systems
which are capable of taking into account the dynamics of processes.

Thus, the knowledge representation language described in this paper
can be used to create a broad class of intelligent systems which require a
combination of logical inferences and subdefinite computations and enable
us to deal with dynamic processes.
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