
Joint NCC & IIS Bull., Comp. Siene, 13 (2000), 105{116



 2000 NCC Publisher

Modularization of typed Gurevih mahines

�

A.V. Zamulin

An important problem of the representation of a big dynami system as a number of interrelating typed Gurevih

Mahines (Abstrat State Mahines or just ASMs in the sequel) and the subsequent ombination of the spei�ations of

individual ASMs into the spei�ation of the whole system is investigated in the paper. The struture of suh a system

is formally de�ned and a notion of external signature of a typed ASM is introdued. Two main operations for ombining

existing spei�ations (and their implementing ASMs) are suggested: import of existing typed ASMs by a new one and

union of several typed ASMs into a new one. The syntax and semantis of the operations are formally de�ned.

Keywords: abstrat state mahines, spei�ation-in-the-large, modular design, dynami system

1. Introdution

A dynami system was de�ned in [1℄ as a typed ASM (TASM or simply mahine in the sequel)

onsisting of the following omponents:

� set of states,

� set of dependent (derived) funtions for observing the urrent system's state,

� set of proedures for updating the state.

Formally, a TASM is represented by the following tuple:

h(�

0

; Ax);�

din

; (�

dep

; Ax

dep

); (�

pro

; Ax

pro

)i

alled a TASM spei�ation. Its �rst omponent is the spei�ation (the signature and axioms) of a

number of data types and related funtions, the seond omponent is the signature of a set of dynami

funtions, the third omponent is the signature and axioms of dependent funtions, and the fourth

one is the signature and axioms of proedures. A TASM state orresponding to suh a spei�ation is

a �-algebra A, where � = �

0

[�

din

. Suh an algebra onsists of a stati part A

0

whih is a �

0

-algebra

and a dynami part �(�

din

) mapping eah name in �

din

to a orresponding funtion so that A =

A

0

[�(�

din

).

The lass of all possible states (�-algebras) is divided into sublasses, state

A

0

(�

0

;�

din

), whih

share the same (stati) �

0

-algebra A

0

. If f�(�

din

)g is the set of all possible dynami parts, then

state

A

0

(�

0

;�

din

) = fA

0

g � f�(�

din

)g.

The spei�ation of a TASM an be regarded as a spei�ation in-the-small. Suh a TASM is

suitable for modeling a small dynami system whose states are entralized. However, a suÆiently big

dynami system an onsist of several TASMs ommuniating with eah other and thus representing

the modular struture of the system. The states of suh a system are deentralized, and the overall

urrent state of the system is the union of the urrent states of the omponent TASMs. The spei�a-

tion of suh a system is a kind of spei�ation in-the-large. Speial means like those existing in some

programming languages (e.g., Oberon [4℄ and Ada [5℄) and spei�ation languages (e.g., Extended ML

[6℄ and CASL [3℄) are to be elaborated for reating bigger TASMs from smaller ones.

The following strutural mehanisms are investigated in this paper:

1. Use of existing TASMs when onstruting a new one. The omponents of an existing TASM

should only be referened in some way in the spei�ation of the new TASM.

2. Composition of existing TASMs into a bigger one.

�

This researh is supported in part by Russian Foundation for Basi Researh under Grant 98-01-00682.



106 A.V. Zamulin

The paper is organized in the following way. The spei�ation tehnique is briey desribed in

Setion 2. The struture of a omplex dynami system is de�ned in Setion 3. The notion of external

signature of a TASM is introdued in Setion 4. The failities for importing existing TASMs by a new

one are developed in Setion 5. The operation of union of several TASMs into a new one is desribed

in Setion 6. Some related work is disussed in Setion 7, and some onlusions and diretions of

further work are given in Setion 8.

2. Spei�ation onventions

In this setion we onsider that a dynami system is a TASM. The �rst omponent of its spei�ation is

a lassi algebrai spei�ation de�ning a number of data types and related funtions representing the

stati part of the system and used for the possible state observations/updates, its semantis is given by

the spei�ation language used. For simpliity, we onsider in the sequel that data type spei�ations

are olleted in a speial module with the signature �

0

. The rules for reating suh a module are

not disussed here. Possible onits between overloaded operation names are resolved aording to

the underlying spei�ation language (for example, pre�xing with the type name if a language like

Ruslan [2℄ is used or qualifying the operation name with its pro�le if a language like CASL [3℄ is used).

In this ase the spei�ation of a dynami system is a triple h�

din

; (�

dep

; Ax

dep

); (�

pro

; Ax

pro

)i, its

signature is h�

din

;�

dep

;�

pro

i, and its state is a �-algebra where � = h�

0

;�

dep

i. We denote by

DS(A

0

) a dynami system with the set of states sharing the same �

0

-algebra A

0

.

In the general ase, a funtion name in �

din

is delared as follows:

dynami funtion funtion-name: T

1

; :::; T

n

�! T ;

where T

1

; :::; T

n

are the types of the funtion arguments and T is the type of result. A funtion without

arguments is alled a onstant and delared as follows:

dynami onst onstant-name: T ;

where T is the type of the onstant. The updates of the funtions and onstants delared in �

din

ause the transformation of the state.

The funtion names in �

dep

are delared similarly to the funtion names in �

din

with the use of

the keyword depend. However, the delaration of a dependent funtion is aompanied with one or

more data equations, Ax

dep

, thus building a funtion spei�ation. A data equation is a pair t

1

== t

2

where t

1

and t

2

are two terms of the same type. The terms are omposed of universally quanti�ed

variables, operation names from �

0

, and funtion names from �

din

and �

dep

. The interpretation of

suh a term produes an algebra element. A data equation t

1

== t

2

is satis�ed in a dynami system i�

the interpretation of both t

1

and t

2

produes the same algebra element in any its state. Sine a term

ontaining the name of a dynami funtion an evaluate di�erently in di�erent states, the funtion

whose spei�ation ontains suh a term generally produes di�erent results in di�erent states (i.e.,

the result depends on the state).

For this reason, a dependent funtion name df : T

1

; :::; T

n

! T is interpreted in a dynami system

DS(A

0

) by a map df

DS(A

0

)

assoiating a value of type T with eah pair hA; hv

1

; :::; v

n

ii, where A is a

state of DS(A

0

) and v

i

is an element of type T

i

; this map must satisfy the orresponding dynami

equations from Ax

dep

.

A proedure name in �

pro

is delared as follows:

pro proedure-name: T

1

; :::; T

n

;

where T

1

; :::; T

n

are the types of the proedure arguments (n an be zero, i.e., a proedure an have

no arguments). The delaration of a proedure is aompanied with one or more dynami equations,

Ax

pro

, thus building a proedure spei�ation. A dynami equation is a pair t

1

== t

2

where t

1

and

t

2

are two transition terms. There are two kinds of transition term, a proedure all and a transition

rule. The interpretation of either of them produes an update set. A proedure all is reated by



Modularization of typed Gurevih mahines 107

the appliation of a proedure name to a list of argument terms. Thus, if p : T

1

; :::; T

n

is a proedure

delaration and t

1

; :::; t

n

are terms of types T

1

; :::; T

n

, respetively, then p(t

1

; :::; t

n

) is a transition term.

In a dynami equation t

1

== t

2

, the �rst term is normally a proedure all and the seond one is

a transition rule. A dynami equation is satis�ed in a dynami system i� the interpretation of both

terms in any its state produes the same update set.

Transition rules are onventionally reated like in traditional ASMs [7℄ with an additional possi-

bility of using proedure alls in rule onstrutors. There is, however, an important di�erene in the

treatment of the assignment of an unde�ned value to a loation. There an be no single undef value

for all data types. To simplify the spei�ation of data types, no one of them is equipped with its

own undef value. Partial funtions are used instead, and a de�nedness prediate, D, is introdued.

For eah term t, the prediation D(t) holds in a given algebra A if t is de�ned in it and does not hold

otherwise. In an update rule

f(t

1

; :::; t

n

) := undef

undef is just a keyword indiating that f(t

1

; :::; t

n

) beomes unde�ned.

A proedure delaration p : T

1

; :::; T

n

from �

pro

is interpreted in a dynami system DS(A

0

) by a

map p

DS(A

0

)

assoiating an update set with eah pair hA; hv

1

; :::; v

n

ii, where A is a state of DS(A

0

) and

v

i

is an element of type T

i

; this map must satisfy the orresponding dynami equations from Ax

pro

.

Both a dependent funtion and a proedure an be partial. In this ase, the funtion (proedure)

spei�ation is augmented with a speial lause dom de�ning the domain of the funtion or proedure:

for a domain de�nition dom t : b, the prediation D(t) must hold in a given state A i� b evaluates to

true in this state.

A dynami system is a model of a spei�ation DSS = h�

din

, (�

dep

; Ax

dep

), (�

pro

; Ax

pro

)i i� all

equations and domain de�nitions of DSS are satis�ed in it. A spei�ation is onsistent if there is at

least one its model. A ounterexample: onsider a spei�ation with the proedure delaration pro

R: Integer and the dynami equation R(x � x) == f := x where f : Integer is a dynami onstant.

It is lear that no model an satisfy the equation under both evaluations, x = 2 and x = �2. Only

onsistent spei�ations are onsidered in the sequel.

The set of models of DSS is denoted by Mod(DSS). Any model ontains the state where all

dynami funtions/onstants are unde�ned. This state is alled the unde�ned state of the system. A

proedure an be used for setting an appropriate initial state of the system.

3. Struture of the state of a omplex dynami system

In a dynami system onsisting of several ommuniating TASMs, a proedure in one TASM an

generally update the state of some other TASMs. Therefore, one annot use only the state of a

partiular TASM as an argument and/or result of a proedure of this TASM. For this reason, we

de�ne the system state on the base of individual TASM states. Let a dynami system DS(A

0

) onsist

of n TASMs.

De�nition 1. If �

0

is the signature of data types and h�

din

;�

dep

;�

pro

i

i

is the signature of TASM

i

,

then h�

0

;�

D

i, where

�

D

=

U

i=1:::n

h�

din

;�

dep

;�

pro

i

i

,

is the signature of DS(A

0

). That is, the signature of a dynami system is the disriminated union of

the signatures of the omponent TASMs extending the signature of the data type module.

Fat 1. If state

A

0

(�

0

;�

din

)

i

is the set of possible states of TASM

i

, then state

A

0

(�

0

;�

DIN

), where

�

DIN

=

U

i=1:::n

(�

din

)

i

, is the set of states of DS(A

0

).

Thus, the state of a dynami system is the onatenation of the states of the omponent mahines.

The hange of the state of one of them auses the hange of the state of the dynami system.



108 A.V. Zamulin

4. External signature of a TASM

A TASM spei�ation with import and export lauses introdued below is alled a module. h�

din

,

�

dep

, �

pro

i and h�

din

, (�

dep

; Ax

dep

), (�

pro

; Ax

pro

)i of a module are alled, respetively, the own

signature and own spei�ation of the module. A partiular model of a module is alled a TASM or,

simply, mahine. The lass of all models of a module M is denoted by Mod(M).

In the spei�ation of a big dynami system, some names delared in the own signature of a module

an be seen from the outside, some others an be seen only inside the module. We onsider that no

name from �

din

is seen from the outside. Speial spei�ation language onventions (export lause

listing exported symbols, keyword export in front of a symbol, et.) an be used for indiating whih

names from �

dep

and �

pro

are seen from the outside. These names de�ne the external signature of

the module.

De�nition 2. Let a module M have the signature h�

din

;�

dep

;�

pro

i and the set of exported names

E

M

. Then the external signature of M is h�

M

dep

;�

M

pro

i omposed in the following way:

� if (f : T

1

; :::; T

n

�! T ) 2 �

dep

and f 2 E

M

, then (M:f : T

1

; :::; T

n

�! T ) 2 �

M

dep

;

� if (p : T

1

; :::; T

n

) 2 �

pro

and p 2 E

M

, then (M:p : T

1

; :::; T

n

) 2 �

M

pro

.

Example 1. Spei�ation of a stak mahine (the types Boolean, Nat and Oper used in the spei�-

ation are de�ned in the data type module).

tasm StakOfOper = spe

export initialize, push, pop, top, is empty;

dynami funtion ont: Nat �! Oper; | ontent of the stak

dynami onst size: Nat; | size of the stak

pro initialize; | onstrution of an empty stak

initialize == set size := 0, forall x: Nat. ont(x) := undef end;

push: Oper; | pushing a stak with an element

push(o) == set size := size + 1, ont(size+1) := o end;

pop; | deleting the top element of a stak

dom pop: size > 0;

pop == set size := size - 1, ont(size) := undef end;

depend funtion top: Oper; | fething the top element of a stak

top == ont(size);

depend funtion is empty: Boolean; | heking whether a stak is empty

is empty == size = 0;

end;

In the above module all operations exept dynami funtions are exported. Therefore, the external

signature of the TASM is the following:

h(StakOfOper:top : Oper;

StakOfOper:is empty : Boolean),

(StakOfOper:initialize;

StakOfOper:push : Oper;

StakOfOper:pop) >.

Example 2. Spei�ation of a blok-strutured identi�er table (the types Boolean, Nat, Name

and Defdata used in the spei�ation are de�ned in the data type module.

tasm IdTable = spe

export initialize, insert entry, new level, delete level,



Modularization of typed Gurevih mahines 109

de�ned urrent, is de�ned, �nd;

dynami funtion id table: Name, Nat �! Defdata;

dynami onst ur level: Nat; | the urrent level of blok nesting

pro initialize; | onstrut an empty identi�er table

initialize == set ur level := 1,

forall id: Name, x: Nat. id table(id, x) := undef end;

pro insert entry: Name, Defdata; | insert an entry in the urrent blok

insert entry(id, d) == id table(id, ur level) := d;

pro new level; | reate a new level

new level == ur level := ur level + 1;

pro delete level; | delete the innermost level

delete level == set ur level := ur level - 1,

forall id: Name. id table(id, ur level) := undef end;

depend funtion de�ned urrent: Name �! Boolean;

| is the name de�ned in the urrent blok?

de�ned urrent(id) == D(id table(id, ur level));

depend funtion loal de�ned: Name, Nat �! Boolean;

| loal funtion used for the spei�ation of the next one

loal de�ned(id, 0) == false;

loal de�ned(id, k) == D(id table(id, k)) j loal de�ned(id, k-1);

depend funtion is de�ned: Name �! Boolean;

| is the name de�ned in some blok?

is de�ned(id) == loal de�ned(id, ur level);

depend funtion loal �nd: Name, Nat �! Defdata;

| loal funtion used for the spei�ation of the next one

dom loal �nd(id, k): k > 0;

loal �nd(id, k) == if D(id table(id, k)) then id table(id, k)

else loal �nd (id, k-1)g;

depend funtion �nd: Name �! Defdata; | �nd an entry in the table

dom �nd(id): is de�ned(id);

�nd(id) == loal �nd(id, ur level);

end.

In the above spei�ation the funtions loal defined and loal find are auxiliary loal funtions

whih are not exported. Therefore, the external signature of the module is the following:

h(IdTable:defined urrent : Name �! Boolean;

IdTable:is defined : Name �! Boolean;

IdTable:find : Name �! Defdata),

(IdTable:initialize;

IdTable:insert entry : Name;Defdata;

IdTable:new level;

IdTable:delete level)i.

5. Import of TASMs

The �rst operation of the in-the-large level is the use of existing modules in a new one. This means

that, when onstruting a module, one an use exported names from other modules, they onstitute

the import of the module. Respetively, a model (TASM) of a given module is extended by the

omponents of the models (TASMs) of the imported modules.

An imported name an be referened in one of the following ways:



110 A.V. Zamulin

1) diretly with a possible quali�ation in ase the name is overloaded;

2) pre�xed with the name of the module where it is originally de�ned as it is done for modules

in Oberon [4℄ or some other programming languages.

The diret use of an imported name is not possible, however, when it is delared with the same

pro�le in two or more modules. The name initialize in the modules StakOfOper and IdTable an

serve as an example. Therefore, we prefer the seond way, i.e., pre�xing an imported name with a

module name. A speial lause import listing the names of imported modules is inluded in the

TASM spei�ation in this ase. A pre�xed name an be used in the spei�ation for reating terms

aording to the following rule.

De�nition 3. Let a module M have the import M

1

; :::;M

k

where M

i

is the name of an imported

module. If (M

i

:f : T

1

; :::; T

n

�! T ) 2 �

M

i

dep

and t

1

; :::; t

n

are terms of types T

1

; :::; T

n

, respetively,

then M

i

:f(t

1

; :::; t

n

) is a term of type T in M . If (M

i

:f : T

1

; :::; T

n

) 2 �

M

i

pro

and t

1

; :::; t

n

are terms

of types T

1

; :::; T

n

, respetively, then M

i

:f(t

1

; :::; t

n

) is a transition term in M . We write M

i

:f if the

pro�le of f has no argument types.

Example 3

tasm BiggerTasm = spe

import StakOfOper, IdTable;

export initialize ...; list of exported names

. . .

pro initialize;

initialize == set ... StakOfOper.initialize, IdTable.initialize, ... end;

. . .

end

In the above example StakOfOper:initialize and IdTable:initialize are transition terms reated

with the use of imported names.

Fat 2. The state of a TASM whih is a model of a module importing other modules is de�ned

by its own signature and the signature of the module of data types. Indeed, sine dynami funtions

are not exported, �

din

of the importing module is not inuened by the import.

Fat 3. If M

1

; :::;M

n

are the names of modules imported by the module M , then the own

spei�ation of M generally de�nes a funtion F : Mod(M

1

); :::; Mod(M

n

) �! Mod(M). This means

that supplying di�erent models of imported modules, we get di�erent models of the importing module.

In other words, a TASM whih is a model of a given module depends on the imported TASMs. If

Md

1

; :::;Md

n

are models of the modules M

1

; :::;M

n

, respetively, then F(Md

1

; :::;Md

n

) is a model of

M .

Consider the spei�ation of the proedure initialize in the above example. Eah time when the

spei�ation of one of the proedures, IdTable:initialize or StakOfOper:initialize, is hanged so

that the orresponding proedure must yield a di�erent update set, the proedure initialize in the

model of the module "BiggerTasm" must also produe a di�erent update set. This does not mean,

of ourse, that an importing TASM must be atually reonstruted eah time one of the imported

mahines is reonstruted (the onventional mehanism of proedure alls helps to avoid it), but

oneptually the TASM is hanged.

Let now a moduleM import modulesM

1

; :::;M

n

,Md

1

; :::;Md

n

be models of the modulesM

1

; :::;M

n

,

respetively, and Md = F(Md

1

; :::;Md

n

) be a model of the module M . We denote by [[t℄℄

Md;A

the inter-

pretation of a term t in the model Md at the state A. If t is a dependent funtion name or a proedure

name, we simply write t

Md

sine the interpretation of this name does not depend on the state. In

this ase, the interpretation of a term M

i

:f(t

1

; :::; t

n

) in the model Md at the state A is de�ned in the



Modularization of typed Gurevih mahines 111

following way:

[[M

i

:f(t

1

; :::; t

n

)℄℄

Md;A

= f

Md

i

([[t

1

℄℄

Md;A

; :::; [[t

1

℄℄

Md;A

).

6. Union of TASMs

The seond operation of the in-the-large level is the union of several existing mahines into a new one.

This orresponds to the modular deomposition of a big dynami system into several smaller dynami

systems developed independently. Two options of the spei�ation of a big system are possible:

1. The spei�ations of the omponent mahines are developed independently and then they are

united into a single piee of spei�ation. A mahine orresponding to the resulting spei�ation

is just a model of this spei�ation.

2. The spei�ations of the omponent mahines are developed independently and eah of them

is provided with its own model. A mahine orresponding to the resulting spei�ation is the

union of the omponent mahines.

The �rst ase orresponds to linking several piees of the soure text of a program and then

ompiling them into a single unit. The seond ase orresponds to the independent ompilation of

programs with the subsequent linkage of the objet odes. Sine the �rst ase does not impose any

struture on the set of models, its task an suessfully be solved by modern text editing failities.

Therefore, we will disuss possible solutions of the seond task whih provide better modularization

failities. Reall that we have modules at the spei�ation level and TASMs (mahines) at the model

level.

Thus, we assume that the module union operation, union, is supported at the model level by a

TASM union operation, union

M

. It must atually use the omponent mahines without their reon-

strution. Therefore, the union operation is required to be persistent, i.e., the redut of the result

of union

M

to the name of a omponent mahine must yield exatly the omponent mahine. Re-

spetively, the redut of the resulting module to the name of a omponent module must yield the

omponent module.

The seond requirement for the union operation is that it must be onstrutive in the following

sense. Let Md

1

; :::;Md

n

be models of modules M

1

; :::;M

n

, respetively. Then union

M

(Md

1

; :::;Md

n

)

must be a model of union(M

1

; :::;M

n

). This might not be the ase if the united mahines have

operations with the same names and pro�les.

There are also problems with the reation of the external signature of the new module. The �rst

of them onerns pre�xing. Assume that we wish to unite the modules StakOfOper and IdTable

spei�ed above to reate the module JointMahine. In all likelihood, a user will not be happy

if he now has to use operations with double pre�xing, e.g., JointMahine:StakOfOper:push(x),

JointMahine:IdTable:initialize, et. A better solution is to pre�x operations only with the name of

the new mahine, for example: JointMahine:push(x), JointMahine:initialize. Unfortunately, we

have a problem with overloaded names in this ase. For example, the operations StakOfOper:initialize

and IdTable:initialize will beome unreognizable if their pre�xes are replaed with JointMahine.

Therefore, a mehanism of renaming the exported operations is needed.

Next problem onerns the volume of export of the new module. It might happen that the list of

exported operations of the new module is shorter than the union of the lists of exported operations

of the united modules. For example, if the modules StakOfOper, IdTable and BiggerTasm are

united, there is no need to export the operations StakOfOper:initialize and IdTable:initialize. In

this ase, a mehanism of de�ning a new export is needed.

Taking into aount the above onsiderations, the following syntax of the union operation an be

proposed:



112 A.V. Zamulin

union-operation ::= union list-of-modules [, export℄ end

list-of-modules ::= omponent-module f, omponent-moduleg

omponent-module ::= module-name [export-renaming℄

export-renaming ::= (pair-of-names f, pair-of-namesg)

pair-of-names ::= new-name = old-name

new-name ::= name

old-name ::= name

export ::= export quali�ed-name f, quali�ed-nameg

quali�ed-name ::= module-name.name

If there is no export lause, then all exported names of the omponent modules are exported. The

absene of "export-renaming" for a partiular omponent module means that no exported name of

this module is renamed.

Example 4.

tasm Union2 = union StakOfOper (empty = initialize), IdTable end

tasm Union3 = union StakOfOper, IdTable, BiggerTasm

export StakOfOper.push, StakOfOper.pop, StakOfOper.top,

StakOfOper.is-empty, IdTable.insert-entry, IdTable.new-level,

IdTable.delete-level, IdTable.de�ned-urrent,

IdTable.is-de�ned, IdTable.�nd, BiggerTasm.initialize, ... end

To de�ne the requirements for the well-formedness of the union operation, we introdue several aux-

iliary notions. Let omponent modules M

1

; :::;M

n

have the sets of exported names E

M

1

; :::; E

M

n

,

respetively, and let EL

M

be the set of quali�ed names in the export lause of the union operation

(the set is empty if there is no export lause). The set EL

M

is well-formed if, for any M

i

.exported-

name 2 EL

M

, M

i

is the name of a omponent module and exported-name belongs either to the list

of exported names of M

i

(if it is not renamed) or to the list of new names in the export renaming for

M

i

. That is, the new name must be used in the export lause if the orresponding exported name is

renamed and the old one in the opposite ase.

If EL

M

is well-formed, we onstrut, for eah omponent module M

i

with the export set E

M

i

, the

renaming set, ER

i

, as the set of pairs h new-name, old-namei in the following way:

1. if there is no export-renaming for M

i

, then

� if EL

M

is empty, then ER

i

is the set of all pairs hold-name, old-namei, where

old-name 2 E

M

i

;

� if EL

M

is not empty, then hold-name, old-namei 2 ER

i

i� M

i

.old-name 2 EL

M

;

2. if there is an export-renaming for M

i

, then

� if EL

M

is empty, then hnew-name, old-namei 2 ER

i

if the pair hnew-name = old-namei is

part of the export-renaming, and hold-name1, old-name1i 2 ER

i

if old-name1 2 E

M

i

and

there is no new-name1 suh that hnew-name1 = old-name1i is part of the export-renaming.

� if EL

M

is not empty, then hnew-name, old-namei 2 ER

i

if the pair hnew-name = old-namei

is part of the export-renaming and M

i

.new-name 2 EL

M

, and hold-name1, old-name1i

2 ER

i

if old-name1 2 E

M

i

, there is no new-name1 suh that hnew-name1 = old-name1i is

part of the export-renaming and M

i

.old-name1 2 EL

M

;.



Modularization of typed Gurevih mahines 113

Thus, the renaming sets for the module Union2 are the following:

StakOfOper : fhempty; initializei; hpush; pushi; hpop; popi; htop; topi;

his empty; is emptyig,

IdTable : fhinitialize; initializei; hinsert entry; insert entryi;

hnew level; new leveli; hdelete level; delete leveli;

hdefined urrent; defined urrenti; his defined; is definedi;

hfind; findig

and the renaming sets for the module Union3 are the following:

StakOfOper : fhpush; pushi; hpop; popi; htop; topi; his empty; is emptyig,

IdTable : fhinsert entry; insert entryi; hnew level; new leveli;

hdelete level; delete leveli; hdefined urrent; defined urrenti;

his defined; is definedi; hfind; findig,

BiggerTasm : fhinitialize; initializei; :::g.

The set ER

i

is onsistent i� for any pair hnew-name, old-namei 2 ER

i

, old-name 2 E

M

i

and

there is no old-name1 suh that hnew-name, old-name1i 2 ER

i

. This means that new names must be

unique within the module. Aording to this, all renaming sets above are well-formed.

The set of renaming sets, ER

1

; :::; ER

n

, is onsistent if any ER

i

is onsistent and for any pair hnew-

name, old-namei 2 ER

i

, there is no old-name1 suh that hnew-name, old-name1i 2 ER

j

, j = 1; :::; n

and j 6= i. This means that new names must be unique in the family of renaming sets. For example,

the set of renaming sets for the module Union3 would be inonsistent if there were no export lause

(there would be pairs hinitialize; initializei in three renaming sets).

Now we an onstrut the set of exported names, E

M

, of the resulting module: if a pair hnew-name,

old-namei 2 ER

i

, then new-name 2 E

M

.

Thus, the set of exported names of the module Union2 is fpush, pop, empty, top, is empty, initial-

ize, insert entry, new level, delete level, de�ned urrent,

is de�ned, �nd, initializeg and the set of exported names of the module Union3 is fpush, pop, top,

is empty, insert entry, new level, delete level, de�ned urrent, is de�ned, �nd, initialize ... g.

The external signature of the resulting module is onstruted as follows:

� if f 2 E

M

, f

1

is a name suh that the pair hf; f

1

i 2 ER

i

and (M

i

:f

1

: T

1

; :::; T

n

�! T ) 2 �

M

i

dep

,

then (M:f : T

1

; :::; T

n

�! T ) 2 �

M

dep

;

� if p 2 E

M

, p

1

is a name suh that the pair hp; p

1

i 2 ER

i

and (p

1

: T

1

; :::; T

n

) 2 �

M

i

pro

, then

(M:p : T

1

; :::; T

n

) 2 �

M

pro

.

Thus, the external signature of the module Union2 is the following:

h(Union2:top : Oper;

Union2:is empty : Boolean;

Union2:is defined : Name �! Boolean;

Union2:defined urrent : Name �! Boolean;

Union2:f ind : Name �! Defdata),

(Union2:empty;

Union2:push : Oper;

Union2:pop;

Union2:initialize;

Union2:insert entry : Name;Defdata;

Union2:new level;

Union2:delete level)i.

and the external signature of the module Union3 di�ers from the previous one only by the absene of

the proedure name empty.



114 A.V. Zamulin

The resulting module onsists of the set of the names of the omponent modules with their renaming

sets, the set of the names of the imported modules, and the set of the exported names. The own

signature and own spei�ation of the resulting module are empty. The module is onsistent if the set

of the renaming sets is onsistent.

If the resulting module is onsistent, then the omponents of the resulting mahine itself are de�ned

as follows:

� the set of states is the Cartesian produt of the sets of the states of the omponent mahines as

stated by Fat 1;

� the set of dependent funtions is the disriminated union of the sets of dependent funtions of

the omponent mahines;

� the set of proedures is the disriminated union of the sets of proedures of the omponent

mahines;

Thus, the state of the resulting mahine is a tuple hA

0

;A

1

; :::;A

n

i where A

0

is the algebra of data

types and A

1

; :::;A

n

are the states of the omponent mahines.

Fat 4. The union operation as de�ned above is persistent. Indeed, the redut of the resulting

mahine to the name of a omponent mahines produes exatly that mahine. This fat permits us

to reonstrut a omponent mahine if needed, without reonstruting the other omponent mahines.

Fat 5. The union operation as de�ned above is onstrutive. Indeed, the resulting mahine is a

model of the resulting module sine it provides a unique funtion for any funtion/proedure name

de�ned in the omponent modules.

If a moduleM produed by the union of modules M

1

; :::;M

n

is imported in a module M

0

, then the

terms pre�xed withM inM

0

are interpreted di�erently then the terms pre�xed with ordinary modules

as desribed in Setion 5. Let f be a name from the set of exported names of M , M:f(t

1

; :::; t

n

) a

term onstruted aording to De�nition 3, Md

0

a model of M

0

and ER

i

the renaming set for M

i

in

M , then

[[M:f(t

1

; :::; t

n

)℄℄

Md

0

;A

= [[M

i

:f1(t

1

; :::; t

n

)℄℄

Md

0

;A

if the pair hf; f1i 2 ER

i

. That is, suh a term is interpreted as if f is imported diretly from a

omponent module.

7. Related work

Spei�ation in-the-large is one of the main onerns of the traditional algebrai spei�ation lan-

guages. The aim is the splitting of the spei�ation and design of a single task into a number of

well-de�ned modules so that eah of them ould be independently implemented. For example, a

spei�ation framework whih allows the independent onstrution and implementation of spei�a-

tion modules and inorporates the separation of an implementation task into smaller units with the

subsequent stepwise development of single "implementation piees" is desribed in [8℄. Two basi

spei�ation units are introdued: spei�ation modules (lasses of algebra-valued funtors) and sys-

tem spei�ations (lasses of algebras onstruted by suessive funtor appliations aording to the

modular struture of the system spei�ation). However, no language onstruts implementing these

theoretial notions are suggested.

The spei�ation in-the-large in [9℄ deals with spei�ation modules and their interonnetions.

A spei�ation module onsists of three parts: an export interfae, an import interfae and a body.

Three operations for module interonnetions are proposed: omposition, union, and extension. The

omposition of two modules M1 and M2 onnets the import of M2 with the export interfae of M1.

The operation roughly orresponds to the use of existing mahines in the new one as desribed in

Setion 5. The union of two modules M1 and M2 is the disjoint union of M1 and M2. The onstituent



Modularization of typed Gurevih mahines 115

parts of the resulting module are the union of the orresponding parts of the original modules. This

operation orresponds to our union operations. Unfortunately, no formal semantis of the operation

is given in [9℄. The extension of a module M is the result of extending some or all onstituent parts of

the module by additional items. We believe that this operation an be easily realized by modern text

editing failities and, therefore, do not inlude it in the list of spei�ation-in-the-large operations.

In the most developed way the spei�ation in-the-large is inorporated in the spei�ation lan-

guage CASL [3℄. It is represented in the language in the form of so-alled strutural spei�ations

and arhitetural spei�ations [10℄. The �rst ones provide means for omposing larger spei�ations

from smaller ones (omposing the soure text of a program) while the seond ones provide means for

reating larger modules ("units" in the language) from smaller ones implementing the orresponding

spei�ations (linkage of objet odes). At both levels the means for spei�ation redution, trans-

lation, union and instantiation are provided. We have onentrated in this paper on some problems

related to arhitetural spei�ations, paying the major attention to the union operation as most

important in the modular design and spei�ation of a big dynami system. Our de�nition of the

operation as disriminated union of the omponent spei�ations has allowed us to avoid many name

sharing problems spei� for the CASL arhitetural spei�ations.

Conrete onstruts supporting the spei�ation in-the-large in some earlier algebrai spei�ation

languages an be found in [11, 12, 13℄.

In traditional ASMs, a high-level onept of modularity is realized, aording to [14℄, by funtion

lassi�ation. This means that they distinguish between basi funtions and derived ("dynami" in

this paper) funtions. Within derived or basi funtions they distinguish between stati funtions and

dynami funtions; among dynami funtions they distinguish between ontrolled ones and monitored

ones. As stated in [14℄, "Distinguishing between basi and derived, stati and dynami or ontrolled

and monitored funtions onstitutes a rigorous high-level realization of Parnas' information hiding

priniple". Fully supporting this lassi�ation of funtions and the failities for information hiding

provided by this variety of sorts of funtions, we still believe that more powerful modularization

failities and means of their interonnetion are needed.

8. Conlusion

The main ontribution of this work is the elaboration of some formal mehanisms for ombining

individual TASMs in a big dynami system. For this purpose, eah TASM spei�ation is provided

with an export interfae permitting us to hide TASM's features used exlusively for its internal needs.

A TASM spei�ation using exported operations of some other TASMs is also provided with an

import interfae. The most important operation for ombining existing TASMs is the union of several

TASMs into a new one. The requirements for suh an operation are stated in the paper, and syntax

and semantis of the operation are formally de�ned.

The presented failities still do not provide a possibility to de�ne a generi TASM and instantiate

it later for produing a number of "sibling" TASMs. This remains a subjet of further researh. A

need for it is also indiated in [14℄.

Referenes

[1℄ A.V. Zamulin, Dynami System Spei�ation by Typed Gurevih Mahines, Pro. Intern. Conf. on Systems Si.,

Wrolaw, Poland, September 15{18, 1998.

[2℄ A.V. Zamulin, The Database Spei�ation Language RUSLAN: Main Features, East-West Database Workshop,

Pro. Seond International East-West Database Workshop, Klagenfurt, Austria, September 25{28, 1994, Springer,

Workshops in Computing, 1994, 315{327.

[3℄ P. Mosses, CASL: a guided tour of its design, Reent Trends in Algebrai Development Tehniques: Seleted Papers

from WADT'98, Lisbon, Springer, Let. Notes Comput. Si., 1589, 1999.



116 A.V. Zamulin

[4℄ N. Wirth, The Programming language Oberon (Revised edition), Departement Informatik, Institute for Computer-

systeme, ETH, Zurih, 1990.

[5℄ Ada Referene Manual: Language and Standard Libraries, Version 6.0, International standard ISO/IEC

8652:1995(E), 1994.

[6℄ D. Sannella, A. Tarleki, Toward Formal Development of ML Programs: Foundation and Methodology, Pro. 3rd

Joint Conf. On Theory and Pratie of Software Development, Barelona,Let. Notes Comput. Si., 352, 1989,

375{389.

[7℄ Y. Gurevih, May 1997 Draft of the ASM Guide, University of Mihigan, EECS Department Tehnial Report

CSE-TR-336-97, (available eletronially from http://www.ees.umih.edu/gasm/).

[8℄ M. Bidoit, R. Henniker, A General Framework for Modular Implementations of Modular System Spei�ations,

Pro. 5th Joint Conf. on Theory and Pratie of Software Development, Orsay, Let. Notes Comput. Si., 668,

1993, 199{214.

[9℄ I. A. Hamid, M. Erradi, Dynami Evolution of Distributed Systems Spei�ations Using Reetive Language, Intl.

J. of Software Engineering and Knowledge Engineering, 5, No 4, 1995, 511{540.

[10℄ M. Bidoit, D. Sannella, A. Tarleki, Aritetural Spei�ations in CASL, Pro. 7th Intl. Conf. On Algebrai Method-

ology and Software tehnology (AMAST'98), Manaus, Brasil, Let. Notes Comput. Si., 1548, 1999, 341{357.

[11℄ B. Krieg-Bruekner, D. Sannella, Struturing Spei�ations in-the-Large and in-the-Small: Higher-Order Funtions,

Dependent Types and Inheritane in SPECTRAL, Pro. Intl. Joint Conf. on Theory and Pratie of Software

Development (TAPSOFT'91), Brighton, Let. Notes Comput. Si., 494, 1991, 313{336.

[12℄ M.-C. Gaudel, Struturing and modularizing algebrai spei�ations: the PLUSS spei�ation language, evolution

and perspetives, Pro. STACS'92, Let. Notes Comput. Si., 577, 1992, 3{20.

[13℄ J. Guttag, J. Horning, Larh: Languages and Tools for Formal Spei�ation, Springer, 1993.

[14℄ E. Boerger, High Level System Design and Analysis using Abstrat State Mahines, Current Trends in Applied

Formal methods (FM-Trends 98), Let. Notes Comput. Si., 1641, 1999.


