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Typed Gurevich machines revisited*

A.V. Zamulin

An approach to combining type-structured algebraic specifications with Gure-
vich Machines (evolving algebras) is proposed. A type-structured algebraic speci-
fication, in its simplest form, consists of data type specifications and independent
function (detached operation) specifications. Concrete and generic specification
components (data types and functions) are distinguished in a more developed case.
A type-structured algebraic specification is augmented by a number of transition
rules of a conventional Gurevich Machine indicating in which way an algebra of a
given signature evolves to another algebra of the same signature. A function update
is a primitive algebra transformation. Two classes of functions are distinguished,
static functions which do not change when an algebra evolves, and dynamic func-
tions which do change when an algebra evolves. Data type operations are static.
The semantics of data types and static functions is given by axioms, the semantics
of dynamic functions is given by transition rules.

Keywords: evolving algebras, Gurevich Machines, Abstract State Ma-
chines, algebraic specifications, implicit state.

1. Introduction

Evolving algebras proposed by Gurevich [1] have been intensively used for
formal definition of various algorithms and programming language seman-
tics [2-9]. The success of the approach can be attributed to two reasons:
(1) sound mathematical background and (2) imperative specification style.
In contrast to conventional algebraic specification languages providing the
specification technique resembling functional programming, evolving alge-
bras provide several transition rules resembling imperative programming
statements. As a result, a specification looks like an imperative program,
it is easier to understand, and it is executable. This imperative nature of
evolving algebras has led to the introduction of a new term for them, Gure-
vich Machines (the terms Abstract State Machines and Gurevich Abstract
State Machines are also in use).

Unfortunately, Gurevich Machines in their present form are quite low-
level. They are based on the notion of a universal algebraic structure con-
sisting of a set, a number of functions, and a number of relations. There

*Partially supported by the Russian Foundation for Basic Research under Grant
95-01-00878.
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are a number of transition rules indicating in which way an algebra can be
converted into another algebra of the same signature. Normally, this is done
by a slight change of a function. For this reason, functions can be either
static or dynamic. A static function never changes, a change of a dynamic
function produces a new algebra. Another means of algebra modification
is changing the number of elements in the underlying set (importing new
elements or discarding existing ones).

The underlying set is called a superuniverse and can be subdivided into
universes by means of unary relations. A universe serves to model a data
type. When writing a specification, one can write the signature of any func-
tion operating with values of one or more universes. One cannot, however,
define formally the semantics of a static function (the behavior of a dynamic
function is defined by transition rules) or the set of values of a particular
universe. It is assumed that the behavior of all static functions is either
well-known or defined by some external tools; in the majority of cases, the
same refers to universes (one can make sure of this, looking at the defini-
tion of C [6] where almost all static functions and universes are defined in
plain words). As a result, one cannot construct arbitrary data types and
functions with a well-defined semantics and either one has to use a small
number of well-known data types like Boolean, Integer, etc. or one has to
define informally needed data types and functions. _

The purpose of this work is to propose a specification mechanism incor-
porating the advantages of both many-sorted algebraic specifications and
Gurevich Machines. It is assumed that universes should be replaced with
data types for which the semantics is formally defined by means of algebraic
equations. The mechanism should provide means for defining both concrete
data types and type constructors (generic, or parameterized data types).
Some popular data types and type constructors should be built-in. A facil-
ity for defining independent static functions (i.e., functions not attributed
to particular data types) should also be provided.

The mechanism of data type specifications proposed in this paper is a
refined version of that of the specification language Ruslan [10, 11] (one-level
specification versus multi-level specification) which better fits the evolving
algebras environment. The main idea behind the choice of basic specification
constructs has been to use the notions most familiar to the programming
society. Such notions are mainly functions, data types, generic (parameter-
ized) functions and data types, and type constructors (in contrast to such
strange notions as “universe” [1], “concept” [12], “trait” [13], “sort” [14],
etc.). The author believes that the closer the notions used in a specification
language to the notions used in a programming language, the more chances
exist that a programmer will ever pay attention to a specification. Another
task has been avoidance of any other logic except the first-order many-sorted
logic which is most familiar to the computer science specialists.
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The set of transition rules proposed in the paper is mainly based on the
set of basic rules of [1] with the addition of a tagcase constructor resembling
a tagcase statement of some programming languages. The current proposal
ignores algebra evolving by means of importing/discarding algebra elements
as a strange mechanism to the programming community. The author be-
lieves that a proper choice of data types needed in a specification can solve
this problem.

The previous paper [15] on the subject has presented an approach to
combining type-structured algebraic specifications and Gurevich Machines.
The present version of the approach takes into account some features pro-
posed by the work of P. Dauchy and M. C. Gaudel on algebraic specifications
with implicit state [16]. The approach is tested by formal definition of an
Oberon compiler [17].

The rest of the paper is organized in the following way. Type-structured
signatures and underlying algebras are defined in Section 2. The construc-
tion and interpretation of well-formed terms are described in Section 3.
Type-structured specifications are introduced in Section 4. Specification
classes serving to “make ad-hoc polymorphism less ad-hoc” [18] are pre-
sented in Section 5. Generic data types are defined in Section 6, and some
built-in type constructors are described in Section 7. A mechanism for spec-
ifying generic functions is proposed in Section 8. A set of transition rules
is defined in Section 9 and the general form of a specification is presented
in Section 10. Two specification examples are given in Section 11. Some
related work is discussed in Section 12, and some conclusions are drawn and
directions of further work are outlined in Section 13.

2. Type-structured signatures and algebras

A type-structured signature is based on an ordinary many-sorted signature
and is defined in the following way:

Definition. Let
TY PE be a set of names called type names;

an operation type be either a type name or 73,...,T, — T', where T, 1,
¢ = 1,...,n, are type names; in an operation type Ty,..., T, — T,
T; is called a domain unit and T is called a codomain unit;

an operation signature be a pair op : O, where op is an operator (function
symbol) and O is an operation type;

a data type signature be a set of operation signatures constructed as above
by extending the set TYPE with the symbol “@” meaning “myself”
[20] and used at least once as domain and/or codomain unit in each
operation signature,
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then a type-structured signature X is a tuple (TY PE, ®, A, int?), where & is
a set of data type signatures, A is a set of (detached) operation signatures,
and int’ is a function mapping TY PE into the set of data type signatures
®. For any T € TYPE and ¢ € ®, we say that ¢ is marked with T if
int'(T) = ¢.

An operation signature op : @ is called a constant signature, op is called
a constant name.

The conversion of a type-structured signature into an ordinary many-
sorted signature is straightforward: in each data type signature the symbol
“@” is replaced with the data type name marking the signature and the
data type name is converted into a sort name.

A signature constructed in this way has the following benefits:

1. A data type signature groups all operations of a particular data type,
and a type name is associated with it; this directly corresponds to the
notion of a type interface in modern programming languages.

2. Operators can be overloaded in different signatures (and even in the
same signature).

3. A data type name is not tightly coupled with a data type signature;
the use of a special symbol meaning “myself” in a data type signature
permits us to introduce easily specification classes (Section 5) and
generic type specifications (Section 6);

4. Independent functions (detached operations) are allowed in addition
to data types.

Notation. We generally construct the function int! as a set of pairs
(type-name, data-type-signature). A data type signature is introduced with
a keyword type and enclosed in square brackets, a detached operation sig-
nature is introduced with a keyword function or const.

Example.

type Boolean =

[true, false: @;

“=" @ — @;

“l'ﬂ, “&”: @1 @ _) @;
“:”, “<>”: @, @ -_> @];

type Nat =
[zero: @;
succ: @ — @;
“+”’ “_”: @’ @ .___) @;
“=”’ “<>”’ “<”’ “<=”’ !(>”, “>:”: ©, @ _ﬁ__} Boolean];
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type SeqOfNat =

[empty: @;

append: Nat, @ — @;

head, length: @ — Nat;

tail: @ — @;

has: @, Nat —» Boolean;
is.empty: @ — Boolean;

=" 0 @, @ — Boolean];

type RecNatSeqOfNat =
[create_rec: Nat, SeqOfNat —3 @;
pl: @ — Nat;
p2: @ — SeqOfNat];

function if: Boolean, Nat, Nat — Nat;
const count: Nat,.

The data type Boolean with the above signature and conventional inter-
pretation of its operations is built-in.

In all definitions which follow, it is assumed that the symbol “@” in a
data type signature is replaced with the type name marking the signature.

An algebra 4 of a signature ¥ = (TYPE, ®, A, int?) is built by assigning:

1) a set of elements to each type name from 7Y PE;

2) an element from the set |A|T to each operator op with the signature
op : T, where |A|r is the set associated with the type name T in A;

3) a (partial) function [Alr x...x |A|lp, — |A|r to an operator op with
the signature op : 71, . .. Iy — T, where |Alz, [Alz,i=1,... , Tt are
sets associated with the type names T,T;.

The set of elements assigned in A to a type name T ¢ TYPE is called
the set of values of the (data) type T. The carrier of an algebra of a type-
structured signature is the family of sets of data type values. We let | 4|
denote the carrier of A, |A|r denote the set of values of the data type T
in A, and op*? denote the element of the carrier of the algebra A assigned
to op, if op is a constant, and the function assigned to opin Aifitis a
function symbol. An q ¢ |A| is called an element of A. If Y7 is the data
type signature marked with the type name T, then the set assigned to T
and the carrier elements and functions assigned to operators from Yrina
given algebra A are called implementation of the data type T in algebra A.
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3. Term algebra

The term algebra Wx(X) of a given type-structured signature ¥ is con-
structed as follows. Let X7 be a set of variables indexed with a type name
T. Then elements of this algebra, which are called (data) terms, are the
following:

1) if z is a variable indexed with a type name 7', then z is a term of

 type T}
2) if ¢ : T is a constant signature, then c is a term of type T
3) ifop:T,...,T, — T is an operation signature and ey,...,e, are
terms of types T1,...,T,, respectively, then op(ey,...,ey,) is a term of
type T'.

Operations of this algebra create larger terms from smaller ones.

Remark. Sometimes, we qualify an operator with a type name to avoid
ambiguity, if there is a danger of it; thus, if ¢ is a term of type T, then T"t
is a term of type T'.

A term without variables is called a ground term. We denote the set of
all terms of type T' by [Wg(X)|r and the set of ground terms of type T' by
|Ws|r, the sets of all terms and ground terms are denoted by |Wx(X)| and
|Wx|, respectively.

For any X-algebra A and a set of typed variables X, given a substitution
function v : X — |Wyx|, an interpretation function

eval® : |Wy(X)| — |A|
is defined as follows:
1) if z € X, then eval’(z) = eval’(v(z));

2) if ¢ is a constant name, then eval?(c) = c4;

3) ifop: Ty,...,T, — T is an operation signature and ey,...,e, are
terms of types T3,...,T,, respectively, then

o evalt(op(ey,...,en)) = opi(evald(ey),...,eval?(e,)), if evald
is defined for each term e;,i = 1,...,n, and op? is defined for
(eval?(e1),...,eval‘(ey));

o eval?(op(ey,-..,e,)) is undefined, otherwise.

The interpretation function thus defined permits us to disregard whether
algebras of a given signature are term-generated (reachable) or not.
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4. Type-structured specifications

Definition. The notion of an aziom is defined in the following way:
1) ift4 and ¢, are terms of type T,thent; ==t, isan equation or axiom;

2) if A is an axiom, then forall zy : Th,...,2, : T,.A, where z; is a
variable and T; is either a type name or the symbol “@”, is an axiom,;

3) if A is an axiom, then exist zy : Th,...,2, : Ty.A, where z; is a
variable and Tj is either a type name or the symbol “@”, is an axiom;

4) an axiom does not contain other variables except those bounded by
quantifiers forall and exist (ie., in an axiom ¢, == t2, t; and £, are
both ground terms);

5) an axiom ¢; == ¢, evaluates to true in a given algebra only if both ¢,
and ¢; are defined and evaluate to the same element of the correspond-
ing set for all valuations of any variable bounded by quantifier forall
and at least for one valuation of any variable bounded by quantifier
exist.

Remark. The symbol “@” can be used only in a data type specification.

Notation. We list all bounded variables at the beginning of the set of
axioms.

Definition. Let ¥ be a type-structured signature and E% and E? be sets
of axioms associated with each pePanddc A, respectively, so that each
axiom in E? has at least one operator from ¢, and each axiom in E% uses the
operator defined in 6. Then we get a specification. A pair (¢, E?) is called
a data type specification, and a pair (4, E®) is called a detached operation
specification.

Thus, a type-structured specification is generally a set of data type spec-
ifications marked with type names and a set of detached operation specifi-
cations. Note that at the level of specification the function intt binds type
names to data type specifications. An algebra A is an algebra of a given
specification if each axiom of this specification evaluates in A to true. This
means that a data type implementation must satisfy all the axioms of the
corresponding data type specification.

To express the definedness of a term ¢ of a type-structured specification,
Wwe use a special semantic predicate D, such that D(t) holds in an algebra A
iff eval4(t) produces some object in A [19]. It is assumed that a detached
constant can also be partial, i.e., it can be undefined in some algebras of a
given signaturel.

'The idea of partial constants is suggested to the author by Felix Cornelius.
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Notation. When constructing a specification, we build the function intt as
a set of pairs (type-term, data-type-speciﬁcatz‘on). Data type signatures are
enclosed in square brackets and sets of axioms are enclosed in curly brackets.
The clause domf(z1,...,z,) : p(zy,... »Tm), where f is an operator being
specified, p is a predicate, and (z1,...,zp, ..., z,) are universally quantified
variables?, such that z;, ...z, C z,... ) Tn, defines the domain of a partial
operation: D(f(z1,...,z,)) holds only if p(z1y...,2y) evaluates to true;
operations without explicitly indicated domain clause are considered total.

Example.

type Nat = spec

[zero: @;

succ: @ — @;

«+n’ “_», @’ @ — @;

u:n’ u<>”, u<u, u<:::’ u>n, s, . @, @ — Boolean]
{forallx, y: @. dom x - y: y <= X;

zero < succ(x) == true; succ(x) < zero == false;
succ(x) < succ(y) == x < y; zero = succ(x) == false;
suce(x) = zero == false; succ(x) = succ(y) ==x =y;
x<=y==x<y|x=yx>y==y<x
X>=y==y=<xX<>y==(x=y);

X + zero == x; x + succ(y) == succ(x + y);

X — Z€ro == X; X — X == Zero;

suce(x) — y == succ(x - y)};

type SeqOfNat = spec

[empty: @;

append: Nat, @ — @;

head, length: @ — Nat;

tail: @ — @;

has: @, Nat — Boolean;

is_empty: @ — Boolean;

‘=", “<>": @, @ — Boolean]

{forall x, y: Nat, s, s1: @. dom head(s): —is_empty(s);
is_empty(empty) == true; is_empty(append(x, s)) == false;
length(empty) == 0; length(append(x, s)) == length(s) + 1;
head(append(x, s)) == x;

has(empty, x) == false; has(append(y, s), x) == x = y | has(s, x);
tail(empty) == empty; tail(append(x, s)) == s;

append(x, s) = empty == false; empty = append(x, s) == false;

*the predicate can also contain existentially quantified variables,

see an example in
Section 7.
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§ = s1 == head(s) = head(sl) & tail(s) = tail(s1);
$ <> sl == =(s = s1)};

type RecordNatSeqOfNat =

[create_rec: Nat, SeqOfNat — Q;

pl: @ — Nat;

p2: @ — SeqOfNat]

{forall x, x1: Nat, s, s1: SeqOfNat, r: @.
pl(create_rec(x, s)) == x; p2(create_rec(x, 5)) == s};

|
function if: Boolean, Nat, Nat — Nat
{forall x, y: Nat, p: Boolean.
if(true, x, y) == x; if(false, x, y) ==y}

3. Specification classes

Some data type specifications can share the same subset of operation sig-
natures and the same subset of axioms. The notion of a specification class
is introduced to make use of this feature. This notion corresponds to the
notion of a type class which has become widely known due to [18] and which
was originally proposed under the name sype in [20].

Let ¥ be a signature, C be a set of names (of specification classes), C be
a name from C, and 6E = (9, E®) be a specification constructed like a data
type specification (Section 4). For each pair (C,0FE), we say that 0F is a
specification class marked with the class name ¢ if no algebra of ¥ assigns
a set to C and a function to any operation signature from 6.

If T is a type name marking a data type specification (¢, E®) and C
is a name marking a specification class (0, E%), we say that type name 7
belongs to class C (or T is of class C) and write T € C if § C ¢and E? C E9.
Thus, the specification of a data type belonging to a certain class contains all
operation signatures and all axioms of that class and, possibly, some other
operation signatures and axioms. Semantically, we can view a specification
class as a set of implementations of the data types belonging to the class.

Example. Let us have the following specification class (introduced with
the keyword class):

class EQUAL = spec

[“=", “<>7: @, @ —» Boolean]

{forall x, y: @, exist z: @.
x=x:=true;x=:y==:y=x;x:z&z=y==:x=y;
X <>y==-(x=y}

*Sometimes we say “data type T™.
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Any data type possessing the operations “ = ” and “ <> ” specified as
above belongs to this class.

For two specification classes (C,0F) and (C1,0E1), where 6E = (8, E®)
and 0E1 = (01, E19!), we say C1 is a subclass of C (C1CC),ifd Co1and -
Ef C E1°1.

Notation. Specifying a subclass, we usually inherit the specification of its
superclass.

Example.

class ORDERED = spec EQUAL - specification of EQUAL is inherited
[“<=", “>=", 4 451 @, @ — Boolean) .

{forall x, y: @, exist u: @.

x<=x==ftrug;x <=u&ku<=y==x<=y;
x<=y&y<=x==x<=y;x<y::x<=y&—l(x=y);
X>=y==y<=xx>y==y<x}

The class ORDERED inherits the class EQUAL, and, therefore, any data
type belonging to this class must possess all operations of the class EQUAL
and extra operations introduced in the specification of ORDERED. We also
use inheritance when specifying data types, i.e., a data type specification
indexed with a class name inherits the specification of the class indicated.

Since any type name is a member of the set TYPE, we consider in the
sequel that TY PE is a class name marking an empty specification class (any
data type is a data type of this class).

6. Generic data types

We propose the following way of constructing the names in TY PE (which
will be called type terms from now on), using two nonintersecting sets of
names, S and R: if § € S, then S is a type term; if T,...,T, are type
terms and R € R, then R(T},...,T,) is a type term.

Let now

int'(R(T11, . ..,Tin)) = Specl and int (R(Ta1, ..., Toy)) = Spec2,

where R(TY1,...,T1,) and R(Ty,...,t3,) are type terms and Speel and
Spec2 are data type specifications. We say the data type R(T11,...,Tin)
is a sibling of the data type R(Ty,... s T2n), if the replacement of each Ty;
with Ty;, ¢ = 1,...,n, in Specl converts it into Spec2. We can propose a
special way of constructing a part of the function intt for a family of data
type siblings.
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Let g1 : C1,...,qx : Cr be names (of type parameters) indexed with
class names. A pair (R(q : C,...,qx : Ci), Spec) (where R € R and Spec
is a data type specification additionally using ¢i,... » gk as type names in
operation signatures and operators from Cj,...,C} in axioms) is part of
the function int’, such that for any type term T} of class C;, i = 1,...,k
int*(R(Ty,...,T)) = Speclgi/Ty,...,qe/Te], where Speclgi/T, .., qu/Ti]
is a data type specification produced by replacing each g; in Spec with T;.

A pair (R(q1 : C1,...,qk : Ck), Spec) is normally called a generic type
specification, and R is called a generic type or type constructor. The re-
placement of type parameters with type terms in both parts of a generic
type specification is called a generic type instantiation. Note that due to
the use of the function int?, we do not need to introduce a special semantics
for generic data types. A generic type specification in this approach is just a
way of defining this function. This corresponds one to one to the practice of
modern programming languages regarding generic data types as templates.

Two type terms R(T13,...,Ti,) and R(Ty, ..., Tyy) are equivalent if T};
and T3;, i = 1,...,n, are the same type name or if they are equivalent.

Example.

type Seq(T: EQUAL) = spec EQUAL

[empty: @;

append: T, @ — @;

head: @ — T;

length: @ — Nat;

tail: @ — @;

has: @, T — Boolean;

is_.empty: @ —> Boolean;

‘=", “<>": @, @ — Boolean]

{forall x, y: T, s, s1: @. dom head(s): —is_empty(s);
is_empty(empty) == true; is_empty(append(x, s)) == false;
length(empty) == 0; length(append(x, s)) == length(s) + 1;
head(append(x, s)) == x;
has(empty, x) == false; has(append(y, s), x) == x = y | has(s, x);
tail(empty) == empty; tail(append(x, s)) == s;
append(x, s) = empty == false;
s = s1 == head(s) = head(sl) & tail(s) = tail(s1)
s <>sl == (s = s1)}.

b)

An instantiation Seq(Nat) produces a data type specification exemplified
in Section 4.
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7. Built-in type constructors

Some data type constructors are built-in, i.e., they follow special rules of
type term creation. These are enumeration, record, and union types.

A type term (pl,p2,...,pm,pn), where pi,i = 1,...,m,n, is a name,
denotes the following enumeration type specification:

spec ORDERED - inherits the specification of the class ORDERED
[p1, P2, ..., pm, pn: @;
first, last: @;
succ, pred: @ —@]
{forall x, y: @. dom pred(x): x>pl; dom succ(x): x<pn;
first == pl; last == pn;
succ(pl) == p2; ...; succ(pm) == pn; pred(succ(x)) == x;
succ(x) = x == false; x < succ(x) == true}.

A type term Record(pl : T1;p2: T?2;...;pn: Tn), where pi,i = 1,...,n,
" is a name (of a projection function) and T is a type term, denotes the
following record type specification:

type Record(T1, T2, ..., Tn: TYPE ) = spec
[create_rec: T1, T2, ..., Tn — @;

pl: @ — T1;

p2: @ — T2;

pn: @ — Tn;

{forall x1: T1, x2: T2, ..., xn : Tn [End of sentence needs a space after it.].
pl(create_rec(x1, x2, ..., xn)) == xI;

p2(create_rec(x1, x2, ..., xn)) == x2;

pn(create_rec(x1, x2, ..., xn)) == xn}.

An instantiation Record(Nat,Seq(Nat)) produces a data type specifi-
cation similar to that of RecordNatSeqOfNat exemplified in Section 4.

Notation. If r is a record and p is a projection function name, we normally
write r.p for p(r).

A constructor (type term) Union(T1, T2, ..., Tn), where T4,i = 1,...,n,
is a type term, denotes the following union type specification:

tyl;e Union(T1, T2, ..., Tn: TYPE ) = spec
[T1: T1 —@;
T2: T2 —@;

Tn: Tn —@;
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get_T1: @ —T1;
get_T2: @ —T?2;

get_Tn: @ —Thn]
{forall x1: T1, x2: T2, ..., xn: Tn, w: @, exist yl: T1,y2: T2,...,yn: Tn.
dom get_T1(u): u = T1(yl); dom get_T2(u): u = T2(y2);

dom get.Tn(u): u = T2(yn);
get_T1(T1(x1)) == x1; get-T2(T2(x2)) == x2;

get_Tn(Tn(xn)). = xn}.

A special case of a union type is the data type Any which is the union
of all data types of a given specification.
For any algebra A of a given signature with a union type

U =Union(T1,T2,...,Tn),

a typing function 7 : [Aly — TYPE is defined as follows: if u € |A|r,
T e{T1,T2,...,Tn}, and a € |A|r, then 7(u) = T iff u = T(a).

8. Generic functions

Definition.

1) a Generic type term is a pair ((q1 : C1,...,qk : Ck),0T?), where
ql: C1,...,qk : Ck are names (of type parameters) indexed with class
names and o7 is an operation type constructed by extending the set
of type terms of classes C1,...,Ck with ql,...,qk, respectively;

2) a Generic function signature is a pair op : goT', where op is an operator
and goT is a generic type term.

We now allow the set A to contain generic function signatures.
Notation. We put type parameters in the brackets gen ...op.

Example. _
if: gen T: TYPE op Boolean, T, T — T.

If op? : ((q1 : C1,...,gk : Ck),0T9) is a generic function signature and
T1,....Tk are type terms such that each Ti,i = 1,...,k belongs to the
class C'i, then opI(T1,...,Tk) : oT is an instantiated function signature,
where oT is an operation type obtained from 0T by replacing each ¢i with
Ti; op?(T1,...,Tk) is called an instantiated operator. Instantiated operators
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are used for producing data terms in the same way as ordinary operators do
(Section 3, paragraph 3).

Example.

if(Nat)(p, z,y).

According to the extension of the independent function set with generic
function signatures, an algebra A of a given signature is extended with
a set of functmns map?9, one for each generic function signature op? :

((q1 : -1gk : Ck),0T?); such a function binds an instantiated oper-
ator op‘f(Tl, ..., Tk) to a function as it is described in Section 2.

The definition of the interpretation function eval® is extended in the fol-
lowing way: for an instantiated operator op?(T'11,...,T1k) : T1,...,Tn —
T,

eval(op?(T11,...,T1k)(t1,...,tn)) =
mapA9(op?(T11,...,T1k)(eval(t1),. .. ,eval“(tn)).

Notation. Instead of 0p?(T'11,...,T1k)(t1,...,tn), we write
op?(tl,...,tn), where it seems appropriate.

A generic function specification consists of a generic function signature
and a set of axioms.

9. Algebra modification

9.1. Function updates
Let A be a ¥-algebra and let a function signature
f:n, ... T,—T

be mapped into a function f4. We say that the algebra A evolves to an
algebra B by a function update if:

1) all data type signatures and detached operation signatures of ¥, except
f, have in B the same interpretations as in A;

2) there are'some a; € |A|z,,. .,an € |Alg, such that fB(ay,...,a,)
produces a result different from f4(ay,...,a,) and f2 is the same as
f4 elsewhere.

If f is a constant name, this means that f gets a new value in algebra B.

Example. Assume that we had a function signature
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f:Nat — Nat
mapped in algebra 4 into a function A satisfying the equation
forallz : Nat.f(z) == 0.
If now we construct an algebra B with a function f2 satisfying the equations
forallz : Nat.f(zero) == 0; f(suce(z)) == 1;

we can say that A evolves to B. .
The modification of a function is done by one or more function updates.
Let A be a -algebra, and let a function signature

FiTy, ...\ T, —s T

be mapped into a function f4 A primitive update, a, of fAindisa pair
({a1,...,an),a), where a ¢ |47, a; € |Alg,i = L,...,n. To fire « in A4,
transform A into a new algebra B, such that fB(a1,...,a,) = a and fE
is the same as f4 elsewhere. Such a primitive update of an algebra A is
denoted by pl(4, f4, a).

An update, S, of {4 in A is a set of primitive updates of f4. If £4 has the
signature f : Ty, ..., T, — T, then 3 is consistent if there are no al € Band
a2 € 8, such that al = ((a1,...,an),a) and a2 = ({(a1,...,a5),a'), where
a # a'. To fire a consistent B at A, fire simultaneously p1(A, A, @) for all
@ € 8. Such an update of f4 in an algebra A is denoted by u2(4, f4,3).
To execute an inconsistent 0 at the given algebra A, do nothing; the new
algebra B is the same as A.

An update set in A is a set of updates. To execute an update set, ex-
ecute each member of the set simultaneously. Note that an update set is
inconsistent if at least one of its members is inconsistent,.

9.2. Algebra invariant

In the sequel, we consider that independent functions (constants) are clas-
sified in two sets: static functions which do not change when the algebra
evolves and dynamic functions which do change when the algebra evolves.
Data type implementations do not change. In this way, we come to the
notions of a static algebra, instant algebra, and algebra invariant. We de-
note the sets of signatures of static and dynamic functions by A and A/,
respectively.

Definition. Let ¥ = (TYPE,®,A,int') and A be a Y-algebra called a
static algebra. An (tnstant) algebra?, IA, of the signature IY =

4sometimes also called a state
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(TY PE, ®,IA,int!), where IA = AUA'’ is built by extending A with a set of
dynamic functions with signatures in A'. A set, I, of IX-algebras, such that
all algebras in I have the same static algebra, is called an I% — invariant.

Singe all algebras in an IZ-invariant I have the same carrier, we let |I|
denote the carrier of an algebra belonging to I and |I|r denote the set of
elements associated with the data type name T'.

An initial state for a specification (IZ, E) is given by an mstant algebra
of this specification. A dynamic function (constant) supplied with an axiom
(axioms) is considered to be initialized (static functions must be initialized).
A noninitialized dynamic function (constant) is considered to be totally
undefined in this algebra.

9.3. Transition rules

Algebra updates are specified by means of special transition rules. A transi-
tion rule is a special element of the I'X term algebra called a transition term.
The evaluation function eval : |I| x |[Wrs(X)| — |I| is used to transform
one instant algebra into another according to a transition rule.

9.3.1. Basic transition rules

Definition. Let f : T,...,T, — T be a dynamic function signature, ¢;,
i=1,...,n, be a ground term of type T; and ¢ be a ground term of type T
Then

f(tl,.. . ,tn) =1

is a transition rule called a primitive update instruction.

Semantics. If A is an algebra of an I2-invariant I, then
evall (A, f(t,...,tn) :=1t) = pl(A,fA,a),

where a = ((eval®(t1),...,eval4(t,)), eval#(t)).

Definition. Let f : T1,...,T, — T be a dynamic function signature, then
forall z; :T;,... 2k T f(t1y ..o ytp) =1,

where t;, 1 = 1,... ,ﬁ, is a term of type T; using no other variables ex-

cept those from the set {z1,...,zx}, and t is a term of type T' using no

other variable except those used in ¢;, is a transition rule called an update
instruction.
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Sexhantics.
evalI(A, forallz; : Tn,... 25 : T f(t4,... ytn) i=1t) = p2(A4, fA,ﬁ),

where ((a1,...,an),a) € B if there exists a substitution o : {z1,...,7} =
|Wos|, such that a; = eval(oty),...,a, = eval?(ot,),a = eval4(at) (o is
identity in case of ground terms).

Exéxnple. A transition rule
z:=z+1
will transform an algebra A into an algebra B so that
? =24 41
A transition rule

forallz : Nat. f(z) := f(z) + 1

will change the function in such a way that for each a € | A|Nat,
f8(a) = fA(a) +1.

An update instruction f(ty,...,t,) = undef means D(f(ty,...,t,)) :=
false, i.e., f(t1,...,t,) becomes undefined (note that undef is not a term
denoting a special value, this is just a special word providing some kind of
syntactic sugar). Respectively, an expression f (t1,...,t,) = undef means

D(f(ty,...,tn)).

9.3.2. Three rule constructors

More complex transition rules (or simply rules in the sequel) are constructed
recursively from basic transition rules by means of three rule constructors:
block constructor, conditional constructor, and tagcase constructor.

The block constructor. If Ry, ..., R, are rules, then begin R;,...,R,
end is a rule called a block.

Semantics.
eval’(A,begin R, ..., R, end) = {eval’ (4, R,),. .. ,eval‘r(A,R,,,)}.

In other words, to execute a block of rules, execute all of them simultane-
ously.

Example. Let z, y, z be dynamic constants of type Nat and f be a function
from Nat to Nat. Then the execution of a block



112 . A.V. Zamulin

begin f(z) := y,y := z,2 := z end

will produce:
FBe) =yt yB =zt 2B = A

The conditional constructor. If k is a natural number, gy, ..., g are
Boolean terms, and Ry, ..., R} are rules, then the following expression is a
rule called a conditional transition rule:

if go then R,
elseif g; then R;

elseif g, then R
endif

If the term g is the Boolean constant true, then the last elseif clause
can be replaced with “else R;”.

Semantics. If R is a conditional transition rule, then
eval’ (A, R) = eval’ (A, R;)

if g; holds in A, but every g; with j < i fails in A. If every g; fails in A,
then eval’(A,R) = @.

The tagcase constructor. If u is a term of type Union(T1,Ty,...,T,)
or of type Any, Ry, Rz,..., Ry are rules and k <= n, then the following
expression is a rule called a tagcase transition rule:

tagcase u of
Tl : Rly
TZ : R2a

Ty : Ry
endtag.
Semantics. Let R be a tagcase transition rule, then each u in R; is con-
verted to type T; and eval’(A,R) = evall(A,R;) if 7(u) = T} holds in A,
but every 7(u) = T; with j < i fails in A. If every 7(u) = T} fails in A,
eval’(A,R) = @. Thus, the tagcase constructor permits us to regard a

union type value as a value of the type needed, this facility is not provided
by the conditional constructor.

Remark. The last T : Ry can be replaced with else Ry; then u is evaluated
as a union type term in Ry.
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9.3.3. Guarded update

A guarded update instruction is a rule of the form if g then R endif, where
R is a rule. ‘

Semantics. Let R1 = if g then R endif. Then eval/(4, R1) = eval’(4,R)
if g = true; eval’(A, R1) = @ otherwise.

9.3.4. Record field update

If r is a dynamic constant of type Record(p; : Ti;...p; : Ti..oion : T),
then an update instruction :
pii=1t;

means r := create_rec(r.py,...,t;,...,7.py)%.

9.4. Dependent functions

A static function cannot be updated by means of a transition rule. How-
ever, if a function specification uses a dynamic function symbol, the function
should be updated according to the new value of the dynamic function used
in the specification each time the corresponding dynamic function is up-
dated.

Example 1. Let us have the following definitions:

dynamic const s: Seq(Int);
depend const num of elem: Nat; {num_of_elem == length(s)}.

Each time the constant s gets a new value, the constant num_of_elem gets
a new value, too. We call such a function (constant) a dependent function
(constant) and introduce it with a special keyword depend. A dependent
function corresponds to a function in programming languages which uses a
global variable and to a non-elementary access function of [16].

With the use of dependent functions, an algebra update proceeds in two
stages:

1. At stage 1 a transition rule is executed.
2. At stage 2 all dependent functions touched by the transition rule are

reimplemented.

Remark. We do not touch here the problem whether a dynamic function
is really reimplemented each time the corresponding dynamic function is
updated or a result is computed each time the function is called.

The idea is suggested to the author by Giuseppe Del Castillo.
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9.5. Temporary updates

An update can be temporary, i.e., be valid only in evaluation of a certain
term. Thus, let R be a rule, ¢ be a term of type T, and ¢1 denote a term
temp R in t. Then, for any algebra A, t14 = tB, where B is the algebra
produced by updating A according to R.

The rule has proved to be useful in deﬁmng the formal semantics of the
Oberon WITH statement [17].

9.6. Procedures

A procedure generally serves for the execution of the same transition rule
for different terms. If p,ny,...,n; are names, 71, ..., T} are type terms, and
R is a transition rule using the names ny,...,ng, then «

proc p:Th,...,Tk;p(n1,...,nE) = begln R end
is a procedure definition. The names ny,...,ny are called formal parameters.

A new transition rule, a procedure call, is introduced for procedure in-
voking. If
proc p:Ti,...,Ty;p(ni,...,n;) = begin R end
is a procedure definition and ¢y, ..., are ground terms of types Ty,. .., T},

respectively, then p(¢1,...,%x) is a transition rule called a procedure call.
The terms t4,...,t are called actual parameters.

Semantics. To execute p(t1,...,%), replace in-R each n;,i = 1,... , k, with
t; and fire R.

Remark 1. If an actual parameter replaces a formal parameter used as the
name of a dynamic constant modified in R, it must be either the name of a
dynamic constant or a dynamic function application.

Remark 2. A procedure can be called recursively.

Remark 3. Procedures are counterparts of modifiers introduced in [16].

10. General form of a specification
In the most general case, a specification can consist of the following parts:

1) specifications of data types and static functions;

2) specifications of dynamic functions (the absence of an axiom part
means a totally undefined function);

3) specifications of dependent functions;

4) definitions of procedures;
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5) a transition rule.

Only the first part is obligatory, all the others are optional. If we have
only the first part, we have a traditional algebraic specification of a static
state of a system. A specification consisting of parts 1, 2, and 5 defines an
algorithm in the manner close to that of the traditional Gurevich Machine. A
specification without the last part defines the behavior of a dynamic system
in the manner close to that described in [16]. A specification including all the
parts describes a particular algorithm in terms of the behavior of a dynamic
system.

11. Sample examples

11.1. Specification of a stack machine

This is an example from [21] rewritten with the use of data types. The stack
machine computes expressions given in reverse Polish notation, or PRN. It
is supposed that the PRN expression is given in the form of a list where
each entry denotes a natural number or an operation. The stack machine
reads one entry of the list at a time. If the entry denotes a number, it is
pushed onto the stack. If the entry denotes an operation, the machine pops
two items from the stack, applies the operation and pushes the result onto
the stack. At the beginning, the stack is empty.

type Oper = (I+'s’ _’1’ ! /’);
type Doper = Union(Nat, Oper);

type Stack = spec

[empty: @; ‘

push: Nat, @ — @

pop: @ — @;°

top: @ — Nat];

{- azioms are ggnventional}

type List = Seq(Doper);

dynamic const S: Stack = empty;
" dynamic const Argl, Arg2: Nat; - initially undefined constants
dynamic const F: List; — initialized by a demon

tagcase head(F) of : '
Nat: begin S := push(head(F), S), F := tail(F) end,
Oper:

if Argl = undef then
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begin Argl := Nat(top(S)), - Arg! is defined now
' S := pop(S)
end
elseif Arg2 = undef then
begin Arg2 := Nat(top(S)), - Arg2 is defined now

S := pop(8)
end
else
begin S := push(apply(head(F), Argl, Arg2), S),
= tail(F),
Argl := undef, - Argl is undefined now
Arg2 := undef - Arg2 is undefined now .
end
endif
endtag

Note that all the operations used in the example are now formally defined
in contrast to [21].

11.2. Identifier table manipulation

The identifier table stores some data for each identifier definition. It can
be block-structured according to block nesting. Typical operations are cre-
ation of an empty identifier table, insertion of identifier data in the current
block, checking whether an identifier is defined in the current block, check-
ing whether an identifier is defined in the program, fetching identifier data,
and deletion of all identifier definitions of the current block.

Let Name be the type of identifiers and Defdata be the type of the iden-
tifier definition data, the concrete structure of this type is unimportant in
this example. Then we can define the identifier table as a dynamic function

dynamic function id_table : Name, Nat — Defdata;

Taking into account a block structure of a modern programming language,
" we define a constant

dynamic const cur_level : Nat =0

to indicate the current level of identifier definition.

‘According to the initialization conventions, id_table is initialized with a
totally undefined function and cur level is initialized with 0.

The insertion of a-new entry into the table is done by the following pro-
cedure
proc insert_entry: Name, Defdata;
insert_entry(id, d) = begin id_table(id, cur_level) := d end;
To check whether an identifier is defined in the current block, we define the
following dependent function:
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depend function defined_current: Name — Boolean;
{forall id: Name. defined_current(id) == D(id_table(id, cur_level))};

The dependent function

depend function name_defined: Name, Nat — Boolean; .

{forall id: Name, k: Nat.

name_defined(id, 0) == false;

name_defined(id, k) == D(id_table(id, k)) | name_defined(id, k-1)};

will check whether an identifier is defined in the program. An identifier def-
inition data is fetched from the table by the dependent function

depend function find: Name, Nat —s Defdata;

{forall id: Name, k: Nat.

dom find(id, k): k > 0;

find(id, k) == if D(id-table(id, k)) then id table(id, k) else find (id, k-1)};

Finally, the deletion of all identifier definitions of the current block is done
by the following procedure:

proc delete_level;

delete_level =

begin forall id: Name. id_table(id, cur_level) := undef;
cur level := cur_level -1

end.

12. Some related work |

A concept of an algebraic specification with implicit state is introduced in
[16]. The main idea is to represent states of a system by algebras and dy-
namic operations by transformations between them. Transformations are
defined by means of so-called modifiers which are counterparts of transi-
tion rules of Gurevich Machines. A state can be analyzed by a number of
simple and complex analyzers. The approach is mainly directed on system
specification rather than on algorithm specification, while our approach is
directed on both and has an imperative style of specification. However,
complex modifiers gave rise to procedures, and complex analyzers gave rise
to dependent functions presented in this paper.

The same idea of an implicit state in terms of a new mathematical struc-
ture, d-oid (dynamic object identity), is given in [22, 23]. A d-oid is a set of
instant structures (e.g., algebras) and a set of dynamic operations (transfor-
mations of instant structures with a possible result of a definite sort). Here
transition rules of Gurevich machines and modifiers of [16] are replaced with
dynamic operations. The approach is highly associated with object-oriented
data representation. With this purpose, algebra elements are considered as



118 A.V. Zamulin

objects supplied with unique identifiers preserving object identities in the
process of algebra transformations. The approach deals with models, e.g.,
it assumes that sorts (like in a conventional Gurevich machine) can’grow
and shrink, and do not address the issue of specifying the class of such
behaviors, which is (like in [16]) our aim. We also doubt that a dynamic
operation producing a side-effect (i.e., an operation both transforming an
instant structure and yielding a result) and resembling a side-effect function
in programming languages should be part of a specification language.

A multimodal logic MLCM (Modal Logic of Creation and Modification),
which is a variant of dynamic logic, is used in [24] to formalize reasoning
about evolving algebras. Another formalism for the formal definition of
Gurevich Machines (Evolving Algebras in the paper) based on Di-algebras
is suggested in [25]. These papers are just two other formalizations of the
Gurevich’s idea of evolving algebras.

Dynamic abstract types are introduced in [26, 27]. In [26], a dynamic
abstract type consists of an abstract data type and a collection of dynamic
operations; four levels of its specification are proposed: value type specifi-
cation, instant structure specification, dynamic operation specification, and
higher-level specification. The first two levels mainly correspond to alge-
braic specifications of abstract data types with fixed and loose semantics,
respectively. The specification of the third level is a suitable extension of
algebraic specification to define transformations between instant structures.
The specification of the fourth level includes higher-level dynamic genera-
tors and dynamic operations for update, composition and communication
of different instances of dynamic abstract types. In [27], no direct definition
of a dynamic abstract type is given. Instead of this, formal definitions of a
static framework and of a dynamic framework over a static framework are
given. These papers are closely related in the sense that while the first one
gives an informal proposal, the second one proposes concrete mechanisms of
- static and dynamic frameworks according to the approach stated in (22, 23].
In contrast to this approach, we are still satisfied with static data types
which taken together with dynamic functions provide a simple and powerful
mechanism for the formal definition of dynamic systems.

13. Conclusion and further work

An approach to combining static type-structured algebraic specifications,
Gurevich Machines and algebraic specifications with implicit state is pro-
posed in the paper. It has resulted in Typed Gurevich Machines using fully
specified data types and static functions in the process of creation and use
of dynamic functions. The facilities include concrete and generic data types,
type classes, independent concrete and generic functions, procedures, and

- .
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transition rules. The use of well-specified data types has allowed us to pro-
pose the exclusion of such a “strange” transition rule as import constructor
(1] serving to extend a universe with a new element. At the same time it
is proposed to include a tagcase transition rule which is highly useful in
operations with objects of union types. The proposal does not prohibit the
inclusion of some other transition rules like Elect, Collect, and Choose
[28].

The structure of a specification resembles the structure of a program
written in a modern programming language: static part, where specifica-
tions of data types and static functions are counterparts of data type and
function definitions, and dynamic part, where transition rules are counter-
parts of imperative statements. This gives good chances for the specification
language (which can be called an abstract imperative language) to be ac-
cepted by the system designing/programming community. A careful choice
of a set of transition rules and specification constructs is still needed before
a concrete specification language can be proposed. A move to it is demon-
strated by the extension of the basic set of transition rules given in [1] with
sequential updates [24] and a kind of for-loop [29].

The approach presented is based on static signatures, which means that
all algebra transformations are done within the same signature. One of the
possible directions of the future work is the introduction of signature trans-
forming operations with corresponding algebra extension (addition of new
data types and/or functions) or reduction (deletion of existing components).

Acknowledgements. The author thanks Giuseppe Del Castillo, Philippe Kut-
ter, and Felix Cornelius for lengthy discussions of the subject and helpful
comments on drafts of earlier versions of the paper.
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