Joint NCC & IIS Bull., Comp. Science, 8 (1998), 101-127
© 1998 NCC Publisher

Object-Oriented Specification by Typed
Gurevich Machines*

A.V. Zamulin

An approach to the object-oriented specification by typed Gurevich machines
is proposed in the paper. The approach is based on considering an object update
as a transition from one algebra of a given signature to another of the same signa-
ture. Each object possesses a state and a unique identifier; the state of a mutable
object can be updated, the state of a constant object cannot be updated. An al-
gebra provides two sets of unique identifiers for each ob ject type: a set of mutable
object identifiers and a set of constant object identifiers. An object type signa-
ture introduces the observers of the corresponding set of objects serving to inspect
object states and mutators serving to initialize and update observers of mutable
objects. Transition rules of a typed Curevich machine are proposed as a means
of object specification. The specification methodology is quite straightforward: an
object initialization or modification by means of a mutator is expressed in terms of
updates of the object’s observers.

1. Introduction

The aim of this paper is to extend and adapt the mechanism of typed Gure-
vich machines [1] to provide an object-oriented style of the specification of a
complex dynamic system. Following [2], we understand an object as a com-
plex entity having a unique identifier and state which changes during the
object’s life. An object’s state can be initialized by a number of intitializ-
ers, updated by a number of mutators and viewed by a number of observers
(which are instances of methods). Objects can be created as soon as they
are needed; they can be shared, passed as function parameters, compared
for equality and sameness. In addition to mutable (variable) objects whose
state can evolve with time, constant (immutable) objects which retain their
state until they are destroyed should be allowed. An object can belong to
several object types according to the IS-A relationship. Thus, we follow the
typical paradigm of object-oriented imperative languages like C** in con-
trast to approaches treating objects from a purely functional point of view
[3]. '

The motivation of this work stems from the author’s dissatisfaction with

*Partially supported by the Russian Foundation for Basic Research under Grant 98—
01-00682.

102

some attempts to give a classical algebraic foundation of the object-oriented
programming paradigm [4, 5, 6]. In contrast to a value of a conventional data
type, an object is generally a dynamic entity whose state evolves with time.
Although the author’s experience with formal definition of the programming
language Oberon [7] has shown that the state can be modeled by a suitable
data type in the framework of conventional algebraic specifications, this
experience has also shown that such a modeling is quite artificial and tedious.
A similar observation is noted in [8]. Therefore, a technique for modeling
dynamic systems is called for.

The approach followed in the paper is mainly based on Gurevich’s work
on abstract state machines [9, 10] and effected by the works on algebraic
specificatiohs with implicit state [8, 11], d-oids [12], dynamic abstract types
[13]. The paper is organized in the following way. Type-structured specifica-
tions representing the static part of a dynamic system are informally intro-
duced in Section 2. Object-structured signatures and relationships among
them are defined in Sections 3 and 4, respectively. Object-structured al-
gebras are introduced in Section 5. The construction and interpretation of
terms of an object-structured signature are discussed in Section 6. Transi-
tion rules serving as a tool for object type specification are defined in Section
7, and object-structured specifications themselves are defined in Sections 8
and 9. Some related work is discussed in Section 10, and some conclusions
and directions of further work are outlined in Section 11.

2. Type-structured specifications

The specification of any state (instance algebra) of a dynamic system is
a typical many-sorted algebraic specification. Therefore, any specification
language whose semantics is a class of many-sorted algebras is suitable for
our purpose. However, to make the specifications of static entities (viz. data
types) and dynamic entities (viz. objects) as similar as possible, we prefer
to work with type-structured algebraic specifications.?

Let ¥ = (TYPE,Q), where TY PE is a set of (data type) names and
is a set of function symbols each indexed with a function profile (u, s), such
that w € TYPE* and s € TY PE, be a many-sorted signature. We consider
¥ to be structured in such a way that each name 7' € TY PE is associated
with a set of function symbols wy,; € §, so that each w,, in this set uses
T’ as an element (elements) of u and/or as s. We call such a signature a
type-structured signature, and we call an association of a data type name
and a set of pertinent function symbols a data type signature.

An algebra of a type-structured signature is built in the conventional way

*Fundamentals of structured specifications can be found in [14]; type-structured spec-
ifications are formally introduced in [15].

103

by associating sets of elements with names in TY PE and (partial) functions
with function symbols in Q. Terms are also built conventionally. If A is a 3-
algebra, then |A| is the carrier of A and Ay is the set of elements associated
in A with the name T' € TY PE. .

A data type signature supplied with a set of axioms is a data type spec-
ification. To express the definedness of a term of a type-structured speci-
fication, we usé a special semantic predicate D, such that D(t) states that
the term ¢ is defined in an algebra A iff the interpretation of the term, 4,
produces some object in A.

Example.

type SegNat = spec

[empty: SeqNat;

append: Nat, SeqNat — SeqNat;

head: SeqNat — Nat;

tail: SeqNat — SeqOfNat;

has: SeqNat, Nat — Boolean;

is_empty: SeqNat — Boolean]

{forall x, y: Nat, s, s1: SeqNat.

dom head(s): —is.empty(s); dom tail(s): —is_empty(s);
is_empty(empty) == true; is_empty(append(x, s)) == false;
head(append(x, s)) == x; has(empty, &) == false;
has(append(y, s), x) == x =y | has(s, x); tail(append(x, s)) == s}.

Notation. In the above specification, the data type signature is enclosed in
square brackets, and the set of axioms is enclosed in curly brackets (two parts
of an axiom are equated by the symbol ?=="); the clause dom specifies the
domain of a partial function: in a domain specification dom ¢ : b, D(t) holds
if and only if b evaluates to true; for example, head(s) is defined only if s is
not empty.

We assume in the sequel that any specification includes the conventional
specifications of the data types Nat and Boolean.

3. Object-structured signature

Let X' = (TY PE, Q), where TY PE is a set of sort (type) names and 2 is
a set of operators indexed with operation profiles constructed with the use
of names from TY PE, be a many-sorted signature. An object-structured
signature over X' is defined in the following way. Let

* OTYPE be a set of names (of object types) such that TY PE N
OTY PE = @;

104

e OTY PE® be an extension of OTY PE created in the followiﬁg way:
if '€ OTY PE, then T, Var(T),Const(T) € OTY PE®;

e an observer profile be either T or T1,...,T, — T, where T, T; €
TYPEUOTYPE®,i=1,...,n;

e a transformer profile be either Th, ..., Ty or T,..., T, — T or — T,
where T, T; e TYPEUOTY PE°,i =1,...,n;

e an atiribute signature be a pair at : T', where at is a name and T €
TYPEUOTYPE"®;

e an observer signature be a pair b : OP, where b is a name and OP is
an observer profile;

e a transformer signature be either m or m : M P, where m is a name
and MP is a transformer profile.

Then an object type signature is a set of attribute signatures, observer
signatures, and transformer signatures (called component signatures in the
sequel).> An object-structured signature X is a tuple (X', OTY PE, 0®, int°),
where O® is a set of object type signatures and int° is a function mapping
OTY PE into O®. For any T € OTY PE and o¢ € O®, we say that o¢ is
marked with T if int®(T) = o¢.

Notation: we introduce an object type signature with a keyword class,
sets of attributes, observers, and transformers are preceded by keywords
attribute, observer, and transformer, respectively. The function int° is
represented as a set of pairs object type name = object type signature.

The following examples introduce the signatures of a recursive object
type and several tuple-structured object types (note the difference in the
signatures of the data type "SeqNat” and object type "SeqOfNat”):

class SeqOfNat = spec
[transformer empty; — construction of an empty sequence
append: Nat; — appending a natural number to a sequence
delete_head: — Nat; — deleting the head of a sequence
attribute head: Nat; — fetching the head of a sequence
tail: SeqOfNat; — fetching the tail of a sequence
is_.empty: Boolean; — checking whether a sequence is empty,
observer has: Nat — Boolean; — checking for the presence of an element

class Date = spec
[transformer create_date: Nat, Nat, Nat; — creating a date
attribute day, month, year: Nat] — fetching the value of day, month or year;

3Note that the technique of profile definitions here more resembles the corresponding
technique of object-oriented programming languages than that of algebraic specification
languages; this is natural since an object is not a value.

105

class Person = spec
[transformer create_person: String, Const(Date);
marry: Var(Person);
divorce;
attribute name: String;
spouse: Var(Person);
birth_date: Const(Date)];

class Rectangle = spec
[transformer default_rectangle; — default rectangle
create: Nat, Nat; — creating a new rectangle
attribute length, width: Nat — getting rectangle parameters;
observer area: Nat — computing the rectangle’s area;
equal: Rectangle — Boolean] — comparison for equality.

From the intuitive point of view, a tuple of attributes defines an object’s
state, an observer is a function computing something at a given object’s
state, and a transformer is a procedure creating or changing an object’s state.
Attributes are often called instance variables and observers and transformers
are often called methods in programming languages.

4. Relationships between object type signatures

Let us consider the following object types:

class Point = spec
[attribute x, y: Int;
transformer create_point: Int, Int;
default_point;
move: Int, Int;
observer get_x: Int;
get_y: Int];

class Colorpoint = spec
[attribute x, y: Int;
color: Color;
transformer create.point: Int, Int, Color;
default_point;
set_color: Color;
move: Int, Int;
observer get_x: Int;
get_y: Int;
get_color: Color].

106

We can see that the signature of Colorpoint practically inherits the sig-
nature of Point and adds some extra attributes, transformers and observers.
It is intuitively clear that anywhere a point object is needed, a colorpoint
object can be used. Therefore, a supertype-subtype relation between these
two object types can be set.

It is tempting to state that an object type T} is a subtype of an object
type T if the signature of T is included in the signature of T}. However,
this is not the case. There is a small difference in the profiles of the trans-
formers create_point. Intuitively, it is clear that create_point does not refer
to "proper” transformers it actually refers to initializers used to set some
initial values in a point or colorpoint object. Since a colorpoint object has
an extra attribute, the transformer has an extra parameter.

To overcome the problem, we divide the set of transformer signatures
in two sets, initializer signatures and mutator signatures and rewrite the
previous two examples in the following way:

class Point = spec
[attribute x, y: Int;
intitializer create_point: Int, Int;
mutator default_point;
move: Int, Int;
observer get x: Int;
get_y: Int];

class Colorpoint = spec
[attribute x, y: Int;
color: Color;
intitializer create_point: Int, Int, Color;
mutator default._point;
set_color: Color;
move: Int, Int;
observer get_x: Int;
get_y: Int;
get_color: Color].

We can now clearly see that the signature of Point is included in the
signature of Colorpoint if initializers are not considered?.

Definition. Let Att(T), Obs(T'), and Mut(T') be, respectively, the sets of
attribute, observer, and mutator signatures in the object type signature
marked with T'. Then an object type T} is a subtype of an object type T

“In fact, default_point are also intitialisers; however, we can include each of them in
the set of mutators since they have the same profile.

107

(T is a supertype of T}) iff Att(T) C Att(Ti) and Obs(T") C Obs(T;) and
Mut(T) C Mut(Ty).

In this way, we want the subtype to have more components in comparison
to the supertype; thus, a subtype object can be considered as a supertype
object when needed. If Tj is a subtype of T, we write Ty < T when we
want to stress that Tj and T are different, and we write Ty < T when we
assume that both T1 and T are the same type (an object type is its subtype
by definition). :

We do not put any restriction on the number of types a given object
type can be a subtype of; thus, both single and multiple inheritance are
possible. However, we put a restriction on component signatures to avoid
clashes between several supertypes.

Definition. An object-structured signature is hierarchically-consistent if
for any object type T there are no two supertypes 7y and T} having the
saine component signature.

We consider only hierarchically-consistent signatures in the sequel. In
a concrete specification language some special means could be provided to
resolve clashes between several supertypes as it is done in some programming
languages; the discussion of these means is out of the scope of the present

paper.

Definition. An object type T is called a root type for an attribute at :
Ty,...,T, —— T (at is respectively called a root attribute of T) if there is
no Ty, such that T < Tj and (at: Ty,..., T, — T') € Att(T}).

The subtype-supcrtype relationship as defined above allows us to con-
struct an algebra where subtype objects have components (excluding initial-
izers) sharing the same name and profile with the corresponding components
of a supertype object. This gives us the possibility to regard a subtype ob-
Ject as supertype object while permittimg the use of the subtype methods
(late binding).

5. Object-structured algebras

5.1. Instance algebras

An instance algebra represents some state of a number of objects. The up-
date of an object’s state as well as the creation of an object leads to the trans-
formation of one instance algebra into another. Let A’ be a ¥'-algebra called
a static algebra (this algebra provides a set of data type implementations and
static functions defined over them). An instance algebra, A, of the signature

108

¥ = (¥,0TY PE,0%,int°) is built as an extension of A’ in the following
way:

1. A set of elements, Ay,(T), and a set of elements, Agongi(T), SuCh that
Avar(t) N Aconstir) = O, are assigned to each Var(T), Const(T) €
OTY PE°, respectively, so that if T < T, then Aygn7) C Ayar(r)
and AC'onet(T) - AConst(T').

2. A set of elements A7 = Aygr(T) U Aconst(r) is assigned to each T' €
OTY PE; these elements are called (mutable, constant) object identi-
Sers. Note that the set of object identifiers of a supertype contains
object idertifiers of all its subtypes.

3. A partial function at% : Ap — (Amny,...,Ar, — Agv) is associated
with each root attribute name at : Ty,...,T, — T" in an object
type signature marked with T'; such a function is called ar attribute
function. A non-root attribute name at : T1,...,Tp — T' in an
object type signature marked with Ti, such that T3 < T', is mapped
to the same function. In this case, ai:é1 is an alternative name of the
functicn. One can say that a supertype attribute function is inherited
in each of its subtypes. If id € A, then at#(id) is an attribute of id.

Thus, an instance algebrz is a kind of order-sorted algebra [16]. An
object is a pair (id, obs) where id is an object identifier and obs is a tuple of
its attributes called object’s state. We write sometimes ”object id” meaning
an object with the identifier id. An object i¢d is mutable if id € Ay, () and
an object id is corstant if id € Aconsy(r). If id € Aygr(T), an update of an
attribute of id leads to the change of its state.

For the object type Rectangle introduced above, an object identifier
could be represented, for example, by the address of a location capable to
store tuples of length and width values, the attribute functions tengthﬁmaﬂ gle

and widthﬁmmg!e would map location addresses to natural numbers, the ob-
server area.ﬁe ctangle would compute the area of a rectangle, and the observer

equalﬁe ctangle would compare the contents of two locations for equality.
To define the interpretation of observer and mutator names, we need
firstly introduce the notions of dynamic system and update set.

5.2. Dynamic system

We discussed above only functions defined inside the frames of data (object)
types. In a more general case, an instance algebra can possess a number of
"independent” functions and constants defined outside of a data type or
object type frame. Such functions and constants are called dynamic and
can be different in different instance algebras. Some procedures transforming
one instance algebra into another by updating objects and dynamic functions

109

(constants) can also be defined. Thus, we define a dynamic system signature
as an extension of an object-structured signature: DX = < %, DF >, where
¥ is an object-structured signature and DF is set of function® and procedure
signatures defined in the same way as attribute and transformer signatures
are, respectively, defined above.
Notation: we introduce dynamic functions and constants with the key-
word dynamic and procedures with the keyword proc.
Examples.
dynamic a_point: Var(Point);
dynamic a_colpoint: Var(Colorpoint);
dynamic matrix: Nat, Nat — Nat;
proc swap: Var(Person), Var(Person);

For any dynamic system signature DX = < X,DF >, a Y-algebra A is
extended by an element ¢? € A associated with the constant signature ¢ : T
from DF and a (partial) function f4 : A, x...x A, — Ar associated with
the function signature f : Ti,...,T, — T from DF. Terms constructed
with the use of constant or function names are interpreted by invocations
of the corresponding constants or functions. In the sequel, mentioning an
instance algebra A, we mean a DX-algebra.

Definition. Let OID be a set of object identifiers, and |D(A')| be a set
of instance algebras satisfying the following conditions: (i) all algebras in
|D(A')| have the same static algebra A’, and (ii) if T € OTYPE and A
and B are two D¥-algebras, then both A7 and By are subsets of OID (i.e.,
objects identifiers are always chosen from the same set). Then an object-
oriented dynamic system D(A') of signature DX consists of OID, |D(4')], a
set of algebra modifiers (defined below), and a set of observers, transformers,
and procedures (defined below).

Note that different instance algebras of the same D(A') can generally
have different sets of object identifiers and different sets of attribute func-
tions, which means that the sets of objects can be different and/or an object
with the same identifier can have different states. At the same time, data
type implementations and static functions are the same in all instance alge-
bras of the same D(A').

5.3. Function updates

One instance algebra can be transformed into another by algebra modi-
fiers. Two algebra modifiers serve for algebra transformation by means of

5A function without arguments is called a constant in the sequel.

110

function updates. Let algebra A have a partial function with the signature
_f :T1,...,Tn — T.

Definition. A function update a in A is a triple (f, {(a1,...,as),a), where
a € Ar,a; € Ar,i = 1,...,n. The modifier ul applied in A to an
a = (f,{a1,...,an),a) transforms A into a new algebra B in the follow-
ing way: fB(ai,...,8,) = a and fB(@) = f4(a) for any tuple @ different
from (ay,...,an).%

Thus, the modifier 1 either redefines a function at a certain point or
defines it at a certain point if it has not yet been defined at this point. For
example, 1 applied to a = (matriz, < 1,1 >, 2) produces matriz(1,1) = 2.

Definition. A function update 8 in A is a pair (f,(a1,...,a,)), where
a; € Ar,,i =1,...,n. The modifier u2 applied in A toa 8 = (f, (a1,...,an))
transforms A into a new algebra B in the following way: fZ is undefined for
(ai,...,a,) and fB(a@) = f4(a) for any tuple a different from (a1, ...,an).

Thus, the modifier 42 undefines a function at a certain point if it has been
defined at this point. For example, u2 applied to 8 = (matriz,< 1,1 >)
makes matriz(1,1) undefined.

5.4. Creation of objects

The modifiers 1 and 2 can update the states of existing objects, they do
not contribute to the creation of new object identifiers. A special algebra
update serves for creating a new object identifier.”

Definition. Let T be an object type name. An update 4 in A is a pair
(Var(T),id) ((Const(T),id)), where id € OID. The modifier 43 applied in
A to § transforms A into a new algebra B so that By gy = Ayerrr) U{id}
(BCansf.(T') = ACOﬂat(T’) U {'&d}) for all T" such that T' < T

Thus, the modifier 43 expands the set of mutable (constant) object iden-
tifiers of a certain object type and all its supertypes. For example, if id is
an object identifier, then p3 applied to § = (Var(Colorpoint),id) will
change the current algebra A by inserting id into the sets Ayqr(colorpoint)
and Ayar(Point):

9A strong equality is meant here and in the sequel.

"We do not consider the problem of object deletion since it more concerns the memory
use optimization, which is an issue of a programming language rather than an issue of a
specification language.

111

5.5. Update set

Definition. Let v be a set of function updates. The set v is consis-
tent if it does not contain any two contradictory function updates of the
following kind: al = (f,(a1,...,a,),a), a2 = (f,(a1,...,ap),a’), and
B = (f,{a1,...,a,)), where a # a' (two contradictory function updates
define the function differently at the same point). The mutator u applied in
A to a consistent vy transforms A into a new algebra B by the simultaneous
application of ul to all @ € 4, u2 to all B € v, and u3 to all § € 4. If v is
inconsistent, the new algebra in not defined. If < is empty, B is the same as
A. For example, u applied to an update set

{(matriz, < 1,1 >,2), (matriz, < 2,2 >), (Var(Colorpoint), id)}
will force matriz(1,1) to produce 2, matriz(2,2) to be undefined, and the
sets of identifiers of Var(Colorpoint) and Var(Point) to contain id. At the
same time, the result of applying x to an update set

{(matriz, < 1,1 >,2), (matriz, < 1,1 >), (Var(Person),id)}
is not defined.

The operation LI performs sequential union of two update sets. Let v; and
Y2 be two consistent update sets, update; be one of the following updates:
ar = (f,{a1,...,a,),a), B1 = (£, (aq,... y@n)), and let update; be one of the
following updates: a; = (f, (ay,... yan),a'), B2 = (f,(a1,...,a,)), where
a#a. Thenuey Uy iffucy orueq, except the following cases: if
update; € 1 and updates € 72, then update, € v1 Uys.

Thus, in the sequential union of update sets, each next update of a func-
tion at a certain point waives each preceding update of the function at the
same point. If there are sequential creations of object identifiers of the same
type, the set of object identifiers of this type will be expanded accordingly.
Example:

{(matriz,< 1,1 >,2), (matriz,< 2,2 >,0), (Var(Person),id)} U
{(matriz,< 1,1 >,3), (Var(Person),idl)} =

{(matriz, < 1,1 >,3), (matriz, < 2,2 >,0), (Var(Person),id),
(Var(Person),idl1)}.

We denote by I' the set of all update sets in D(A’). We also introduce
a notion of pair, < ,a >, where v is an update set and a is an algebra
element. The function fst applied to < 7¥,a > produces v, and the function
snd applied to < v,a > produces a.

5.6. Observers, transformers and procedures

We can now give semantics of observer, transformer, and procedure names.
Given an algebra A € |D(A4')|, we associate:

112

e with each observer signature b:Ti,...,T, — T' in an objert type sig-
nature marked with T', a partial map (called an observer), by D(4 J), asso-
ciating an element a' € Ay with each pair < 4,< id,ay,...,a, >>,
where A € |D(4')|, id € Ar, and a; € Ar,i = 1,...,n. We write
bg(A')(A, < 1id,a1,...,a, >) for the apphca.t:on of bD(A) to
< A, <idyay,...,an >>;

e with each transformer signature m : Ty,...,T, — T’ in an ob-
ject type signature marked with T, a partial map (an ititializer or
mutator), T(A), associating an update set ¥ € I' and an element
a' € A with each pair < 4, < id,ay,...,a, >>, where A € |D(A")],
id € Apyand a; € A7, i=1,...,n. Only an update set is associated
with the pair when m has elther no profile or the profile Ty,...,T),.
We write mT()(A, < id,ai,...,an >) for the application of my D(4)
to < A, < 1id,ai,...,an >>.

Note that if T < T' and both T and T" have an observer or transformer
with the name f, different maps fr D(A) and I D(4) can be built in D(A").
This corresponds to the principles of overloading and overriding typical of
object-oriented programming paradigm.

It is defined that a transformer produces a set of (function) updates
serving for changing the state of an object with the identifier id (i.e., chang-
ing at least one attribute of id), which gives us a possibility to compare
the updates made by two transformers (we would not be able to do this
if transformers produced new algebras as dynamic operations do in [12]).
Note that although a transformer can in principle be applied to a constant
object, this facility is practically used only for the initialization of constant
objects since one cannot construct a term indicating an update of a constant
object (see next section). Note also that one can define a transformer or
procedure changing the state and producing a value. Thus, an operation
like pop popping a stack and producing its top element can be defined.

6. Terms and their interpretations

There are several rules for creating terms of object types. Moreover, a special
kind of term called transition term is introduced to denote transitions from
one algebra to another. Interpretation of these terms is done with the use
of update sets. A mechanism of message passing is provided in this way.
Let DY = < ¥',0TYPE,0%®,int°, DF > be a dynamic system signature,
D(A') be a dynamic system, a DX-algebra A € |D(A')| be an extension of
a Y'-algebra A’, X be a set of TY PE-sorted variables and Y be a set of
OTY PE°-sorted variables (we denote the T-subset of the set by Y7). Then
we define the set of DX-terms, T(DX, X,Y), as an extension of the set of

113

¥'-terms, T'(¥', X). Given a valuation function u : Y — A, we also define
the interpretation ¢4 of a term t € T(D%, X,Y).

1.

Ift € T(X', X), then t4 = t4", A term of a many-sorted signature is
interpreted conventionally.

. If y € Y, then y is a term of type T. Interpretation: y* = u(y).
. If T € OTY PE, then both a term of type Var(T') and a term of type

Const(T) are terms of type T. Interpretation: if (¢t : Var(T))4
evaluates to an id € Aygy(r) or (t : Const(T))4 evaluates to an id €
Aconst(T), then the same id is the interpretation of (¢ : T).

If Ty < T and t is a term of type T}, then ¢ and ¢(T') are terms of type
T, too. Interpretation: if ¢ evaluates in A to an id € Ap,, then by
definition id also belongs to A1 and can be used as an object identifier
of type T'. The first form of the term is used in the context where a
term of type T is needed, wkile the second form is used when ¢ serves
for the invocation of a mutator defined in the type T8.

If there is no T such that 75 < T} and t* € Ar,, then the type T} is
called the static type of t and T is called the dynamic type of t.

. If t is a term of type T and T; < T, then (T}) is a term of type

T;. Interpretation: #(T))4 = t4 if t4 € Aq; t(T1)4 is undefined
otherwise. This is a typeguard like that one in Oberon [17].

. If t is a term of type T, then I(¢) is a term of type Boolean. Inter-

pretation: D(t)4 = true if t is defined in A, and D(¢)4 = false4
otherwise.

If at : T4,...,T, — T' is an attribute signature from the object
type signature marked with T, ¢;,...,t, are terms of types T1,..., Ty,
respectively, and ¢ is a term of type T, then t.at(ty,...,t,) is a term
of type T' called an attribute value. Interpretation:
t.att = atf(t4)(tf, ..., 1)

if t and each t;, i = 1,...,n, are defined in A and at# is defined for
< tAtf,... t4 >; tat(ty,...,t,)4 is undefined otherwise. Thus, an
attribute value is produced by the corresponding attribute function.

.Ifb:Ty,...,T, — T" is an observer signature from the object type

signature marked with T, t,,...,t, are terms of types T},...,T,, re-
spectively, and ¢ is a term of type T, then t.b(¢y,...,t,) is a term of
type T" called an observer call. Interpretation: if T is the static
type of ¢, then

tb(ts, ... ta)A = b (A, < tA 84, 1A >)

8The last form generalizes the construction super often used in object-oriented PLs.

114

10.

if t and each t;,i = 1,...,n, are defined in A and bgl(A‘) is defined for
<A <t ... 22 >>; tb(ty,. .., t,)4 is undefined otherwise.

Thus, the interpretation of an observer call leads to the invocation of
the observer associated with b in the static type of the term ¢ with
the corresponding object identifier as argument and with some other
arguments if any. In this way, dynamic (late) binding of an observer
name with the ccrresponding observer is provided.

Ifm:T,..., T, — T' is a transformer signature from the object

type signature marked with T, ¢, ...,t, are terms of types Ty, ..., Ty,
respectively, and t is a term of type Var(T), then t.m(ts,...,t,) is
a transition term of type T" (a transition term of type void if m has
profile T3, ..., Ty,) called a transformer (initializer, mutator) call. This
kind of term serves for indicating ar update of a mutable object (one
cannot update a constant object).

Interpretation 1. If m is an intializer name, then

e if T is the static type of ¢, then
tan(ty,. .o ta) A =mEW) (A, < t4 44, A >)
if ¢ and each t;,i = 1,...,n, are defined in A and m2“) s
defined for < A4, < t4,tf,...,t4 >>. Otherwise t.m(t1,...,t,)4
is undefined.
o if the static type of ¢ is different from T, then t.m(ty,...,t,)? is
undefined.

Thus, the interpretation of an initializer call leads to the invocation
of the indicated initializer with the corresponding object identifier as
argument and with some other arguments if any. Note that one cannot
initialize an object if its static and dynamic types are different.

Interpretation 2. If m is a mutator name and T3 is the static type
of ¢, then
DA’
tm(ts,. .. tn)4 = ma) (4, < 14,88, A >)

if ¢ and each #;,i = 1,...,n, are defined in 4 and mp") is defined for

< A, <t4 ..., t4 >>. Otherwise t.m(t1,...,t,)* is undefined.
Thus, the interpretation of a mutator call leads to the invocation of
the mutator associated with m in the static type of the term ¢ with
the corresponding object identifier as argument and with some other
arguments if any. In this way, dynamic (late) binding of a mutator
name with the corresponding mutator is provided.

If T is an object type name, then new.var(T) is a transition term of
type T'. Interpretation:

115

new var(T)4 =< {8},id >,
where id € OID, § =< T,id > and id ¢ Ar for any T € OTY PE.
Thus, the interpretation of this transition term leads to the creation of
a new mutable object identifier with totally undefined attribute func-
tions. Note that the interpretations of several terms new_var(T)4 in
the same instance algebra A always produce the same ob ject identifier
id.

11. If T is an object type name, m : Ti,...,T, is a transformer signature
from the object type signature marked with T,ande;,...,e, are terms
of types T1,..., Ty, respectively, then new_const(T'm(ey,...,e,)) is a
transition term of type T. Interpretation. Let B be an algebra
produced by u3(4,d), where § = < Const(T),id >, where id € OTD
and id ¢ Ap for any T € OTY PE. Then

new_const(T'm(e1, ..., en))4 =< {§} Uv)),id >,
where v is an update set such that u(B,) = mg(A')(B, id,ef ..., ed).
If at least one of ey, ..., e, is not defined in A, the result is undefined.

Thus, the interpretation of this transition term leads to the creation
of a new constant object identifier provided with attributes defined
by the transformer call indicated. Note that the interpretations of
several terms new_const(T"m(...))4 in the same instance algebra A
always produce the same object identifier id, which leads to an error
if the initializations are different.

7. Transition rules

Algebra updates are specified by means of special transition rules®. A tran-
sition rule is a special kind of transition term. It is applicable only to a
dynamic function (constant) which can evolve from one algebra to another.
In addition to the dynamic functions (constants) introduced in Section 5.2,
an attribute function of a mutable object is also a dynamic function (con-
stant). This means that an attribute ¢t defined in an object type T is a
dynamic function only if it is applied to a term ¢ of type Var(T) (t cannot
denote a constant object). We usually write ”transition rule” (or simply
"rule”) for “transition term of type void”. The semantics of transition
terms is defined in terms of update sets (and values) produced.

7.1. Basic transition rules

Definition. Let f: T},...,T, — T be a dynamic function signature, t;,
i =1,..,n, be a ground term of type T} and ¢ be either a ground term of

®The set of transition rules proposed in the paper is based on the set of basic rules of
[9] and affected by [8].

116

type T or a transition term of type T. Then

f(t1,.-ptn) ==t and f(t1,...,tn) := undef
are transition rules called primitive update instructions.

Interpretation 1. If A is an instance DX-algebra, t;,# = 1,...,n, is defined
in A and t is a term of type T, then
' (f(t1, .- tn) := t)A = {a} if t is defined in A,
(f(t1, - tn) := t)A = {B} if t in not defined in A,
(F(t1, s tn) := undef)? = {8}, where
a = (fs< tf:'--:t# >!tA) andﬁ = (f)< tfi"'lt# >)'
If at least one of t;,# = 1,...,n, is not defined in A, then both
(F(t1,.ortn) == t)4 and (f(t1,...,tn) := undef)* are undefined.
Examples. Let ¢ be a dyramic constant of type Nat and f be a dy-
namic function from Nat to Nat. The execution of the transition rule
f(z) = f(=) +1
will transform an algebra A into an algebra B so that fZ(z4) = f4(z4)+1.
A transition rule
z := undef
will make = undefined in the new algebra.

If at : T' is an attribute signature from an object type T, o is a ground
term of type Var(T) and t is a ground term of type T”, then the transition
rules

o.at :=t and o.at := undef
are interpreted as at(o) := t and at(0) := undef.

Examples. Let c be a term denoting a mutable object of type Colorpoint
and v be a term denoting a mutable object of type Person. Then the tran-
sition rule

czi= 1
will transform an algebra A into an algebra B so that

mgolorpm'm(cA) = land mJB’oint(cA) =1
(recall that the same function is associated with both attribute names). A
transition rule

v.spouse := undef
will change the algebra in such a way that spouse2,,,,,(v4) is not defined.

If we have two dynamic constants, say ol and 02, of the same object

type T, then the transition rule:

ol := 02
will force both of them to have the same object identifier, which provides
for object sharing.

Interpretation 2. If ¢ is a transition term of type T, then

117

(f(t1, . tn) :=)4 = 41 Uy,
where v1 = fst(¢4) and v, = {f, < t4,... vt >, snd(t4)} (both parts of an
update instruction are evaluated in the same algebra); (f(t1,...,ts) :=)4
is undefined if at least one of Lti,i=1,...,n, is not defined in A.

Examples. Let dates and last_holiday be dynamic constants of types
Var(Date) and Const(Date), respectively. Then the execution of the tran-
sition rule:

dates := new_var(Date)
will create a new mutable object of type Date and assigns it to dates, and
the execution of the transition rule:

last_holiday := new_const(Date’create_date(1, 5, 1998))
will create a new constant object indicating a concrete date and assign it to
last_holiday.

7.2. Rule constructors

Compiex transition terms are constructed recursively from update instruc-
tions by means of several rule constructors, e.g., the sequence constructor,
set constructor, the condition constructor, guarded update, etc. We define
here only the sequence consiructor, set constructor, guarded update, and loop
constructors because the others have minimal relevance to the subject of the
paper (one can find more details in (1, 11, 10)).

Sequence constructor. If Ry, Ry,...,R, are transition rules and ¢ is
a term of type T, then seq Ry,R;,...,R,restend is a transition term of
type T and seq Ry, R;,...,R, end is a transition term of type void.

Interpretation. Let Ay, Ag, ..., A, be algebras, such that 4; = R{l,
Ay=RM, ... A, = RA™ 1, and let 7y, 7s, ... »In be update sets, such that
Ay = p(A,01), A2 = p(A1,72), ..., A, = #(An_1,7,). Then

seq Ry, R;,...,R, rest end? = < 7, t4n >,
seq Ry, Ry,...,R, end” = ,
where7=71U72U...U'yn. ‘

Thus, to execute a sequence of rules starting with an algebra A, it is
sufficient to create sequential union of their update sets and use it for the
transformation of A (which is equivalent to the sequential execution of the
rules one after another). If the rule contains a resulting expression, it is
evaluated in the resulting algebra.

The set constructor. If Ry,..., R, are transition rules and ¢ is a.term of
type T, then set Ry,...,R, res t end is a transition term of type T and
set Ry,..., R, end is a transition term of type void.

Interpretation. Let 4; = Rf,...,A,, = R4 and let Y1y.+-37n be

118

update sets, such that 41 = u{A,¥1),..., A4, = p(4,7,). Then
set R;,...,R, restend? = < v, t4 >,
set Ry,...,R, end? = v,
where y =y U...U"y.
In other words, to execute a set of rules, execute all of them in parallel
and unite the results. If the rule contains a resulting expression, it is evalu-
ated in the source algebra.

Example: Let z,y,z be dynamic constants of type Nat and f be a dy-
namic function Nat to Nat. Then the execution of a set of rules:

set f(z):=y,y := 2,2 := z end
will produce: fB(z4) = y4; yB = z4; B = 2A.
A special notation is introduced for the parallel update of all attributes of a
mutable object. Let T' be an object type with attribute names aty,...,atg,
o be a term of type Var(T) and ol be a term of type T. Then a transition
rule:

oti=o0l1%
is equivalent to:

set o.aly := ol.aty,...,0.at; := ol.at; end.

A guarded update instruction is a rule of the form if g then R, where R
is a rule.

Interpretation. Let R1 = if g then R. Then R14 = R4 if g4 = true4;
R14 = @ otherwise. In other words, execute the rule if the condition eval-
uates to true and do nothing in the opposite case.

Loop constructors. The guarded update together with the sequence con-
structor gives us a possibility to define some loop constructors. If R is a rule
and g is a Boolean term, then
while g do R and
do R until g
are transition rules.
Interpretation.
(while g do R)4 = (if g then seq R, while g do R end)4;
(do R until g)* = (seq R, if—g then do R until g)4.

7.3. Massive update

A massive update permits the specification of a parallel update of one or
more functions at several points. It has the following form:

forall z; : Ty,...,z, : T,,.R,
where 1, ..., z, are bound variables of types Ty,..., Ty, respectively, and R

119

is a transition rule having no free variables.
Interpretation. For all t; € T(DE)q,, ...,t, € T(DX)r,, where T(DZ)r,
is the set of ground D¥-terms of type T;,
(forall z, : Th,...,2, : T,.R)4 = U{(R[t1/21, ..., tn/zn])4}.
Example. Let f be a dynamic function from Nat to Nat. A transition
rule
forall z: Nat. f(z) := f(z) +1
is equivalent to the set of rules
{(f(®) :=f@®) +1) : t € T(DZ)nat}.
This means that f5(t4) = f4(t4) + 1 for all ¢ such that FA(t4) is defined.
The massive update allows us to interpret copying of complex attributes.
Thus if at : T1,...,T, — T', where n is greater than zero, is an attribute
signature in an object type T and o, ol are two objects of type Var(T'), then
the update instruction o.at := ol.at is interpreted as follows:
forall z; : Th,...,2, : T},. o.at(zy,...,z,) := ol.at(z,... ' Zp).

8. Dynamic system specification

If t; and t; are two D¥-terms of type T, then t; == t, is a static equation.
Let SE be a set of static equations. An instance algebra A is a model of SE
if it satisfies each equation in SE. Let |D(A’)| be the carrier of a dynamic
system D(A’), such that each algebra A € |D(A')| is a model of SE.

If ¢, and t; are transition terms, then t1 == t3 is a dynamic equation.
If t; and ¢, are transition terms of type T, then a dynamic equation holds
in D(A') iff for any algebra A € |D(A')| there is an update set v and a
value a of type T such that t‘f =<v,a>and t§ = < v,a >. Ift; and ¢,
are just transition rules, then a dyramic equation holds in D(4') iff for any
algebra A € |D(A')| there is an update set 7 such that tf! = v and t4 = .
This means that the transformation of 4 according to either ¢; or ¢3 should
produce the same algebra B.

If a dynamic equation de holds in D(A'), we say that D(A’) is a model
of de. A dynamic equation de is consistent if there is at least one model of
it. Example: if c1 and c2 are constants of two different types 11 and T3,
respectively, and ¢; and t, are terms of types T and T3, respectively, then
an equation

cl:=t; ==¢2:=1t,
is inconsistent since in D(A') the updates (cl,#;) and (c2,t2) are different.

If DE is a set of consistent equations, then D(A') is a model of DE if

each de € DFE holds in D(A4').

Definition. Let DY = < ¥/, OTYPE,0%,int°, DF > be an object-struc-
tured signature, < X', SE’ > be the specification of its static part, and each
o¢ € O® be accompanied with a set of static equations for each observer

120

name in o¢, a set of dynamic equations for each transformer name in og,
and a set of dynamic equations for each procedure name in DF. Then we
get a dynamic system specification, < DX E >. A pair < o¢, E°¢ > where
E°? i3 a set of equations associated with observer and transformer names
from o, is called an object type specification. A pair < P8, EP >, where ps
is a procedure signature from DF and EP* is a set of equations associated
with this procedure signature, is called a procedure specification.

Notation. In the following specifications, the set of equations is enclosed in
curly brackets; the clause dom specifies the domain of a partial function: in
a domain specification dom ¢ : b, ¢ is defined if and only if b evaluates to true.

Examples.

class SeqOfNat = spec
[mutator empty; — construction of an empty sequence
append: Nat; — appending a natural number to a sequence
delete_head: — Nat; - deleting the head of a sequence
attribute head: Nat; — fetching the head of a sequence
tail: SeqOfNat; — fetching the tail of a sequence
is_empty: Boolean; — checking whether a sequence is empty
observer has: Nat — Boolean; — checking for the presence of an elemeni)
{forall s, temp: Var(SeqOfNat), x: Nat. — set of universally quantified variables
dom s.delete_head: —s.is_empty;

— one cannot delete the head of an empty sequence
s.empty == set s.head := undef, s.tail := undef, s.is_.empty := true end;
s.append(x) ==

seq temp := new_var(SeqOfNat), - a new identifier for the tail is allocated
set s.head := x, - ”z” is now the head of the sequence
s.tail := temp,
s.is_empty := false,
tempt := st — attributes of "s” are assigned to its tail
end
end;
s.delete_head === set st := s.tailt res s.head end;
- "s” gets the attributes of its tail
s.has(x) == - s.empty & (s.head = x | s.tailhas(x))};

class Date = spec

[initializer create_date: Nat, Nat, Nat; — creating a date

attribute day, month, year: Nat — the value of a day, month or year]
{forall date: Var(Date), d, m, y: Nat.

date.create_date(d, m, y) ==

121

set date.day := d, date.month := m, date.year := y end};

class Person = spec
[initializer create_person: String, Const(Date);
mutator marry: Person;
divorce;
attribute name: String;
spouse: Person;
birth_date: Const(Date))
{forall p, pl: Var(Person), n: String, d: Const(Date).
dom p.marry(pl): =D(p.spouse) & —D(pl.spouse); - one cannot marry twice
p-create_person(n, d) ==
set p.name := n, p.birth_date := d, p.spouse := undef end;
p.-marry(pl) == set p.spouse := pl, pl.spouse := p end;
p.divorce ==
if D(p.spouse) then set p.spouse := undef, p.spouse.spouse := undef end};

class Rectangle = spec
[initializer create: Nat, Nat; — creating a new rectangle
default_rectangle; — default rectangle
attribute length, width: Nat — getting rectangle parameters;
observer area: Nat — computing a rectangle’s area; _
equal: Rectangle — Boolean; — comparison of rectangles for equality]
{forall r: Var(Rectangle), r1, r2: Rectangle, x, y: Nat.
r.default. rectangle == set r.length := 0, r.width := 0 end;
r.create(x, y) == set r.length := x, r.width := y end;
rl.area == rl.length * rl.width;
rl.equal(r2) == rl.length = r2.length & rl.width = r2.width}.

9. Object type specification methodology

To provide a variety of ways an object can be manipulated, we distinguish
between directly updatable attributes and indirectly updatable attributes. A
directly updatable attribute can be updated by a transition rule. For ex-
ample, in the object type Rectangle specified above, the attributes length
and width of an object s can be directly updated by transition rules like
s.length := z and s.width = Y. An indirectly updatable attribute can be
updated only by a transformer. For example, in the object type SeqO f Nat
specified above, the attribute head can be updated by mutators append and
delete_head.

Notation: we will introduce directly updatable attributes with the key-
word direct and indirectly updatable attributes with the keyword indirect.

122

Examples. Two of the previous four examples can be now rewritten in the
following way:

class SeqOfNat = spec
[mutator empty; — construction of an empty sequence
append: Nat; — appending a natural number to a sequence
delete_head: —» Nat; — deleting the head of a sequence
indirect head: Nat; — fetching the head of a sequence
tail: SeqOfNat; — fetching the tail of a sequence
is_.empty: Boolean; — checking whether a sequence is empty
observer has: Nat —» Boolean; — checking for the presence of an element]
{forall s, temp: Var(SeqOfNat), x: Nat. — set of universally quantified variables
dom s.delete_head: —s.is_empty;

— one cannot delete the head of an empty sequence
s.empty == set s.head := undef, s.tail := undef, s.is_empty := true end;
s.append(x) ==

seq temp := new_var(SeqOfNat), — a new identifier for the tail is allocated
set s.head := x, — "z” is now the head of the sequence
s.tail := temp,
s.is_empty := false,
temp? := st — attributes of ”s” are assigned to its tail
end
end;
s.delete_head == set st := s.tailf res s.head end;
— "3” gets the attributes of its tail
s.has(x) == — s.empty & (s.head = x | s.tail.has(x))};

class Rectangle = spec
[mutator default_rectangle; — default rectangle
create: Nat, Nat; — creating a new rectangle
direct length, width: Nat — getting rectangle parameters;
observer area: Nat — computing a rectangle’s area;
equal: Rectangle — Boolean; — comparison of rectangles for equality]
{forall r: Var(Rectangle), rl, r2: Rectangle, x, y: Nat.
r.default_ rectangle == set r.length := 0, r.width := 0 end;
r.create(x, y) == set r.length := x, r.width := y end;
rl.area == rl.length * rl.width;
rl.equal(r2) == rl.length = r2.length & rl.width = r2.width}.

o .
Definition. An object type is properly specified if any change of its state
produced by a transformer unambiguously defines the values of its
attributes.

Fact 1. An object type is properly specified if:

123

1) for each transformer, there is an equation relating a transformer call
to the values of the direct and indirect attributes of the caller (by
definition, an attribute value remains the same if a new value is not
assigned to it);

2) for at least one transformer, there is an equation relating a mutator
call to the values of all the direct and indirect attributes of the caller
(an object is fully initialized);

3) for each observer, there is an equation defining an observer call in

terms of values of direct and/or indirect attributes of the caller and/or
arguments if any.

The proof of the fact is self-evident.

Fact 2. A properly specified object type has a model.
Following Fact 1, the construction of such a model is a trivial task.

Here is an example of an object type specification with partially updated
attributes:

class Circle = spec
[initializer create: Real, Real, Real, Color;
mutator move: Real, Real;
resize: Real;
changeCol: Color;
indirect X, Y, radius: Real; - indirect attributes
col: Color - another indirect attribute]
{forall c: Var(Circle), x, y, r: Real, cl: Color.
c.create(x, y, r, cl) ==
set c.X := x, c¢.Y := y, c.radius := r, c.col := cl end;
c.move(x, y) == set c.X:=cX + x, c.Y := c.Y + y end;
— radius and color do not change ‘
c.resize(r) == c.radius := c.radius * r; - X, Y, and color do not change
c.changeCol(cl) == c.col := cl; - X, Y, and radius do not change}.

Note that the initializer create fully defines an object’s state, whereas
any mutator partially updates the state. However, each object state can be
put in one-to-one correspondence with a call of create.

10. Related work

Although the idea of modeling states as algebras is not very new and it has
been elaborated in some works in programming language semantics [19, 20,
21], the most related work is the evolving algebra approach of Gurevich [9],

124 -

algebraic specifications with implicit state of Dauchy and Gaudel (8], d-oids
of Astesiano and Zucca [12], and dynamic abstract types of Ehrig and Orejas
(13].

The evolving algebras approach has provided a mechanism for the tran-
sition from one state to another by means of transition rules resembling
imperative programming statements. As a result, a specification looks like
an imperative program, it is easier to understand and is executable. The
present work uses Gurevich’s transition rules as a means of object type
specification. :

The idea to represent states of a system by algebras and dynamic oper-
ations by transformations between them is also advocated by Dauchy and
Gaudel [8, 11]. Transformations are defined by means of so-called modifiers
which are counterparts of transition rules of Gurevich Machines. The main
contribution of the work is the proposition of a specification mechanism
for modifiers. This idea is used in the present work as the basis of object
mutator specifications.

The same idea of an implicit state in terms of a new mathematical struc-
ture, d-oid (dynamic object identity), is given by Astesiano and Zucca [12].
A d-oid is a set of instance structures (e.g., algebras) and a set of dynamic
operations (transformations of instance structures with a possible result of
a definite sort). Here dynamic operations serve as counterparts of transition
rules of Gurevich and modifiers of Dauchy and Gaudel. Algebra elements
are considered-as objects supplied with unique identifiers preserving object
identities in the process of algebra transformations. However, the approach
in question deals only with models and does not address the issue of speci-
fying the class of such behaviors, which is our aim. '

Dynamic abstract types are informally introduced in [13]. It is proposed
that such a type should consist of an abstract data type and a collection
of dynamic operations. Four levels of specification are outlined: value type
specification, instance structure specification, dynamic operation specifica-
tion, and higher-level specification. In contrast to this approach, our aim
is to separate strictly conventional data types and dynamic object types,
providing each of them with only one level of specification.

The idea of dynamic types is also investigated in [22]. Although no
" direct definition of a dynamic abstract type is given in that paper, it has
contributed by formal definitions of a static framework and of a dynamic
framework over a given static framework. The present paper proposes in
addition both a formal definition of a dynamic object type and an approach
to its formal specifjcation.

A simplified approach taking into account only mutable objects without
subtyping is proposed in [23]. These shortcomings are eliminated in the
present paper.

An extension of a temporal logic for specifying and reasoning about

125

object classes and their instances is presented in [24]. We are still satisfied
with a conventional many-sorted logic and have shown its applicability to
dynamic object specifications.

- Finally, a fundamental work [27], where an object is just a tuple of
methods (no notion of object identifier) and object updates are simulated
by method overrides, should be mentioned. In contrast to this work, we
prefer to have objects supplied with unique identifiers and to have permanent
methods for all objects of the same type, which better corresponds to the
conventional paradigm of object-orientedness and produces a specification
much better understood by a programmer.

11. Conclusion and further work

The main contribution of this work is the use of transition rules of an Ab-
stract State Machine (former known as Evolving Algebra) for the specifi-
cation of object types. For this purpose, an original algebraic model of an
object type has been elaborated. It has two outstanding features: it natu-
rally models the notions of object and object class in modern programming
languages, and it allows an object type to be specified in the manner resem-
bling the specification of conventional data types. Each object possesses a
state and a unique identifier. For each object type, a set of unique identifiers
is provided by an algebra of the corresponding signature. An object state is
represented by a number of updatable observers defined as functions from
object identifiers to values of some other (attribute) types. An object type
signature introduces the observers of the corresponding set of objects and
mutators serving to initialize and update observers of particular objects. An
advantage of the technique proposed is that an object specification is done
in an abstract and precise way, the specification is executable, and it is easy
to understand by programmers.

We create only an identifier sort for each object type in contrast to
[25, 26] where value sorts are also created. This significantly simplifies the
semantics of an object update and permits us to specify objects types with
mutual references. Constant objects in addition to mutable objects are
allowed. This facility helps us to model immutable objects admissible in
some programming languages (e.g., C**) and some data models.

A dynamic system is represented as a set of object-structured instance
algebras with operations transforming one algebra into another. The speci-
fication of such a system consists of specifications of data types representing
the static part of the system, object types representing the dynamic part
of the system, and independent constants, functions and mutators corre-
sponding to variable, functions and procedures of conventional imperative
languages.

© 126

We did not touch in this paper on such an important issue as generic
object types. This remains a subject of further research.

References

[1] A.V. Zamulin, Typed Gurevich Machines Revisited, Joint NCC&ISS
Bull., Comp. Science, 7, 1997, 93-121 (available electronically from
- http:/ /www.eecs.umich.edu/gasm/).

[2] P. Wegner, Dimensions of object-oriented language design, ACM Symp. on
Object-Oriented Programming: Systems, Languages and Applications, 1987,
168-182.

[3] B.C. Pierce and D.N. Turner, Simple Type-Theoretic Foundation For Object-
Oriented Programming, J. Functional Programming 1 (1): 1-000, January
1993. .

(4] C. Beeri, A Formal approach to object-oriented Databases, Data&Knowledge
Engineering (5), 1990, 353-382.

[5] J.A. Goguen and R. Diaconescu, Towards an algebraic semantics for the object
paradigm, Recent Trends in Data Type Specification, LNCS, 1994, 785, 1-29.

[6] F. Parisi-Presicce and A. Pierantonio, Structured inheritance for algebraic class
specifications, Recent Trends in Data Type Specification, LNCS, 1994, 785,
295-309.

[7] A.V. Zamulin, Algebraic specification of an Oberon Target Machine, Proc.
- A.P. Ershov Second Intern. Memorial Conference “Perspectives of System In-
formatics”, Novosibirsk, June 25-28, 1996, LNCS, 1181, 41-54.

- [8] P. Dauchy and M.C. Gaudel, Algebraic Specifications with Implicit State,
Tech. report, No. 887, Iniv. Paris—Sud, 1994.

[9] Y. Gurevich, Evolving Algebras 1993: Lipary Guide, Specification and Vali-
dation Methods, Oxford University Press, 1994.

[10] Y. Gurevich, May 1997 Draft of the ASM Guide. Available electronically from
http://www.eecs.umich.edu/gasm/.

(11} C. Khoury, M.C. Gaudel and P. Dauchy, AS-IS, Tech. report, No. 1119, Iniv.
Paris-Sud, 1997.

[12] E. Astesiano and E. Zucca, D-oids: a model for dynamic data types, Mathe-
matical Structures in Computer Science, 5(2), June 1995, 257-282.

(13] H. Ehrig and F. Orejas, Dynamic abstract types: an informal proposal, Bull
of EATCS, 53, June 1994, 162-169.

[14] M. Wirsing, Algebraic Specifications, Handbook of Theoretical Computer Sci-
ence, Elsevier Science Publishers B.V., 1990, 665-788.

[15]

(16]

[17]

(18]

[19]

20]

[21]

[22]

23]

(24]

[25]

[26]

27]

127

A.V. Zamulin, The database specification language RUSLAN: main fea-
tures, East-West database Workshop (proc. Second International East-West
Database Workshop, Klagenfurt, Austria, September 25-28, 1994), Springer
(Workshops in Computing), 1994, 315-327.

G. Smalka, W. Nutt, J. A. Goguen and J. Meseguer. Order-Sorted Equational
Computation. In: H. Ait-Kaci and M. Niva, eds., Resolution of Equations in
Algebraic Structures, vol. 2, Academic Press, New York, 1989, PP- 299-367.

N. Wirth. The Programming Language Oberon (Revised edition). Department
Informatik, Institut fur Computersysteme, ETH, Zurich, 1990.

R. Groenboom and R. Renardel de Lavalette, Reasoning about dynamic fea-
tures in specification languages, Workshop in Semantics of Specification Lan-
guages, Springer Verlag, 1994, 340-355.

H. Ganziger, Denotational semantics for languages with modules, D. Bjorner,
editor, Formal Description of Programming Concepts II, North-Holland, 1983,
3-21.

M.C. Gaudel, Correctness proof of programming language translations, D.
Bjorner, editor, Formal Description of Programming Concepts II, North—
Holland, 1983, 25-43.

Algebraic Methods: Theory, Tools and Applications, M. Wirsing and J.A.
Bergstra, editors, LNCS, No. 394, 1987.

E. Zucca, From static to dynamic data types, W. Penchek and A. Szalas,
editors, Mathematical Foundations of Computer Science 1996, LNCS, 1113,
1996, 579-590.

A.V. Zamulin, Algebraic specification of dynamic objects, Proc. Intern. Conf.
“Languages et Models with Objets”, Roscoff, Bretagne, France, October 22—
24, 1997. ’

A. Sernadas and C. Sernadas, Object specification logic, Journal of Logic and
Computation, 5(5), 1995, 603-630.

A. Pierantonio. Making Statics Dynamic. In: G. Hommel, editor, Proc. In-
ternational Workshop on Communication based Systems, Kluwer Academic
Publishers, 1995, pp. 19-34.

T. Hartmann, G. Saake, R. Jungclaus, P. Hartel, and J. Kush. Revised Ver-
sion of the Modelling Language TROLL. Technishe Universitaet Braunschweig,
Informatik-Berichte 94-03, 1994.

M. Abadi and L. Cardelli. 4 Theory of Objects. Springer-Verlag, 1996.

