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The integral equation of the convolution
type in inverse problems of the theory of
wave propagation

A.S. Zapreev

A number of inverse problems of oscillation processes studied in optics, acoustics, radio-
physics and geophysics may be reduced to solving the integral equation of the convolution
type with the special kernel. Several theorems for uniqueness solution of this integral
equation are proved. These proofs are constructive and may be used for calculation
solution of such inverse problems.

1. Introduction

In the theory of wave propagation ‘a current problem of great applied im-
portance is that of determining the properties of a medium based on a wave
field known on some manifold. A number of oscillation processes studied
in optics, acoustics, radiophysics, and geophysics are described with suf-
ficient accuracy by the wave equation. The problems in such conditions
thus often lead to inverse problems for the wave equation that in a number
cases reduce to inverse problems of determining the right-hand side of the
Helmholtz equation. The latter inverse problem may be reduced to solving
the equlvalent problems for the integral equation.

The main results obtained in the investigation of the Helmholtz equa-
tion are connected with the inverse problem of metaharmonic potentials.
The investigations in this direction were carried out by P.S. Novikov, L.N.
Sretenskii, V.K. Ivanov, M.M. Lavrent’ev, A.L. Prilepko [1], V.G. Chered-
nitchenko [2], V.M. Isacov, V.G. Pavlov [3] and others. A coefficient in-
verse problem for the oscillatory Helmholtz equation was con51dered by
A.N. Tikhonov [4].

In this work we present a formulation of the inverse problem that is
different from those noted above. This formulation arises, for example,
in the problems of interpreting geophysical data, and accounts with the
possibility of utilizing the multifrequency of the given information.
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Now we show on the example of one geophysical electrodynamic prob-
lem the way of reducing the latter considered inverse problem for the
Helmholtz equation to the problem for the integral equation of the con-
volution type.

Let there be the homogeneous medium on the basis (with the constants
€0, Mo, 0¢ — dielectric constants, magnetic permeability, electric conduc-
tivity), which include a cylindrical body (with the other electromagnetic
constants €y, gy, o) with the generaterix parallel to axis OY. The cross-
section 2 of this cylinder to the {y = 0} coordinate plane is unknown.

Let E be polarized plane wave propagates from the upper half-space
parallel to the {z = 0} coordinate plane, dependence on the time is
harmonic exp(iwt), the complex amplitude is Upg(M) = exp(ikoz), where
k; = E2(we; — i0;); (j = 0,1) — the wave number, ¢ — the light velocity.
The electrical and magnetic vectors of this plane wave are

Eo(M) = Up(M)-exp(iwt)- Y, Ho(M)= Us(M)-exp(iwt)- X.
The electromagnetic field in this problem described by a pair of vectors
E, H satisfying Maxwell equations
= 1 =~ = L. o - 1 L,
rot H = Z(iEwE’ +ok)= %éwE‘, rot £ = Ez',uwH
can be decomposed into fields of two types:
1. E-polarized: E(0,0, E,), E(H,,, H,,0)
ic .8Ez H = ic.aEZ

xr

y =

Cwp Oz Twp Oy’
2. H-polarized: E(E,,E,,0), H(0,0,H,)
ic OH, P ic OH,

VT 0E 9z ¥ wé dy

The functions E, end H, are the solutions of the next boundary problems

Ag:U(M) + KU(M) = ~Uo(M),

_ kOy MQ‘Q! —
k= { k., MeQ, U= (E,H,).
The functions E,, H,, i/u-0FE,/0n, i/é - OH,/dn are continuity on
the boundary surface of the inclusion 9, and E,, H, are satisfied by the
radiation conditions at infinity.
As it is shown by V.D. Kupradze, this differential problem is equivalent
to the integral equation
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U(M) = E%ﬁ/QU(P)G(P;M)duP +Us(M), MeQ, (1)

where G(P; M) = 7r/2i-H32)[kor(P; M)] - the Green function of the exterior
space.
Moreover, this formula remains true for M lying in the exterior space.
If the norm of the integral operator in (1) is less than unit, it is possible
to represent the solution of the equation (1) as the Neiman series which
can be approached by it’s first terms

ki — k8

UM) =~ 5

/Q Uo(P)G(P; M)dvp + Uo(M), M €.  (2)

For these conditions we have that the additional field w(M) = U(M) -
U(My) approximately satisfies the Helmholtz equation

Du(M) + kju(M) = ~(kf - kg) exp(ikoz)xa(M), (3)

where .
1, McQ,
xa(M) = {0, MgQ

is the characteristic function of the set Q2.
Now we can formulate the next inverse problem.

On the basis of a family
Uk (2,0) = fip(2), ke A (4)

of solutions to the direct problem for the equation (3), known on the plane
{z = 0} (A is some set of wave numbers), it is required to determine the
function xq(M).

In other formulation:
It is required to solve the parametric integral equation of the convolution type
L0 [ explikoOnalé,OGE G, 0)dedc = fu(e), k€ 4

with respect to the function xo(M).
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2. Uniqueness theorems for the integral
equations

Let us consider the following problem:

Problem. It is required to determine the function u(Q) from the parametric
equation

/ W(Q)G(My - Q. K)dvg = f(My, k), ke A, M eR™, (5)
Rﬂ

where Q,M = (M,,z) € R"™ are the points of n-dimensional Fuclidean
space; z € R; k is the parameter (k € A C C); dvg is an elementary volume
of integrating near the point ().

Theorem 1. Let:

1) f(My,k) be such, that there ezists the function w(Q) satisfying (5);

2) The kernel G(Q,k) be such, that it is possible to apply the Fourier
transform with respect to the variable @, € R"!, Q = (Q1,2), and
its Fourier-image has the special form

. G(Qu, 2, k) exp[—i(s, Q1)]dvg, = h(s, k) exp[-zu(s, k)], s € R"™'; (6)

3) A be a set of complez numbers having an accurmulation point in a
bounded portion of the complex plane;

4) h(s,k) # 0 for almost all s and k € A;

5) w(s.k) be an analytic and bounded in a neighborhood of the accumu-
lation point of the set A, Re[w(s,k)] > 6 > 0.

Then a solution to the problem is unique on the class of complex-valued
functions u(Q), for which it is possible to apply the Fourier transform by
Q1 and the Laplace transform by z (for ezample, on the class of compactly
supported functions from L).

Proof. Assume that u((}) cannot be uniquely determined from (5). Then
there exit two different solutions of this equation. For their difference
Y(Q) = u1(Q) — u2(Q) # 0 we obtain a family of homogeneous equations

[ H@G0 @ kg =0, ke A, e R
Rn
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Let us apply the Fourier transform with respect to the variable M, produce
corresponding transformations by Fubini’s theorem, and do the appropriate
estimations. Then, after the substitution of the equation (6) we obtain

h(s, k) /0 T (s 2 explozw(s, K)dz =0, k€A, seR™, (T)

where @(s,k) is the Fourier transform of ¥(Q) with respect io Q4. In
accordance with Condition 4 of the theorem we divide equation (7) by the
function h(s,k). Then, following Condition 5 we have that this integral
is an analytic function by k allowing the analytic continuation from A.
Hence, (7) is satisfied on the entire complex plane C. Then fixing s and
making the substitution p = w(s, k), we obtain

f P(s,z)exp(—zp)dz =0, Vs, VpeC.
0

Using the uniqueness theorem for the Laplace transform we have (s, z) = 0
for any s, and, applying the inverse Fourier transform on s to (s, z) we
obtain (@) = 0. This contradiction proves the theorem. D

When the set A does not have the finite accumulation point, we can
obtain the uniqueness theorems for some partial cases of functions h(s, k)
and w(s, k), which appeared in applied problems.

Theorem 2. Let:
1) Conditions 1,2,4 of Theorem 1 fulfill;

2) A solution of the equation (5) belongs to the class of compactly sup-
ported complez-valued function from L, and

suppU(Q) =02 C{Q =(Q1,2) ER™: 0<8<z<a}, m=2,3;
3) A={ky: |ka| =25, ne N} C R;

a ?

4) w(s, k) = (s* — k2)1/2;

Then a solution to the problem is unique.

Theorem 3. Let:
1) Conditions 1,2 of Theorem 2 fulfill;
2) A={kn: |kp| =nx/2a, n € N} C R;
3) w(s, k) =ik + (82 — k})1/2,

Then a solution to the problem is unique.
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Theorem 4. Let:
1) Conditions 1,2 of Theorem 2 fulfill, but w(Q) is the real function and
Qc{0<és<z}CRY

2) A be a set of complez numbers k such that the set of points
{ik, —ik}rea contains a countable subset of numbers {1, }$°, Re A, >
0, such that the series

[eo]

3 (1= ) Re,

n=1
diverges.

Then a solution to the problem is unique.

For the illustration of the method, with the help of which we obtain
Theorems 2-4, we give the proof of Theorem 3 in 3-dimensional case.

Proof. All considerations which bring about the family of equations (7)
in the proof of Theorem 1 are the same. Furthermore, we write down the
function exp[—zw(s, k)] as

exp[—zw(s, k)] = exp(—izk) exp[—2z(s? + s% — kz)%]
and decompose exp[—z(s? + s3 — kz)%], as the function of argument z(s? +
- kz)%, in the series
et (s% + s% _ k2)nz2n+1

1 1
exp [ - z(s} + 55 —k%)2] = —(s} + 53— kD)2 Y (2n+1)!

n=0

o~ (5 + 53 — K7)na?
+ Z (2n)! (8)
n=0

converging on all complex plane. There s; and s, are the Fourier transform
parameters which correspond to the variables z and y on the plane {z =
0}. Since %(sy,s2,2) is the Fourier transform of the compactly supported
function, it is an entire function (it follows from Paly-Winer’s theorem).
So we can write down the expression ¢(31,32, )exp(—izk) as the series

1/)(31, S, z) exp(izk) = Z Z sl“m [¢lm(z, k) + i<2>1m(z, k)], (9)

=0 m=0

which converges for all s;, s, (uniformly for all z € [0,a]). Here
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Yim(z) cos(kz), | - even,
Pym(z)sin(kz), [ - odd.
—im(z)sin(kz), | - even,
Pyim(z)cos(kz), |- odd.

¢!m(za k) = {

éslm(za k) = {

B 1 T (=12, 1 - even,
Yim(2) = m—!(f_—m—)!/;ptfi(x,y,—z)x yhdedy e g odd,
It is not difficult to show that the functions ¥.(2) (I,m = 0,1,...,00)
are the elements of the class Ly[0,a|. Since series in (8) converge with
respect to z on all complex plane, then changing the order of integration
and summation we have

2241

nr ) T

_ Z(sl + 32 kz)"/ ¢ Sl,Sg,Z)

n=0

2
(2 4+ s — k?)73 Z(sl + 52— k?)n/ ¢(31,32,z)(2 o dz=0, ke A.

n=0

Denoting G1(s1,82,k) and Ga(s1,82,k) as corresponding series here, we
obtain

Gi(s1,82,k) + (53 + 82 — k) 3Gy(s1,52.k) =0, k€A (10)

From uniform converges with respect to z € [0,a] of the series (9) for s1, s2,
we have that G1(31,82,%&) and Ga(sy, s2, k) are the entire functions for sy,
sq, and, therefore, they have not branch points for all finite sy, s;. Then
from (10) it follows two systems of equations:

o0 21'1.+1
G1(31,32,k) = ;(Sl + 32 kz)n/ 1!)(8135'212) 2 + 1) ——dz = 01 ke A1
‘Zn
Gg(Sl,Sz,k) = Z(Sl + 32 kz)n/ 1}) 31,32,2)(2 )’ dz=0, ke€A.
n=0

If it is not valid, then entire function Gy(s1,32,k) must have the branch
point for s? + s% = k?, but it is impossible.

Using the expression (9) in (10) and corresponding transformations of
power series, we obtain the system of equations:
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Y[ burstgrnra-anle Dk, )z =0,

g20,n—2¢9>0 r>0,u—2r >0

Z Z /0- $u+v—2(q+r},u—‘2q(z7 k)gjf,q(kv z)dz =0, (11)

§20,n—2¢20r>0,0-2r>0
ke A; u,v=0,1,...,00; j=1,2,

where
22r+q) =2 (n+r+q)
_ _qyn k 2n+1
aunalhi2) = o 2 e F )
22(r+q) &2 . (n+r+9) n
gzralk,2) = rig! Z -1) n![2(n+r+f1)]!(kz)

rq= 0,1,...,00,
and it is important that

gioo(k,z) = k1 sin(kz), g20,0(k,2) = cos(kz).

From (11) we have for u = v =0
[: $Poo(z) cos(kz) sin('kz)dz =0, k€A,
-/Ua Poo(2) sinz(kz)dz =0, keA,
/Du YPoo(z) cosz(kz)dz =0, k€A,
/{, " Yoo(2) sin(kz) cos(kz)dz = 0, k€ A,
From these equations follows
/0 " doo(2)dz = 0, /O " Yoo(2)sin(2kz)dz =0 k € A.

As the system of functions {sin(nz)}.en is total in L5[0, 7], then too(z) =
0. Since from (11) requrently follows the analogous expressions for all
functions ¥im(z), (I,m = 0,1,...,00), then we have that Yim(2) = 0,
(lm =0,1,...,00). Therefore, from (9) we obtain 1!;(3;,32,2) = 0 for all
81, S2. After applying the inverse Fourier transform to 1/—)(31,32,2') with
respect to s;, s; we have ¥(z,y,z) = 0. This contradiction proves the
theorem. a
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In conclusion let us note that this article continues the author’s works

[5-8] in which the correct formulation of the inverse problems of the theory
of wave propagation in the complicated medium on the basis was studied.
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