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On statistical adaptation of the order filters for
the signal form and its noise specificity

Vladimir Znak

Abstract. This paper is aimed to the improvement of the quality of the data
of vibro-seismic research under the condition of the wave form preservation of a
sounding signal. For this purpose, it is offered to use the order statistics filters.
As seismic data are mostly harmonic or frequencymodulated (or sweep) signals in
the frequency range 1 to 10 Hz, these filters must be adapted so as to suppress noise
but not unduly distort a signal because such filters possess specific features. To this
end, it is reasonable to attract statistical adaptation of such filters for the form of
a signal and specificity of noise To illustrate the proposed methodology of order
statistics filters adaptation, models of a sweep signal from the frequency band of
72–82 Hz were processed and the quality of the signal enhanced considerably over
the quality of the signal without processing.

Keywords: weighted order statistics filters, periodic signals processing, numerical
study

Introduction

Generally, vibro-seismic data are mostly records of harmonic or frequen-
cymodulated (or sweep) signals under the condition of some digitization
frequency. Such records [1] are commonly a narrow band within 1 to 10 Hz
range. Most often, methods of such signals analysis and their processing
are in the field of harmonic analysis. In the given paper, the weighted order
statistics (WOS) filters are offered for the preprocessing or the processing
of frequency-modulated (FM) and harmonic signals corrupted by noise and
for their analysis.

The problem of noise signals processing with the WOS filters is not new,
since these filters possess a number of advantages in comparison with other
filters [2], namely: 1) a remarkable ability of the impulse noise removal,
2) noise robustness, 3) preservation of steps for a signal in the form of
a telegraphic sequence (with such specific features as the first derivative
discontinuity). Duncan and Beresford [3] studied the behavior of the median
filter diagonally applied across seismic traces for producing lateral smoothing
and found that the median filters preserved steps as compared to the low-
pass and the linear filters. At the same time, according to [2], the length
of a median filter should surpass the length of a linear filter in one and half
times for the equal decrease of signal noise. On the other hand, such filters
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are nonlinear ones and their response tends to zero while the filter length (n)
approaches an integer number of signal periods. This circumstance demands
a special attention when processing periodic signals and solving the problem
of the corresponding adaptation of the WOS filters.

Among the papers dealing with the solution of the above problem, we
will note some of them [4–6], as they exploit different approaches. In [5],
the problem is solved by making use of the hybrid (the WOS and the linear
finite impulse response –– FIR) filters. In this case, the corresponding task
is formulated as a demand “. . . that the filter should be able to discard
those samples in the window which are not in phase with the center of the
window” [5, p. 1621]. The approach of [4] admits negative weights in the
median filter performance. At the same time, the approach of [5], as [4],
requires a preliminary training (learning) of filters under the mean absolute
error criterion. Finally, in [6], zero weights are added to an appropriate set.

However, owing to nonlinearity, the analytical estimation of their behav-
ior is a very complicated process. The behavior of the WOS filters apprecia-
bly depends, on the one hand, on the filter project (values of scales, the size
of the aperture or a window of the analysis, a sequence of operations in the
multistage process of filtration) and, on the other hand, it depends on the
form of a signal and specificity of noise. So, the results of the research [3]
show the importance of the filter design for attaining high attenuation lev-
els of noise without causing a considerable signal distortion. At the same
time, the analytical estimation of the quality of signal processing by the
WOS filters is very complicated owing to nonlinearity of such filters. Thus,
it can be supposed that the response of the WOS filters is a casual event
in the general case. Under these conditions, it seems appropriate to use a
numerical method for solving mathematical problems by means of model-
ing random variables, i.e., a method of statistical trials to select the most
efficient project of the WOS filter.

In this paper, the task of interest is the processing of periodic signals and
monitoring of the quality of the restored signals depending on using different
projects of filters and their parameters. The basic points of this approach
were discussed at the EAGE Conference [7]. At the same time, a specialized
computer system [8] was utilized in the course of the above trials.

1. The basic definitions of the WOS filters

Before considering the research into selecting projects of the WOS filters, it
is worthwhile to give the basic definitions of such objects.

Let a periodic signal be one-dimensional time series X = {x1, . . . , xN}
recorded at discrete instants of time t1, . . . , tN , ti − ti−1 = ∆t = const,
i = 2, . . . , N .
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Let a sequence

Y = {yi : i = 1, . . . , n} (1)

present some samples of a signal which includes n quantities of numerical
data.

The term “order filters” comes from the notion “a variational row” of
mathematical statistics, where numerical values of a data row are arranged in
increasing (or decreasing) order. Here, the rth-order statistics ỹr is defined
as the rth quantity in size, r = 1, . . . , n. Generally, it is possible to set the
locus of any term ỹr of a variational row by means of a relative number
α of preceding elements (smaller or equal in size) and a relative number
β of subsequent ones (equal to or greater than it): α = (r − 1)/(n − 1),
β = 1 − α. In this case, one can speak about the percentile form of the
filter. It is denoted as ỹα,n if there exists the number nα = (n − 1)α of

^
y i

quantities and the number nβ = (n− 1)β of
_
y i quantities provided

^
y i ≤ ỹα,n,

_
y i ≥ ỹα,n, ỹα,n

nα⋃
i=1

^
y i

nβ⋃
i=1

_
y i = Y.

Now, the formal definition of the order filtration procedure can be pre-
sented as a sequence of the following operations:

i) Y ⊂ X is a sampling of n = 2v + 1 signal values (v ∈ Z+, n is odd).

ii) Ỹ = {ỹ1 ≤ . . . ≤ ỹ(n−1)/2 ≤ . . . ≤ ỹn} is the sampling Y , whose value
are ordered in the increasing order.

iii) Rankα(y1, . . . , y(n−1)/2, . . . , yn) maps the central value y(n−1)/2 ∈ Y to

ỹα,n = ỹr ∈ Ỹ , r = (n− 1)α.

The last formula is the definition of the standard order statistic filter.

In the special case of α = 0.5, the filter Rankα is the median one
Med(y1, . . . , y(n−1)/2, . . . , yn) = ỹ(n−1)/2.

Let we have a set W of integer quantities wi (i = 1, . . . , n), where every
quantity wi is associated with the corresponding sample yi ∈ Y . This wi is
called a weight and can be treated as the number of copies of the sample yi.
For example, [9] defines the weighted median value of a sequence of numbers
as a simple median of the extended sequence formed by repeating each term
wi times. At the same time, weights are usually set symmetric with respect
to the central element (CE) of sequence (1). Weights are introduced for em-
phasizing some elements of a sequence [2,10,11]. The extended sequence of
samples yi thereby gains a new quality as a set with the number of elements
N(W ) = N(w1, . . . , wn) =

∑n
i=1wi. At the same time, N(W ) is also odd.

In this case, the formula
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ỹα,N(W ) = Rankα,W (y1, . . . , y(n−1)/2, . . . , yn) (2)

is the definition of the WOS filter in the general case. This generalization
allows a filter to keep properties of the median one [12], but changes the
result of the filtering, i.e., ỹ0.5,n 6= ỹ0.5,N(W ) [11].

In the general case, a filter as the whole can include some ordered set
(a sequence) of separate filters of signal processing. Let such singled filter
be called a filter node. At the same time, such node includes some “filter
terms” sequence of length n.

Passing to the question of processing the periodic signals by the WOS
filters, we can equalize to zero the weights of all the terms of the filter in-
put sequence except the weight of the central element (CE) and the weights
of such terms which are apart from one another by the length of a period
(the idea formulated in [6]). The use of zero weights is equivalent to dec-
imation (sieving). An analogous technique is widely exploited in the field
of images processing. Thus, the offered approach demands the knowledge
of the frequency band of a signal under processing only unlike approaches
proposed by [4, 5]. This allows us to project the so-called co-phased WOS

Figure 1. Sampling of periodic signal values closest to the CE phase at
different instants of time
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(CoPhWOS) filters. At the same time, an important condition of such a
filter is providing the filter length equalizing to m periods of a signal, where
m is even (m = 2, 4, etc.). The above informal definition of such filters is
illustrated in Figure 1.

According to the concept of weights, the corresponding set W of the
CoPhWOS filter includes a subset W ∗ = {w∗ ∈W : w∗ = 0}.

Taking into account the symmetry of CoPhWOS filters, we re-index ele-
ments of the sampling Y as {y−v, . . . , y0, . . . , yv}, so that the central element
has zero index. The procedure for calculating the weights of the CoPhWOS
filter is as follows [6]:

1. Compute the length of the filter as n = 2v + 1, v = dRT/∆te;
2. Initialize w0 := 1, w±i := 0, i = 1, . . . , v;

3. In cycle by j = 1, . . . , R, update weights according to the rules:

Vj := jT/∆t;

if Vj = bVjc = dVje, then w±Vj := 1; otherwise

w±bVjc := dVje − Vj , w±dVje := Vj − bVjc.
(3)

Here T is the period of a corresponding frequency and w0 = 1 is the weight
of the CE. The frequency which defines values of the filter weights will be
called the working frequency of the filter.

According to values of nonzero terms assigned in procedure (3), we in-
troduce functions

φ0(y) = y0, φ±j(y) =

{
w±Vj y±Vj if Vj = bVjc = dVje,
w±bVjc y±bVjc + w±dVje y±dVje otherwise.

As defined in procedure (3), the index j = 1, . . . , r of the corresponding
function is nothing but the periods quantity between the CE and this filter
term under the condition of symmetry of the node terms concerning the CE.

Let us use the notation CoPhWOSfR to designate such a filter, where R
is a radius of the filter and f is the working frequency of the filter. Now,
the CoPhWOSfR filter of radius R is

ỹfα,N(k0φ0,k1φ±1,...,kRφ±R) = Rankα,K(φ0(y), φ±1(y), . . . , φ±R(y)), (4)

where K = {k0, . . . , kR} is a sequence of weights and k0 6= 0.
Similarly, the definition of the standard WOS filter of radius R will be

used in the notation ỹα,N(w0,w±1,...,w±R). Here some terms can also include
zero weights, however values of the corresponding filter data do not depend
on a signal frequency.
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The above algorithm is readily adapted to the case where the weight of
the central element exceeds the weights of other components not less than
by unit – for emphasizing its value. The algorithm in this case ensures the
symmetry of weights as well. However, here, the weight w0 of CE should be
odd. The non-integer weights can be transformed to integers with some loss
of accuracy, by introduction an appropriate factor. Schemes for treatment
with non-integer weights were offered by [13,14].

2. The basic procedures of the statistical trials method of
the WOS filters projects

It is possible to note the following parameters of the WOS and CoPhWOS
filters which influence the quality of signal processing:

• values of the weights W = {w1, w2, . . .} of the WOS filters as well as
the distribution of zero weights which are the functions of frequencies
in the case of the CoPhWOS filters;

• the size of the aperture or the window of analysis;

• a sequence of operations in the multistage filtration process;

• the operations type;

• percentiles of the WOS and the CoPhWOS filters.

The CoPhWOS filter satisfies the requirement of discarding those sam-
ples in the window which are not in phase with the center of the window [5]
if a signal is a harmonic one on the whole length of its existence. However, in
the course of the FM signal processing, the above condition is not satisfied.
According to [6], such a filter of the two-period length of a FM signal will
save the width ∆f(CoPhWOS) ∈ 1.0÷ 1.5 Hz in its frequency band. That
is, if ∆f(FM) > ∆f(CoPhWOS), it is needed to attract a special technique
for restoration of a source signal in the whole frequency band. Such a case
was studied in [15], however, it is not considered here.

The algorithm of the corresponding signals processing providing a vari-
ation of the above data and parameters in the course of signal processing is
presented in Figure 2.

The basic denotations of the above algorithm are the following:

• filteri = {nodek(i) : k(i) = 0, . . . ,K(i) − 1} is a sequence of data of
consequent steps of the ith filter of the corresponding set;

• {filteri : i = 1, . . . , I} is a filter set,

• filter(beg)/filter(end) is the first/last filters used from a filters bank;

• a frequencies set is {fl : l = 1, . . . , L};
• f(beg)/f(end) is the first/last using work frequency;
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Figure 2. The algorithm of monitoring the filters projects

• ∆f is the step size of frequency updating;

• S∆f is the number of steps of frequency updating, s = 0, . . . , S∆f − 1;

• fw is the current working frequency;

• ∆α is the step size of procentile updating;

• R∆α is the number of steps of procentile updating, r = 0, . . . , R∆α−1.

Other notations are used in the course of the cluster analysis [15] and will
not be discussed here.

In the general case, a filter includes a sequence of nodes of the whole
processing a signal. Some filter nodes can include a coupled action of the
same type, but with different data. In this case, data for the second filter
are attracted and the results of both actions are composed.

A specialized interactive computer system based on the graphical inter-
face was utilized for execution of the above algorithm [8]. Within the frame
of the above interface, N1,N2,N3 ∈ {0, 1, . . . , 101} denote working files
numbers. Since in the general case, the process of the signal processing as a
whole can include some sequence of singled steps, each step of action which is
connected with a corresponding filter node, can be presented by the scheme:
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processing data of a working file N1 with consequent transfer of results to
a working file N3 in the course of data processing. Thus, the traffic of data
in the course of signal filtering can be presented by an oriented graph with
a single source node and a single finish node. The processing operations se-
quence and corresponding nodes data are defined using a computer console
in the interactive mode [8].

The new working files are created in the course of running the filtering
procedure. The working file of the source node of each filter is associated
with the number “0”. At the same time, the working file of the last filter
node is associated with the number “101” that designates termination of
signal processing.

The list of available filter operations is listed in Table 1. Here, the symbol
⊕ denotes the operation of data superposition.

Thus, the user can employ both nonlinear and linear operations. The
efficiency of such an approach was demonstrated in [5].

Table 1. The list of available filter operations

Operation name Operation content

Transfer data ∈N1 ⇒N3

Data composition (data ∈N1 ⊕ data ∈N2)⇒N3

The CoPhWOS filter ỹfα,N(k0φ0,k1φ±1,...kRφ±R)

The coupled CoPhWOS filter
ỹf
α,N(k

(1)
0 φ0,k

(1)
1 φ±1,...k

(1)
R2
φ±R1

)
⊕

ỹf
1−α,N(k

(2)
0 φ0,k

(2)
1 φ±1,...k

(2)
R2
φ±R2

)

The co-phased average
( R∑
j=−R

k|j|φj(y)
) / ( R∑

j=−R
k|j|

)

The coupled co-phased
average

( R1∑
j=−R1

k
(1)

|j| φj(y)
) / ( R1∑

j=−R1

k
(1)

|j|

)
⊕( R2∑

j=−R2

k
(2)

|j| φj(y)
) / ( R2∑

j=−R2

k
(2)

|j|

)
The standard WOS filter ỹα,N(w0,w±1,...,w±R)

The coupled standard
WOS filter

ỹ
(1)

α1,N(w
(1)
0 ,w

(1)
±1,...,w

(1)
±R1

)
⊕ ỹ(2)

α2,N(w
(2)
0 ,w

(2)
±1,...,w

(2)
±R2

)

The standard average
( R∑
j=−R

wjyj
) / ( R∑

j=−R
wj
)

The Coupled standard average

( R1∑
j=−R1

w
(1)
j yj

) / ( R1∑
j=−R1

w
(1)
j

)
⊕( R2∑

j=−R2

w
(2)
j yj

) / ( R2∑
j=−R2

w
(2)
j

)
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3. Some results of signal processing

The methodology in question was investigated on the models of linear fre-
quency-modulated signals using numerical modeling. Parameters and char-
acteristics of the corresponding signals are the following: the start time of
a sounding signal is 0 s; the arrival time of the sounding signal in a noise
signal is 4 s (i.e., the sounding signal is recorded when removing from a vi-
bration source). At the same time, the bandwidth of the sounding signal is
7.2÷ 8.2 Hz, the digitization frequency being ∆t = 0.08 s as for a sounding
signal and for a noised signal. The white noise with zero average Gaussian
distribution was used for obtaining a noise signal model.

The results of the experi-
ments are shown in Table 2,
where ŝ/ξ0 is the signal-to-noise
ratio obtained by means of con-
volution of a noise signal with
a sounding signal. At the same
time, s/n is the estimation of
the ratio of the mean square de-
viation of the sounding signal
and the model of noise signal
data before the processing.

Table 2. Results of convolution of a
filtered noise signal with a sounding signal

ŝ/ξ0 = 99.4
s/n = 0.2

ŝ/ξ0 = 87.6
s/n = 0.1

ŝ/ξ0 = 10.1
s/n = 0.01

f , Hz ŝ/ξ f , Hz ŝ/ξ f , Hz ŝ/ξ

7.750 125.6 7.70 93.0 7.65 14.4
7.765 127.0 7.71 96.8 7.67 15.9
7.770 147.5 7.72 94.1 7.68 10.2
7.775 137.8 7.73 90.4 7.69 10.1
7.785 145.7 7.74 91.0

The results shown in Table 2 are obtained by means of the filter structure
presented in Table 3. The filter structure used in others experiments is
shown in Table 4. The research results for this case are shown in Table 5
for ŝ/ξ = 13.374, s/n = 0.066.

Table 3

N1 N2 Operation N3

Signal ⇒ Working file 0

0 3φ0(y) + 2φ±1(y) + 1φ±2(y))/5 1

1 ỹf0.5,9(3φ0,2φ±1,1φ±2)
2

1 ỹf0.5,7(1φ0,1φ±1,1φ±2,1φ±3)
3

2 3 ⊕ 4

0 ỹf0.75,9(3φ0,2φ±1,1φ±2)
⊕ ỹf0.25,9(3φ0,2φ±1,1φ±2)

5

0 ỹf0.7,9(3φ0,2φ±1,1φ±2)
⊕ ỹf0.3,9(3φ0,0φ±1,2φ±2,1φ±3)

6

5 6 ⊕ 7
4 7 ⊕ 8

8 ỹf0.5,121(11φ0,10φ±1,9φ±2,...,1φ±10)
9

8 ỹf0.7,9(3φ0,2φ±1,1φ±2)
⊕ ỹf0.3,9(3φ0,0φ±1,2φ±2,1φ±3)

10

9 10 ⊕ 11
8 11 ⊕ 101

Work file 101 ⇒ Preservation file



78 V. Znak

Table 4

N1 N2 Operation N3

Signal ⇒ Working file 0

0 ỹ0.5,9(30,2±1,1±2) 1

0 ỹf0.75,9(3φ0,2φ±1,0φ±2,1φ±3)
⊕ ỹf0.25,9(3φ0,0φ±1,2φ±2,1φ±3)

2

1 2 ⊕ 101

Work file 101 ⇒ Preservation file

Table 5. Results of convolution of a filtered noise signal with a sounding signal

Working frequency, Hz 7.975 8.000 8.025 8.050 8.075 8.100 8.125

Signal-to-noise ratio (ŝ/ξ) 11.402 12.855 12.463 14.281 14.493 13.513 12.418

Figure 3. The model of a noised signal, the results of processing, and the
sounding signal (from top to bottom)

The results of processing the model of a noise signal are shown in Fig-
ure 3, where a noise signal is the result of composition of a sounding signal
and additive white noise with the value of s/n = 0.2. At the same time, the
period of the signals recording is 1100 s and the arrival time of a sounding
signal in a noised signal is tarr = 4 s. Figure 3 allows us to note the dynam-
ics of preserving the waveform of a FM signal by the co-phased filters as a
function of time.

4. Conclusion and discussion

In this paper, the approach to the statistical adaptation of the WOS filters
for processing frequency-modulated signals is proposed. The basic points
of this approach are attracting a filters bank and varying filters data and
processing parameters. The corresponding algorithm of filtering the FM
signals under the conditions of statistical trials of the WOS filters projects
was developed. The results of the experiments conducted demonstrate the
dynamics of a considerable dependence of the signals quality processing from
the value of the work frequency of the CoPhWOS filter and its structure
including values of the corresponding data. It can be supposed that the
results obtained demonstrate the possibility of the proposed approach to be
rather effective even in the case of s/n� 1.
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In the considered methodology, selecting the qualitative projects of the
WOS filters is assigned to the user. The use of such methods as dynamic pro-
gramming, sequential approaches, games theory or the maximum likelihood
are of some interest with respect to selecting appropriate results. In the
case of attracting any of the above methods, there can be used two different
ways of research: 1) selecting an appropriate filter from the existing filters
bank with different data of signal processing, 2) consequent construction
of some filter by means of the gradual complication of the filter structure.
In the both ways of research, it is rather desirable to provide computer
construction of different WOS filters. However, meanwhile any proposals
in this field are absent because the problem becomes complicated owing to
nonlinearity of the WOS filters. This circumstance is valid for any select-
ing strategy of the qualitative projects of the WOS filters. To all the other
above-mentioned notations, procedures of the statistical trials as well as the
procedures of signal processing by the WOS filters demand high computer
costs, i.e., the corresponding realization of the approach proposed demands
the use of graphical processors or supercomputers. The importance of an
increase in computation efficiency is also important for the improvement of
the quality of the noise FM signals. Really, the width of a frequency zone,
in which the waveform of a periodic signal remains the dependence on the
length of the CoPhWOS filter. The quality of a periodic signal is preserved
in the frequency band of the width 1.0 ÷ 1.5 Hz if a length of CoPhWOS
filter does not exceed two periods of a FM signal [6]. That is, increasing
the filter nodes lengths will decrease a frequency zone, where the sounding
signal quality is preserved as demonstrated by the above results of the signal
processing. Hence, it is required to increase the quantity of the frequency
zones which are subjects of filtration for the qualitative processing of a sig-
nal. The last circumstance, in turn, will entail an increase of the computer
time expenses.
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