
Bull. Nov. Comp.Center, Comp. Science, 29 (2009), 139–150
c© 2009 NCC Publisher

Implementation of the algorithm of hierarchical
cluster analysis on GPU by means of CUDA

technology

N.B. Zverev, F. A. Murzin, S. A. Poletaev

Abstract. In the paper, the algorithm of the hierarchical cluster analysis is con-
sidered and the method is proposed to transfer this algorithm onto the parallel
multiprocessor system used on modern graphics processing units (GPUs). Within
the frameworks of some natural assumptions, we have estimated the run time of the
algorithm in a sequential case, in a parallel case for some abstract parallel machine
and for GPU. The algorithm is implemented on CUDA, allowing us to carry out
the hierarchical cluster analysis much faster, than on CPU.

1. Introduction

In the paper, the algorithm of the hierarchical cluster analysis is considered
[1, 2] and the method of implementation of this algorithm onto the parallel
multiprocessor system used on modern graphics processing units (GPUs)
is proposed. To implement the algorithm, we used the CUDA (Compute
Unified Device Architecture) technology developed by the NVIDIA company
[7].

Let us notice that GPUs are intended for high-performance intensive
computing. The model of computation in CUDA assumes that a program-
mer first breaks a problem into independent parts (blocks), which can be pro-
cessed in parallel. Then each block is broken into a set of streams (threads)
executed in parallel but, probably, depending on each other. CUDA is based
on an extension of the C ++ language for a parallel start of threads, which
are carrying out the same function (kernel). The maximal size of a kernel
is 2 million instructions. Streams are aggregated into blocks (up to 512
streams), and blocks are aggregated into grids.

Now it is possible to say that the architecture of parallel computa-
tion NVIDIA CUDA allows many researchers, applying C++, to use the
GPU computing capacities when solving difficult computational problems.
Thereby it is attractive that this equipment is accessible to many specialists,
in view of its low price as compared to that of supercomputers.

Within the frameworks of some natural assumptions, we have estimated
the performance of our algorithm in a sequential case, in a parallel case for
some abstract parallel machine and for GPU.

140 N.B. Zverev, F.A. Murzin, S. A. Poletaev

The procedure of constructing a matrix of distances between clusters
is implemented on GPU by means of the CUDA system, which in case of
a high-dimensional problem is much (more than 60 times) faster than the
same C++ program implemented on CPU. The procedure of search of the
minimal element of a matrix, considerably reducing data exchange between
GPU and host-computer, is also implemented on GPU by means of the
CUDA system. The results of the algorithm testing are represented.

2. Basic notions of the cluster analysis

The cluster analysis (data clustering) is a problem of splitting the set of ob-
jects (situations) into non-intersecting subsets named clusters so that each
cluster consists of similar objects, and objects of different clusters are essen-
tially different. It is possible to see applications of this approach in [5].

Input data can have various forms. The first variant is when each object
is described by a set (vector) of characteristics named signs. Generally,
signs can be numerical or non-numerical. Non-numerical data are often
called categorical [3, 4] which, as a rule, are also digitized.

The purposes of clustering can be various.
1. Understanding of the data structure. Partition of a set of data into

groups of similar objects allows us to understand better the data structure.
2. Data compression. If an initial sample is redundant, then it is possible

to reduce it taking the most typical representative object from every cluster.
3. Novelty detection. New objects are determined, which themselves

might not be members of the given clusters.
The procedure of the hierarchical cluster analysis [1, 2] provides grouping

of objects (lines of a matrix of data) and variables (columns of the matrix).
The matrix here considered is such that its lines correspond to objects.
Thereby each line contains a vector of characteristics (signs) of the object
associated with this line.

At the beginning of the clustering process, all objects are considered as
separate clusters which are then aggregated.

A key component of the analysis is a repeated calculation of distance
measures between objects and between clusters, thus objects are grouped
into clusters. The outcome is represented graphically as a dendrogram.

The dendrogram is a standard graphical representation of the results
of hierarchical cluster analysis. This is a tree-like plot where each step of
hierarchical clustering is represented as a fusion of two branches of the tree
into a single one. The branches represent clusters obtained at each step of
hierarchical clustering.

As a result of successful analysis, there appears a possibility to allocate
clusters as separate branches and give them a natural interpretation.

Implementation of the algorithm of hierarchical cluster analysis on GPU 141

Distances (or in a more general case, affinity measures) between points
and between clusters can be defined in different ways. For example, we can
use Euclidian or Chebyshev’s metrics, a supremum-norm, etc.

3. Data clustering methods

Thus, at the first step, we have metrics or an affinity measure between sep-
arate points in some multidimensional space. Further, in order to continue
the process of the hierarchical cluster analysis, we should define the distance,
or an affinity measure between clusters. For this purpose, different methods
are applied.

1. Single connection (a method of the nearest neighbor). In this method,
the distance between two clusters is defined by the distance between two
closest objects (the nearest neighbors) in the given clusters.

2. Full connection (a method of the most remote neighbors). In this
method, the distance between clusters is defined by the greatest distance
between any two objects in the given clusters.

3. Not weighed paired average. In this method, the distance between
two different clusters is calculated as the average distance between all pairs
of their objects.

4. Weighed paired average. The method is identical to the method of not
weighed paired average, except that the size of the corresponding clusters
(i.e. the number of their objects) is used as a weight factor.

5. Not weighed centered method. In this method, the distance between
two clusters is defined as the distance between their centers of gravity.

6. Weighed centered method (median). This method is identical to the
previous one except that weight is used for the difference estimation between
the sizes of clusters (i.e. the number of their objects).

7. Ward’s Method. This method differs from all other methods as it
actually uses the methods of disperse analysis for estimation of distances
between clusters. The method minimizes the sum of squares of distances.
More precisely, as the distance between clusters, we use the sum of squares
of distances between objects and the centers of clusters obtained after their
aggregation.

After execution of the next step of agglomerative procedure, it is neces-
sary to find out that desirable agglomeration is reached. There are various
methods to define the procedure stop criterion: the a priori defined num-
ber of clusters is obtained; all clusters contain more elements than it was
predefined; clusters possess a required parity of internal uniformity and het-
erogeneity among them.

142 N.B. Zverev, F.A. Murzin, S. A. Poletaev

4. CUDA technology

CUDA technology is the hardware-software computing architecture [7] de-
veloped by the NVIDIA company on the basis of some extension of the C
language, which gives us a possibility to organize access to the set of instruc-
tions of the graphics accelerator and to manage its memory for organization
of parallel computing. CUDA helps us to implement algorithms on graphics
processors of GeForce video accelerators of the eighth generation and later
(series GeForce 8, GeForce 9, GeForce 200), and also Quadro and Tesla.

The CUDA software consists of several parts: a hardware driver, an
application programming interface (API), and two high-level mathematical
libraries CUFFT and CUBLAS described in [8, 9].

Though difficulties of programming on GPU by means of CUDA are still
quite serious, they are not as challenging as those encountered with early
GPGPU decisions. Such programs require partition of computations among
several multiprocessors, which is similar to MPI, but without data sharing,
which are stored in the general video memory. Because CUDA program-
ming for each multiprocessor is similar to that in OpenMP, it requires good
understanding of memory organization. But certainly, complexity of data
processing and transfer strongly depends on the program.

A toolkit for developers contains a set of examples of a well-documented
code. The tutorial course requires about two or four weeks for those already
familiar with OpenMP and MPI. The extended C language is the basis of
API. For translation of a code from this language onto the structure of
CUDA, SDK includes nvcc – a command line compiler created on the basis
of the open compiler Open64.

5. Implementation of the algorithm with CUDA

5.1. The structure of the algorithm

The algorithm of the hierarchical cluster analysis is iterative. Each iteration
contains several stages: construction of a matrix of distances; search for the
minimal element of the matrix; aggregation of clusters the distance between
which is minimal.

The triangular matrix of distances M = (mij), 0 6 i, j < N is filled only
in its top part, i.e. for mij with i > j. Otherwise mij = 0.

Let MN = M . Further in the process of cluster aggregation, there ap-
pears a sequence of matrices of distances MN ,MN−1, . . . , MN−s. We use
it to construct a corresponding sequence AN , AN−1, . . . , AN−s of matrices,
which reflects the membership of elements to clusters.

Let AN = E be an identity matrix of dimension N ×N .
If Ak is already constructed, then Ak−1 is constructed as follows.

Implementation of the algorithm of hierarchical cluster analysis on GPU 143

In a matrix M , we search for such a pair (i, j) that M(i, j) is minimal
(or mij = min{mkl : 0 6 k, l < N}). Notice that several pairs (i, j) may
exist, on which minimum is reached. In this case, we choose one of them.

Having received the result, we walk through the i-th and j-th columns of
the matrix A and replace the elements of the i-th column by disjunction of
the corresponding elements of columns i and j. We replace the j-th column
by the k-th column. Thus k should be not equal to j. Then we delete the
k-th column of the matrix. It means that at the next iteration, we will
have a matrix M of smaller dimensions. Hence, the number of clusters will
decrease by 1.

Let us also notice that in the k-th iteration, we work with a matrix
Mk = MN−k+1. It means that in this case we work with N ′

k = (N2
k −Nk)/2

elements. Now, similar to [6], we will estimate the efficiency of the algorithm
for different situations.

5.2. Estimation of run time of the sequential algorithm

Step 1. Construction of a matrix of distances
In a sequential case, it is necessary to calculate N ′

k = (N2
k − Nk)/2

elements. We assume that time necessary for calculation of one element of
a matrix is equal to the constant c1. Thus, total time necessary for matrix
construction is

T k
1 = c1 ·N ′

k = c1 · (N2
k −Nk)/2.

Let us notice that this time is not static. At any technique of definition of a
distance between clusters, in view of a growing size of clusters, the number of
operations also increases. In other words, as the number of clusters decreases
step by step simultaneously with iterations, the volumes of clusters grow,
and c1 will also grow. Therefore, let T k

p be time necessary for calculation of
one element of a matrix in the k-th iteration. Thus we have

T k
1 = T k

p ·N ′
k.

It is possible to write that

c1 6 T k
p 6 c1 k2.

The left border corresponds to one-element clusters. The right border cor-
responds to the fact that in the k-th iteration, clusters consist of no more
than k points.

Step 2. Finding the minimal element
Analogously, we should consider the elements of the matrix located above

the main diagonal (M (i, j) | j>i). Time necessary for comparison of any
element with the minimal element is assumed to be constant and denoted
by c2. Thus

144 N.B. Zverev, F.A. Murzin, S. A. Poletaev

T k
2 = c2 ·N ′

k = c2 · (N2
k −Nk)/2.

Step 3. Aggregation of clusters
This step can be divided conditionally into two parts:
1. Preliminary aggregation of clusters
The corresponding columns of a matrix Ak are considered, i.e. it is

necessary to make Nk iterations. Accordingly, time is equal to

T k
3.1 = c3.1 ·Nk.

2. Deletion of one of the clusters
Deletion is carried out by means of zeroing the values of the k-th columns,

therefore
T k

3.2 = c3.2 ·Nk.

Taking into account these two subparagraphs, it is possible to say that
T k

3 = c3 ·Nk, where
c3 = c3.1 + c3.2.

The total time in the sequential case is

T =
3∑

i=1

T k
i = T k

p ·N ′
k + c2 ·N ′ + c3 ·N.

5.3. Estimation of run time of the parallel algorithm for an
abstract machine

Let us make a rough estimate of an overall performance of the abstract
machine for parallel computation. We suppose that this machine can simul-
taneously process the unlimited number of streams.

Step 1. Construction of the matrix of distances
Distances between clusters are calculated simultaneously. Therefore, the

time of calculation and the acceleration factor are

tk1 = c′1 = c1,

λk
1 = T k

1 /tk1 = (N2
k −Nk)/2.

Step 2. Search for the minimal element
Let us consider the most obvious way, i.e. a pairwise comparison of

elements of a matrix in the form of a tree. In that case we have

tk2 = ′
2 · log2 N ′

k.

It is possible to assume that c′2 = c2 , which results in

Implementation of the algorithm of hierarchical cluster analysis on GPU 145

λk
2 = T k

2 /tk2 = N ′
k/ log2 N ′

k.

Step 3. Aggregation of clusters
We can make all replacements simultaneously, therefore we obtain

tk3 = c′3 = c3,

λk
3 = T k

3 /tk3 = Nk.

5.4. Estimation of run time of the parallel algorithm for GPU

General facts
Blocks of size n × n are processed. In our case n = 16. The number of

blocks simultaneously processed is k(we usually have k = 4).
Actually the situation is more difficult. There exists a parameter char-

acterizing the minimal number of streams: warp = 32. The major part
of parallel implementation of the program is hidden from the programmer.
Our equipment allows us to process M = k × n = 1024 streams in parallel.

Step 1. Construction of the matrix of distances
Simultaneously we can calculate distances for 4 blocks, therefore

tk,CUDA
1 = cCUDA

1 · T1/M.

Let cCUDA
1 be the proportionality coefficient reflecting the difference in speed

of the central and graphics processors cCUDA
1 = τCPU/τGPU .

In a typical situation, τCPU > τGPU (for example, τCPU/τGPU = 16),
i.e. the graphics processor is 16 times slower than the central processor.
Parallelization gives a more than 16 times increase in efficiency, thus making
its application reasonable.

Step 2. Search for the minimal element
2.1. Search for the minimum is made simultaneously in the first 4 blocks,

then in the next 4 blocks, etc. Search for the minimal element in a block
is made by a pairwise hierarchical comparison of elements. As a result, we
have

tk,CUDA
2.1 = cCUDA

2.1 · T1/M.

2.2. Formation of a new matrix containing minima is shown below.

Block (0,0) Block(1,0)
Block(0,1) Block(1,1)

The input matrix

Min(0,0) Min(1,0)
Min(0,1) Min(1,1)

The matrix obtained at the next step

146 N.B. Zverev, F.A. Murzin, S. A. Poletaev

Both matrices are formed in the internal memory of the graphics proces-
sor.

Minima are selected from k blocks. The coordinates of minima are stored
in another matrix of the same dimension. Accordingly, we have

tk,CUDA
2.2 = cCUDA

2.2 ·Nk/k.

2.3 Then we return to step 2.1, using already a newly obtained matrix. We
repeat this operation until we get a matrix of dimension 1 × 1. Thus, we
will obtain the minimal element of the matrix. Unfortunately, it is hard
to make an exact estimation, though a rough estimate can be obtained. If
we suppose that we are processing not a half of the matrix but the whole
matrix, we would have:

N1
k = Nk,

N2
k = Nk/nt,

.

N t+1
k = Nk/nt.

Since we consider approximately only a half of the matrix, we have

tk,CUDA
2 = cCUDA

2 · (1 + 1/n + 1/n2 + . . .) ·N/2M.

Step 3. Aggregation of clusters
It was shown in practice, that this process is more appropriate to be

carried out on the central processor in view of small volumes of computation.

6. Program implementation

Step 1. Construction of the matrix of distances
To construct the matrix of distances with CUDA, the algorithm of clus-

ters aggregation was separated into a kernel-module, and the calculation
of distances into a separate device procedure. Thereby, the possibility of
flexible use of various methods of the cluster analysis was reached.

The program contains the modules performing the following functions:
1. GPU memory allocation for the initial matrix A and coordinate data.
2. Copying of the data mentioned above to GPU.
3. GPU memory allocation for the result.
4. Execution of the kernel-module.
5. Host memory allocation for the result.
6. Copying the result from GPU to host.
7. Search for the minimal element

Implementation of the algorithm of hierarchical cluster analysis on GPU 147

Contrary to our expectations, integration of code created with CUDA
into the initial code has not produced especially notable results for the fol-
lowing reasons: a bulky enough search for the least element remained imple-
mented in the first version of our program without use of CUDA and copying
of data from the device memory (GPU) onto a host computer appeared to
be too time-consuming. Approximate distribution of blocks and streams in
the matrix of distances can be seen below (Figure 1). For simplicity, the
matrix of size 6× 6 is shown.

Figure 1. Partition of the matrix elements into blocks

Step 2. Search for the minimal element
At this stage, the following problems are considered.
1. Minimization of data transfer from GPU memory to host memory.
2. The use of CUDA for searching the minimal element of a matrix.
The second problem is complicated by one of the disadvantages of CUDA,

namely, shared memory can have only streams inside one block. Different
blocks cannot exchange data. Thus computations on the graphics processor
are made only partially:

1. The matrix of distances is divided into submatrices. Each submatrix
is processed by a separate stream.

2. In each submatrix, there is a minimal element which we write in a file
in GPU memory.

3. This file is moved into host memory.
4. On a host, we find the minimal element by standard means.
The submatrix dimension was determined according to the dimension of

a block at the first step of the algorithm, i.e. 16× 16.
Unfortunately, the result of this implementation was unsatisfactory. The

goal was not reached because of the performance losses while processing
cycles on GPU. Thereby, the time for the minimal element search was not
reasonably reduced.

A new recursive algorithm to search the minimum has been considered:

148 N.B. Zverev, F.A. Murzin, S. A. Poletaev

1. One stream is allocated for each element of the given matrix. Streams
are joined into blocks of size 16×16.

2. For each block, an array of size 16×16 is allocated in a shared memory
(a memory which is shared among streams of a block). Thus, the content
of the element [bx*BLOCK SIZE+tx] [by*BLOCK SIZE+ty] of the initial
matrix is written into this array.

3. In the shared memory, a variable vmin is allocated, which is compared
with the elements of the array of size 16×16 mentioned above.

4. Collecting all vmin from all blocks, we construct a new matrix B
(Figure 5) which contains the values of this variable.

5. Then we return back to step 1. We continue this process until the
dimension of the matrix B becomes equal to 1.

The process can be seen below (Figure 2). For simplicity, the matrix of
the size 6× 6 and blocks of the size 4× 4 are shown.

Figure 2. Construction of the next matrix

It is necessary to notice that both purposes of optimization have been
reached: the matrix M moves no longer from GPU memory into host mem-
ory, and thereby the number of local iterations is reduced to minimum.

Implementation of the algorithm of hierarchical cluster analysis on GPU 149

7. Conclusion

The algorithm of the hierarchical cluster analysis has been implemented
with CUDA, allowing us to carry out the hierarchical cluster analysis much
faster than on CPU. The comparative results of running the algorithm with
the same initial data on CPU and GPU can be seen below in the table and
graphical form (Figure 3). Time is given in seconds.

N CPU GPU Acceleration coefficient on GPU
64 0,28 0,13 2
128 1,17 0,30 4
192 3,91 0,39 10
256 10,11 0,53 19
320 21,98 0, 90 24
384 42,09 1,16 36
448 73,34 1,35 54
512 122,72 1,82 67

Comparative results of performance on CPU and GPU

Figure 3. The comparative diagram of the algorithm run-time on GPU and CPU;
the horizontal axis corresponds to the number of points and the vertical axis is time
in seconds

Resuming, we can say that we have obtained the following results:
1. The method to transfer the algorithm onto the parallel multiprocessor

system used on modern GPUs is proposed.

150 N.B. Zverev, F.A. Murzin, S. A. Poletaev

2. Within the frameworks of some natural assumptions, we obtained the
estimates for the algorithm run-time in a sequential and parallel case, for
an abstract parallel machine, and for GPU.

3. The procedure to construct the matrix of distances between clusters
is implemented on GPU by means of the CUDA system, which in case of
a high-dimensional problem is much faster than the same C++ program
implemented on CPU.4. The search for the minimal element of the matrix,
which considerably reduces data exchange between GPU and host, was also
implemented on GPU by means of the CUDA system, and it has given a
major efficiency increase.

References

[1] Bradley P., Fayyad U., Reina C. Scaling Clustering Algorithms to Large
Databases // Proc. 4th Intl Conf. Knowledge Discovery and Data Mining.
– AAAI Press, Menlo Park, Calif., 1998. – P. 8–15.

[2] Zhang T., Ramakrishnan R., Livny M. An Efficient Data Clustering Method
for Very Large Databases // Proc. ACM SIGMOD Intl Conf. Management of
Data. – ACM Press, 1996. – P. 103–114.

[3] Huang Z. A fast clustering algorithm to cluster very large categorical data
sets in Data Mining // Research Issues on Data Mining and KDD. – 1997. –
P. 367–370.

[4] Ganti V., Gerhke J., Ramakrishan R. CACTUS – Clustering Categorical Data
Using Summaries// Proc Int. Conf. on Knowledge Discovery and Data Mining.
– 1999. – P. 73–83.

[5] Murzin F.A., Poplevina N.V., Semich D.F. Algorithms of the determination
of the oil saturated layers on the basis of data of the radioactive wells logging
// 7th Intl Conf. of memory of academician A.P. Ershov, “Perspectives of sys-
tem informatics”, Working seminar “High technology software”. – Novosibirsk,
2009. – P. 199–206. (In Russian)

[6] Kalinnikov P.A., Murzin F.A., Pletneva T.A. Some algorithms of image pro-
cessing and their reflection onto multiprocessor systems // Joint Bull. of
NCC&IIS. Ser. Comput. Sci. – Novosibirsk, 2008. – Iss. 28. – P. 67–78.

[7] NVIDIA CUDA Compute Unified Device Architecture. CUDA Programming
guide (v. 2.2). – NVIDIA Corporation, 2009. – 125 p.

[8] CUFFT Library. – PG-00000-003 (v.1.1), NVIDIA Corporation, 2007. – 17 p.

[9] CUBLAS Library. – PG-00000-002 (v.1.0), NVIDIA Corporation, 2007. – 80 p.

